Journal articles on the topic 'Parity-check codes'

To see the other types of publications on this topic, follow the link: Parity-check codes.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Parity-check codes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Heegard, C., and A. J. King. "FIR parity check codes." IEEE Transactions on Communications 48, no. 7 (July 2000): 1108–13. http://dx.doi.org/10.1109/26.855518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

UCHIKAWA, Hironori. "Low-Density Parity-Check Codes." IEICE ESS Fundamentals Review 14, no. 3 (January 1, 2021): 217–28. http://dx.doi.org/10.1587/essfr.14.3_217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fuja, T., C. Heegard, and M. Blaum. "Cross parity check convolutional codes." IEEE Transactions on Information Theory 35, no. 6 (1989): 1264–76. http://dx.doi.org/10.1109/18.45283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Tao, Daiming Qu, and Tao Jiang. "Parity-Check-Concatenated Polar Codes." IEEE Communications Letters 20, no. 12 (December 2016): 2342–45. http://dx.doi.org/10.1109/lcomm.2016.2607169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rankin, D. M., and T. A. Gulliver. "Single parity check product codes." IEEE Transactions on Communications 49, no. 8 (2001): 1354–62. http://dx.doi.org/10.1109/26.939851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li Ping, W. K. Leung, and Nam Phamdo. "Low density parity check codes with semi-random parity check matrix." Electronics Letters 35, no. 1 (1999): 38. http://dx.doi.org/10.1049/el:19990065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olaya, Wilson. "The parity check codes through geometric Goppa codes." IEEE Latin America Transactions 5, no. 1 (March 2007): 38–40. http://dx.doi.org/10.1109/t-la.2007.4444531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ward, R. K. "Parity Check Codes for Logic Processors." Computer Journal 29, no. 1 (January 1, 1986): 12–16. http://dx.doi.org/10.1093/comjnl/29.1.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kanter, Ido, and David Saad. "Cascading parity-check error-correcting codes." Physical Review E 61, no. 2 (February 1, 2000): 2137–40. http://dx.doi.org/10.1103/physreve.61.2137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haley, David, and Alex Grant. "Reversible Low-Density Parity-Check Codes." IEEE Transactions on Information Theory 55, no. 5 (May 2009): 2016–36. http://dx.doi.org/10.1109/tit.2009.2016025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Moura, J. M. F., Jin Lu, and Haotian Zhang. "Structured low-density parity-check codes." IEEE Signal Processing Magazine 21, no. 1 (January 2004): 42–55. http://dx.doi.org/10.1109/msp.2004.1267048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kasai, Kenta. "5. Low-Density Parity-Check Codes." Journal of The Institute of Image Information and Television Engineers 70, no. 7 (2016): 582–84. http://dx.doi.org/10.3169/itej.70.582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

LI, YUAN, MANTAO XU, YINKUO MENG, and YING GUO. "GRAPHICAL QUANTUM LOW-DENSITY PARITY-CHECK CODES." International Journal of Modern Physics B 26, no. 20 (July 18, 2012): 1250118. http://dx.doi.org/10.1142/s0217979212501184.

Full text
Abstract:
Graphical approach provides a direct way to construct error correction codes. Motivated by its good properties, associating low-density parity-check (LDPC) codes, in this paper we present families of graphical quantum LDPC codes which contain no girth of four. Because of the fast algorithm of constructing for graphical codes, the proposed quantum codes have lower encoding complexity.
APA, Harvard, Vancouver, ISO, and other styles
14

