Academic literature on the topic 'PARKINSON'S DISEASE DETECTION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PARKINSON'S DISEASE DETECTION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PARKINSON'S DISEASE DETECTION"
N., Chandana, Divya C. D., and Radhika A. D. "A Review on Parkinsons Disease Detection." Applied and Computational Engineering 2, no. 1 (March 22, 2023): 760–65. http://dx.doi.org/10.54254/2755-2721/2/20220675.
Full textSingh, Manju, and Vijay Khare. "Detection of Parkinson’s Disease Using the Spiral Diagram and Convolutional Neural Network." Ingénierie des systèmes d information 27, no. 6 (December 31, 2022): 991–97. http://dx.doi.org/10.18280/isi.270616.
Full textI, Kalaiyarasi, Amudha P, and Sivakumari S. "Parkinson\'s Disease Detection Using Deep Learning Technique." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 1789–96. http://dx.doi.org/10.22214/ijraset.2023.51916.
Full textKolekar, Sachchit, Naman Jain, Amit Mete, and Prof Nilesh Kulal. "Parkinson’s Disease Detection using Ensemble Learning." International Journal for Research in Applied Science and Engineering Technology 11, no. 4 (April 30, 2023): 4189–93. http://dx.doi.org/10.22214/ijraset.2023.51241.
Full textDegadwala, Sheshang D., S. Leopauline, D. Sarathy, C. Augustine, and M. Kamesh. "Detection of Parkinson's disease using CNN." International Journal of Medical Engineering and Informatics 1, no. 1 (2022): 1. http://dx.doi.org/10.1504/ijmei.2022.10048478.
Full textM, Sakshi, Dr Sankhya N. Nayak, Skanda G N, Shreyas R. Adiga, and Pavana R. "A Review on Detection of Parkinsons Disease Using ML Algorithms." International Journal for Research in Applied Science and Engineering Technology 11, no. 3 (March 31, 2023): 696–99. http://dx.doi.org/10.22214/ijraset.2023.49497.
Full textAdekunle, Abiona Akeem, Oyerinde Bolarinwa Joseph, and Ajinaja Micheal Olalekan. "Early Parkinson's Disease Detection Using by Machine Learning Approach." Asian Journal of Research in Computer Science 16, no. 2 (June 9, 2023): 36–45. http://dx.doi.org/10.9734/ajrcos/2023/v16i2337.
Full textMittal, Vikas, and R. K. Sharma. "Classification of Parkinson Disease Based on Analysis and Synthesis of Voice Signal." International Journal of Healthcare Information Systems and Informatics 16, no. 4 (October 2021): 1–22. http://dx.doi.org/10.4018/ijhisi.20211001.oa30.
Full textLamba, Rohit, Tarun Gulati, and Anurag Jain. "An Intelligent System for Parkinson's Diagnosis Using Hybrid Feature Selection Approach." International Journal of Software Innovation 10, no. 1 (January 2022): 1–13. http://dx.doi.org/10.4018/ijsi.292027.
Full textSekhar, Ch, M. S. Rao, and D. Bhattacharyya. "Machine Learning Algorithms for Parkinson's Disease Detection." Asia-Pacific Journal of Neural Networks and Its Applications 4, no. 1 (August 30, 2020): 29–36. http://dx.doi.org/10.21742/ajnnia.2020.4.1.04.
Full textDissertations / Theses on the topic "PARKINSON'S DISEASE DETECTION"
Saad, Ali. "Detection of Freezing of Gait in Parkinson's disease." Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0029/document.