Maddock, R. D., and A. H. Banihashemi. "Reliability-based coded modulation with low-density parity-check codes." IEEE Transactions on Communications 54, no. 3 (March 2006): 403–6. http://dx.doi.org/10.1109/tcomm.2006.869865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sobhani, Reza. "Generalised array low-density parity-check codes." IET Communications 8, no. 12 (August 14, 2014): 2121–30. http://dx.doi.org/10.1049/iet-com.2013.1179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Baldi, Marco, Giovanni Cancellieri, and Franco Chiaraluce. "Array Convolutional Low-Density Parity-Check Codes." IEEE Communications Letters 18, no. 2 (February 2014): 336–39. http://dx.doi.org/10.1109/lcomm.2013.120713.132177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liva, G., E. Paolini, and M. Chiani. "Simple reconfigurable low-density parity-check codes." IEEE Communications Letters 9, no. 3 (March 2005): 258–60. http://dx.doi.org/10.1109/lcomm.2005.03009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liva, G., E. Paolini, and M. Chiani. "Simple reconfigurable low-density parity-check codes." IEEE Communications Letters 9, no. 3 (March 2005): 258–60. http://dx.doi.org/10.1109/lcomm.2005.1411025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Echard, R., and Shih-Chun Chang. "Deterministic -rotation low-density parity check codes." Electronics Letters 38, no. 10 (2002): 464. http://dx.doi.org/10.1049/el:20020305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Arul, V., G. Frost, and D. Jung. "Parity‐check multiplicity in binary cyclic codes." Electronics Letters 49, no. 23 (November 2013): 1456–57. http://dx.doi.org/10.1049/el.2013.2677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tee, R. Y. S., F. C. Kuo, and L. Hanzo. "Multilevel generalised low-density parity-check codes." Electronics Letters 42, no. 3 (2006): 167. http://dx.doi.org/10.1049/el:20063247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bonello, Nicholas, Sheng Chen, and Lajos Hanzo. "Design of Low-Density Parity-Check Codes." IEEE Vehicular Technology Magazine 6, no. 4 (December 2011): 16–23. http://dx.doi.org/10.1109/mvt.2011.942806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Baldi, M., G. Cancellieri, A. Carassai, and F. Chiaraluce. "LDPC codes based on serially concatenated multiple parity-check codes." IEEE Communications Letters 13, no. 2 (February 2009): 142–44. http://dx.doi.org/10.1109/lcomm.2009.081766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khan, Ahmad. "Comparison of Turbo Codes and Low Density Parity Check Codes." IOSR Journal of Electronics and Communication Engineering 6, no. 6 (2013): 11–18. http://dx.doi.org/10.9790/2834-0661118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Amine Tehami, Mohammed, and Ali Djebbari. "Low Density Parity Check Codes Constructed from Hankel Matrices." Journal of Telecommunications and Information Technology 3 (September 28, 2018): 37–41. http://dx.doi.org/10.26636/jtit.2018.121717.

Full text
Abstract:
In this paper, a new technique for constructing low density parity check codes based on the Hankel matrix and circulant permutation matrices is proposed. The new codes are exempt of any cycle of length 4. To ensure that parity check bits can be recursively calculated with linear computational complexity, a dual-diagonal structure is applied to the parity check matrices of those codes. The proposed codes provide a very low encoding complexity and reduce the stored memory of the matrix H in which this matrix can be easily implemented comparing to others codes used in channel coding. The new LDPC codes are compared, by simulation, with uncoded bi-phase shift keying (BPSK). The result shows that the proposed codes perform very well over additive white Gaussian noise (AWGN) channels.
APA, Harvard, Vancouver, ISO, and other styles
26

Baldi, Marco, Giovanni Cancellieri, Franco Chiaraluce, and Amedeo De Amicis De Amicis. "Regular and Irregular Multiple Serially- Concatenated Multiple-Parity-Check Codes for Wireless Applications." Journal of Communications Software and Systems 5, no. 4 (December 20, 2009): 140. http://dx.doi.org/10.24138/jcomss.v5i4.200.