Full textFreezing of Gait (FoG) is an episodic phenomenon that is a common symptom of Parkinson's disease (PD). This research is headed toward implementing a detection, diagnosis and correction system that prevents FoG episodes using a multi-sensor device. This particular study aims to detect/diagnose FoG using different machine learning approaches. In this study we validate the choice of integrating multiple sensors to detect FoG with better performance. Our first level of contribution is introducing new types of sensors for the detection of FoG (telemeter and goniometer). An advantage in our work is that due to the inconsistency of FoG events, the extracted features from all sensors are combined using the Principal Component Analysis technique. The second level of contribution is implementing a new detection algorithm in the field of FoG detection, which is the Gaussian Neural Network algorithm. The third level of contribution is developing a probabilistic modeling approach based on Bayesian Belief Networks that is able to diagnosis the behavioral walking change of patients before, during and after a freezing event. Our final level of contribution is utilizing tree-structured Bayesian Networks to build a global model that links and diagnoses multiple Parkinson's disease symptoms such as FoG, handwriting, and speech. To achieve our goals, clinical data are acquired from patients diagnosed with PD. The acquired data are subjected to effective time and frequency feature extraction then introduced to the different detection/diagnosis approaches. The used detection methods are able to detect 100% of the present appearances of FoG episodes. The classification performances of our approaches are studied thoroughly and the accuracy of all methodologies is considered carefully and evaluated
Chen, Lei [Verfasser]. "Computer-aided detection of Parkinson's Disease using transcranial sonography / Lei Chen." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2014. http://d-nb.info/1046712691/34.
Full textTaleb, Catherine. "Parkinson's desease detection by multimodal analysis combining handwriting and speech signals." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT039.
Full textParkinson’s disease (PD) is a neurological disorder caused by a decreased dopamine level on the brain. This disease is characterized by motor and non-motor symptoms that worsen over time. In advanced stages of PD, clinical diagnosis is clear-cut. However, in the early stages, when the symptoms are often incomplete or subtle, the diagnosis becomes difficult and at times, the subject may remain undiagnosed. Furthermore, there are no efficient and reliable methods capable of achieving PD early diagnosis with certainty. The difficulty in early detection is a strong motivation for computer-based assessment tools/decision support tools/test instruments that can aid in the early diagnosing and predicting the progression of PD.Handwriting’s deterioration and vocal impairment may be ones of the earliest indicators for the onset of the illness. According to the reviewed literature, a language independent model to detect PD using multimodal signals has not been enough addressed. The main goal of this thesis is to build a language independent multimodal system for assessment the motor disorders in PD patients at an early stage based on combined handwriting and speech signals, using machine learning techniques. For this purpose and due to the lack of a multimodal and multilingual dataset, such database that is equally distributed between controls and PD patients was first built. The database includes handwriting, speech, and eye movements’ recordings collected from control and PD patients in two phases (“on-state” and “off-state”). In this thesis we focused on handwriting and speech analysis, where PD patients were studied in their “on-state”.Language-independent models for PD detection based on handwriting features were built; where two approaches were considered, studied and compared: a classical feature extraction and classifier approach and a deep learning approach. Approximately 97% classification accuracy was reached with both approaches. A multi-class SVM classifier for stage detection based on handwriting features was built. The achieved performance was non-satisfactory compared to the results obtained for PD detection due to many obstacles faced.Another language and task-independent acoustic feature set for assessing the motor disorders in PD patients was built. We have succeeded to build a language independent SVM model for PD diagnosis through voice analysis with 97.62% accuracy. Finally, a language independent multimodal system for PD detection by combining handwriting and voice signals was built, where both classical SVM model and deep learning models were both analyzed. A classification accuracy of 100% is obtained when handcrafted features from both modalities are combined and applied to the SVM. Despite the encouraging results obtained, there is still some works to do before putting our PD detection multimodal model into clinical use due to some limitations inherent to this thesis
Jalloul, Nahed. "Development of a system of acquisition and movement analysis : application on Parkinson's disease." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S096/document.
Full textThe work presented in this thesis is concerned with the development of an ambulatory monitoring system for the detection of Levodopa Induced Dyskinesia (LID) in Parkinson’s disease (PD) patients. The system is composed of Inertial Measurement Units (IMUs) that collect movement signals from healthy individuals and PD patients. Different methods are evaluated which consist of LID detection with and without activity classification. Data collected from healthy individuals is used to design a reliable activity classifier. Following that, an algorithm that performs activity classification and dyskinesia detection on data collected from PD patients is tested. A new approach based on complex network analysis is also explored and presents interesting results. The evaluated analysis methods are incorporated into a platform PARADYSE in order to further advance the system’s capabilities
F, Miraglia. "Development of molecular biosensors for the detection of alpha-synuclein aggregation in cells." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1096217.
Full textTakač, Boris. "Context-aware home monitoring system for Parkinson's disease patietns : ambient and werable sensing for freezing of gait detection." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/668652.
Full textEsta tesis propone el uso de la actividad y el contexto espacial de una persona como medio para mejorar la detección de episodios de FOG (Freezing of gait) durante el seguimiento en el domicilio. La tesis describe el diseño, implementación de algoritmos y evaluación de un sistema doméstico distribuido para detección de FOG basado en varias cámaras y un único sensor de marcha inercial en la cintura del paciente. Mediante de la observación detallada de los datos caseros recopilados de 17 pacientes con EP, nos dimos cuenta de que se puede lograr una solución novedosa para la detección de FOG mediante el uso de información contextual de la posición del paciente, orientación, postura básica y movimiento anotada semánticamente en un mapa bidimensional (2D) del entorno interior. Imaginamos el futuro sistema de consciencia del contexto como una red de cámaras Microsoft Kinect colocadas en el hogar del paciente, que interactúa con un sensor de inercia portátil en el paciente (teléfono inteligente). Al constituirse la plataforma del sistema a partir de hardware comercial disponible, los esfuerzos de desarrollo consistieron en la producción de módulos de software (para el seguimiento de la posición, orientación seguimiento, reconocimiento de actividad) que se ejecutan en la parte superior del sistema operativo del servidor de puerta de enlace de casa. El componente principal del sistema que tuvo que desarrollarse es la aplicación Kinect para seguimiento de la posición y la altura de varias personas, según la entrada en forma de punto 3D de datos en la nube. Además del seguimiento de posición, este módulo de software también proporciona mapeo y semántica. anotación de zonas específicas de FOG en la escena frente al Kinect. Se supone que una instancia de la aplicación de seguimiento de visión se ejecuta para cada sensor Kinect en el sistema, produciendo un número potencialmente alto de pistas simultáneas. En cualquier momento, el sistema tiene que rastrear a una persona específica - el paciente. Para habilitar el seguimiento del paciente entre diferentes cámaras no superpuestas en el sistema distribuido, se desarrolló un nuevo enfoque de re-identificación basado en el aprendizaje de modelos de apariencia con one-class Suport Vector Machine (SVM). La evaluación del método de re-identificación se realizó con un conjunto de datos de 16 personas en un entorno de laboratorio. Dado que la orientación del paciente en el espacio interior fue reconocida como una parte importante del contexto, el sistema necesitaba la capacidad de estimar la orientación de la persona, expresada en el marco de la escena 2D en la que la cámara sigue al paciente. Diseñamos un método para fusionar la información de seguimiento de posición del sistema de visión y los datos de inercia del smartphone para obtener la estimación de postura 2D del paciente en el mapa de la escena. Además, se propuso un método para la estimación de la posición del Smartphone en la cintura del paciente. La precisión de la estimación de la posición y la orientación se evaluó en un conjunto de datos de 12 personas. Finalmente, al tener disponible información de posición, orientación y altura, se realizó una nueva clasificación de actividad de seven-class utilizando un clasificador jerárquico que combina un clasificador de postura basado en la altura con clasificadores de movimiento SVM traslacional y rotacional. Cada uno de los clasificadores de movimiento SVM y el clasificador jerárquico conjunto se evaluaron en el experimento de laboratorio con 8 personas sanas. El último algoritmo de detección de FOG basado en el contexto utiliza información de actividad e información de texto espacial para confirmar o refutar el FOG detectado por el algoritmo de detección de FOG actual. El algoritmo basado en el contexto influye muy positivamente en la reducción de las detecciones de falsos positivos, que se expresa a través de una mayor especificidad
Ruffmann, Claudio. "Detection of alpha-synuclein conformational variants from gastro-intestinal biopsy tissue as a potential biomarker for Parkinson's disease." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3cddebda-aaf4-40c5-b026-9365aa16fdd7.