Full text
Abstract:
Multiple Serially-Concatenated Multiple-Parity-Check (M-SC-MPC) codes are a class of structured Low-Density Parity-Check (LDPC) codes, characterized by very simple encoding, that we have recently introduced. This paper evidences how the design of M-SC-MPC codes can be optimized for their usage in wireless applications. For such purpose, we consider some Quasi-Cyclic LDPC codes included in the mobile WiMax standard, and compare their performance with that of M-SCMPC codes having the same parameters. We also present a simple modification of the inner structure of M-SC-MPC codes that can help to improve their error correction performance by introducing irregularity in the parity-check matrix and increasing the length of local cycles in the associated Tanner graph. Our results show that regular and irregular M-SC-MPC codes, so obtained, can achieve very good performance and compare favorably with standard codes.
APA, Harvard, Vancouver, ISO, and other styles
27

Keshavarzian, Nazanin, Arsham Borumand Saeid, and Abolfazl Tehranian. "BCK-codes Based on a Parity Check Matrix." Fundamenta Informaticae 174, no. 2 (July 30, 2020): 137–65. http://dx.doi.org/10.3233/fi-2020-1936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yahya, Abid, Farid Ghani, R. Badlishah, and Raj Malook. "An Overview of Low Density Parity Check Codes." Journal of Applied Sciences 10, no. 17 (August 15, 2010): 1910–15. http://dx.doi.org/10.3923/jas.2010.1910.1915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Richardson, T. J., and R. L. Urbanke. "Efficient encoding of low-density parity-check codes." IEEE Transactions on Information Theory 47, no. 2 (2001): 638–56. http://dx.doi.org/10.1109/18.910579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Davey, M. C., and D. MacKay. "Low-density parity check codes over GF(q)." IEEE Communications Letters 2, no. 6 (June 1998): 165–67. http://dx.doi.org/10.1109/4234.681360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Kyung-Joong, Seho Myung, Sung-Ik Park, Jae-Young Lee, Makiko Kan, Yuji Shinohara, Jong-Woong Shin, and Jinwoo Kim. "Low-Density Parity-Check Codes for ATSC 3.0." IEEE Transactions on Broadcasting 62, no. 1 (March 2016): 189–96. http://dx.doi.org/10.1109/tbc.2016.2515538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Baldi, Marco, Marco Bianchi, Giovanni Cancellieri, and Franco Chiaraluce. "Progressive Differences Convolutional Low-Density Parity-Check Codes." IEEE Communications Letters 16, no. 11 (November 2012): 1848–51. http://dx.doi.org/10.1109/lcomm.2012.091212.121230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nouh, A., and A. H. Banihashemi. "Bootstrap decoding of low-density parity-check codes." IEEE Communications Letters 6, no. 9 (September 2002): 391–93. http://dx.doi.org/10.1109/lcomm.2002.803481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yu, Chao, and Gaurav Sharma. "Improved Low-Density Parity Check Accumulate (LDPCA) Codes." IEEE Transactions on Communications 61, no. 9 (September 2013): 3590–99. http://dx.doi.org/10.1109/tcomm.2013.13.120892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Di, C., T. J. Richardson, and R. L. Urbanke. "Weight Distribution of Low-Density Parity-Check Codes." IEEE Transactions on Information Theory 52, no. 11 (November 2006): 4839–55. http://dx.doi.org/10.1109/tit.2006.883541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rankin, D. M., T. A. Gulliver, and D. P. Taylor. "Asymptotic performance of single parity-check product codes." IEEE Transactions on Information Theory 49, no. 9 (September 2003): 2230–35. http://dx.doi.org/10.1109/tit.2003.815802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Roffe, Joschka, David Headley, Nicholas Chancellor, Dominic Horsman, and Viv Kendon. "Protecting quantum memories using coherent parity check codes." Quantum Science and Technology 3, no. 3 (June 6, 2018): 035010. http://dx.doi.org/10.1088/2058-9565/aac64e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kabashima, Yoshiyuki, and David Saad. "Statistical mechanics of low-density parity-check codes." Journal of Physics A: Mathematical and General 37, no. 6 (January 28, 2004): R1—R43. http://dx.doi.org/10.1088/0305-4470/37/6/r01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Matsumoto, Wataru, Weigang Xu, and Hideki Imai. "Multilevel coding for low-density parity-check codes." Electronics and Communications in Japan (Part I: Communications) 90, no. 8 (2007): 57–68. http://dx.doi.org/10.1002/ecja.20173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Peng, Li, and Guangxi Zhu. "The Q-matrix Low-Density Parity-Check codes." Journal of Electronics (China) 23, no. 1 (January 2006): 35–38. http://dx.doi.org/10.1007/s11767-004-0052-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