Full textHu, Kun. "Fine-grained Human Action Recognition for Freezing of Gait Detection." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27286.
Full textAhlrichs, Claas [Verfasser], Michael [Akademischer Betreuer] Lawo, and Albert [Akademischer Betreuer] Samà. "Development and Evaluation of AI-based Parkinson's Disease Related Motor Symptom Detection Algorithms / Claas Ahlrichs. Gutachter: Michael Lawo ; Albert Samà. Betreuer: Michael Lawo." Bremen : Staats- und Universitätsbibliothek Bremen, 2015. http://d-nb.info/1075609321/34.
Full textMohammadian, Rad Nastaran. "Deep Learning for Abnormal Movement Detection using Wearable Sensors: Case Studies on Stereotypical Motor Movements in Autism and Freezing of Gait in Parkinson's Disease." Doctoral thesis, Università degli studi di Trento, 2019. https://hdl.handle.net/11572/368163.
Full textBooks on the topic "PARKINSON'S DISEASE DETECTION"
McKeown, Martin J., Xun Chen, Meeko Oishi, and Aiping Liu, eds. New Technologies for Detection, Monitoring and Treatment of Parkinson’s Disease. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-886-4.
Full textPostuma, Ronald B. REM sleep behavior disorder. Edited by Sudhansu Chokroverty, Luigi Ferini-Strambi, and Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0038.
Full textRoze, Emmanuel, and Nenad Blau. Biogenic Monoamine Disorders. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0031.
Full textBook chapters on the topic "PARKINSON'S DISEASE DETECTION"
Bhardwaj, Satyankar, Dhruv Arora, Bali Devi, Venkatesh Gauri Shankar, and Sumit Srivastava. "Machine Learning Assisted Binary and Multiclass Parkinson's Disease Detection." In Intelligent Sustainable Systems, 191–206. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2894-9_15.
Full textCotogni, Marco, Lucia Sacchi, Dejan Georgiev, and Aleksander Sadikov. "Detection of Parkinson's Disease Early Progressors Using Routine Clinical Predictors." In Artificial Intelligence in Medicine, 163–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77211-6_18.
Full textFerrante, Claudio, Licia Sbattella, Vincenzo Scotti, Bindu Menon, and Anitha S. Pillai. "Analysis of Features for Machine Learning Approaches to Parkinson's Disease Detection." In Machine Learning and Deep Learning in Natural Language Processing, 169–83. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003296126-13.
Full textBaranauskas, Mindaugas, Rytis Jurkonis, Arūnas Lukoševičius, Vaidas Matijošaitis, Rymantė Gleiznienė, and Daiva Rastenytė. "Diagnostic Ability of Radiofrequency Ultrasound in Parkinson's Disease Compared to Conventional Transcranial Sonography and Magnetic Resonance Imaging." In Advances in Medical Imaging, Detection, and Diagnosis, 285–302. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003298038-8.
Full textHuang, Debin, Wenting Yang, Simeng Li, Hantao Li, Lipeng Wang, Wei Zhang, and Yuzhu Guo. "Artificial Intelligence for Accurate Detection and Analysis of Freezing of Gait in Parkinson's Disease." In Recent Advances in AI-enabled Automated Medical Diagnosis, 173–214. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003176121-13.
Full textGanotra, Reema, and Shailender Gupta. "Detection of Parkinson's Disease Using Support Vector Machine and Combination of Various Tissue Density Features." In Lecture Notes in Electrical Engineering, 65–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7993-4_6.
Full textYkhlef, Faycal, and Djamel Bouchaffra. "A Comparative Performance Study of Feature Selection Techniques for the Detection of Parkinson's Disease from Speech." In Image Processing and Intelligent Computing Systems, 185–93. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003267782-12.
Full textFaouzi, Johann, Olivier Colliot, and Jean-Christophe Corvol. "Machine Learning for Parkinson’s Disease and Related Disorders." In Machine Learning for Brain Disorders, 847–77. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3195-9_26.
Full textGuo, Pei-Fang, Prabir Bhattacharya, and Nawwaf Kharma. "Advances in Detecting Parkinson’s Disease." In Lecture Notes in Computer Science, 306–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13923-9_33.
Full textPatra, Raj Kumar, Akanksha Gupta, Maguluri Sudeep Joel, and Swati Jain. "Parkinson’s Disease Detection Using Voice Measurements." In Artificial Intelligence and Machine Learning in 2D/3D Medical Image Processing, 143–58. First edition. | Boca Raton: CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429354526-10.
Full textConference papers on the topic "PARKINSON'S DISEASE DETECTION"
Anthoniraj, S., A. Naresh Kumar, Galiveeti Hemakumar Reddy, Sadhan Gope, and More Raju. "Parkinson's Disease Detection Using Machine Learning." In 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS). IEEE, 2022. http://dx.doi.org/10.1109/ssteps57475.2022.00070.
Full textRoobini, M. S., Yaragundla Rajesh Kumar Reddy, Udayagiri Sushmanth Girish Royal, Amandeep K. Singh, and K. Babu. "Parkinson's Disease Detection Using Machine Learning." In 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). IEEE, 2022. http://dx.doi.org/10.1109/ic3iot53935.2022.9768002.
Full textOmar, Najiya M., and M. E. El-Hawary. "Optimizing classifier performance for Parkinson's Disease detection." In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017. http://dx.doi.org/10.1109/ccece.2017.7946697.
Full textSorensen, G. L., J. Kempfner, P. Jennum, and H. B. D. Sorensen. "Detection of arousals in Parkinson's disease patients." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090757.
Full textGoel, Shubham, Amrendra Tripathi, Tanupriya Choudhury, and Vivek Kumar. "Parkinson's Disease Detection using Soft Computing Technique." In 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2019. http://dx.doi.org/10.1109/smart46866.2019.9117384.
Full textV, Sanjay, and Swarnalatha P. "Machine Learning Techniques for Parkinson's Disease Detection." In 2022 Smart Technologies, Communication and Robotics (STCR). IEEE, 2022. http://dx.doi.org/10.1109/stcr55312.2022.10009074.
Full textVikas and R. K. Sharma. "Early detection of Parkinson's disease through Voice." In 2014 International Conference on Advances in Engineering and Technology (ICAET). IEEE, 2014. http://dx.doi.org/10.1109/icaet.2014.7105237.
Full textHansen, Ingeborg H., Mikkel Marcussen, Julie A. E. Christensen, Poul Jennum, and Helge B. D. Sorensen. "Detection of a sleep disorder predicting Parkinson's disease." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610868.
Full textAfroz, Nur, and Boshir Ahmed. "Deep Transfer Learning for Early Parkinson's Disease Detection." In 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2023. http://dx.doi.org/10.1109/ecce57851.2023.10101591.
Full textKumari, L. V. Rajani, Mohammad Aatif Jaffery, K. Saketh Sai Nigam, G. Manaswi, and P. Tharangini. "Detection of Parkinson's Disease using Extreme Gradient Boosting." In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2021. http://dx.doi.org/10.1109/icoei51242.2021.9453088.
Full textReports on the topic "PARKINSON'S DISEASE DETECTION"
Treadwell, Jonathan R., James T. Reston, Benjamin Rouse, Joann Fontanarosa, Neha Patel, and Nikhil K. Mull. Automated-Entry Patient-Generated Health Data for Chronic Conditions: The Evidence on Health Outcomes. Agency for Healthcare Research and Quality (AHRQ), March 2021. http://dx.doi.org/10.23970/ahrqepctb38.
Full text