A. Zain, Adnan. "On Group Codes Over Elementary Abelian Groups." Sultan Qaboos University Journal for Science [SQUJS] 8, no. 2 (June 1, 2003): 145. http://dx.doi.org/10.24200/squjs.vol8iss2pp145-151.

Full text
Abstract:
For group codes over elementary Abelian groups we present definitions of the generator and the parity check matrices, which are matrices over the ring of endomorphism of the group. We also lift the theorem that relates the parity check and the generator matrices of linear codes over finite fields to group codes over elementary Abelian groups. Some new codes that are MDS, self-dual, and cyclic over the Abelian group with four elements are given.
APA, Harvard, Vancouver, ISO, and other styles
42

Chung, K. "Generalised low-density parity-check codes with binary cyclic codes as component codes." IET Communications 6, no. 12 (2012): 1710. http://dx.doi.org/10.1049/iet-com.2011.0816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

P, Shahnas. "Performance Analysis of Regular and Irregular LDPC Codes on SPIHT Coded Image Data." International Journal of Computer Communication and Informatics 2, no. 2 (October 30, 2020): 1–5. http://dx.doi.org/10.34256/ijcci2021.

Full text
Abstract:
The LDPC (Low Density Parity Check Code) has Shown interesting results for transmitting embedded bit streams over noisy communication channels. Performance comparison of regular and irregular LDPC codes with SPIHT coded image is done here. Different Error Sensitive classes of image data are obtained by using SPIHT algorithm as an image coder. Irregular LDPC codes map the more important class of data into a higher degree protection class to provide more protection. Different degree protection classes of an LDPC code improves the overall performance of data transmission against channel errors. Simulation results show the superiority of irregular LDPC over regular LDPC codes.
APA, Harvard, Vancouver, ISO, and other styles
44

Baldi, Marco, Giovanni Cancellieri, and Franco Chiaraluce. "Iterative Soft-Decision Decoding of Binary Cyclic Codes." Journal of Communications Software and Systems 4, no. 2 (June 22, 2008): 142. http://dx.doi.org/10.24138/jcomss.v4i2.227.

Full text
Abstract:
Binary cyclic codes achieve good error correction performance and allow the implementation of very simpleencoder and decoder circuits. Among them, BCH codesrepresent a very important class of t-error correcting codes, with known structural properties and error correction capability. Decoding of binary cyclic codes is often accomplished through hard-decision decoders, although it is recognized that softdecision decoding algorithms can produce significant coding gain with respect to hard-decision techniques. Several approaches have been proposed to implement iterative soft-decision decoding of binary cyclic codes. We study the technique based on “extended parity-check matrices”, and show that such method is not suitable for high rates or long codes. We propose a new approach, based on “reduced parity-check matrices” and “spread parity-check matrices”, that can achieve better correction performance in many practical cases, without increasing the complexity.
APA, Harvard, Vancouver, ISO, and other styles
45

Kim, Kyung-Joong, Jin-Ho Chung, and Kyeongcheol Yang. "Bounds on the Size of Parity-Check Matrices for Quasi-Cyclic Low-Density Parity-Check Codes." IEEE Transactions on Information Theory 59, no. 11 (November 2013): 7288–98. http://dx.doi.org/10.1109/tit.2013.2279831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ali Jassim, Amjad, Wael A. Hadi., and Muhanned Ismael Ibrahim Al-Firas. "Serially Concatenated Low-density Parity Check Codes as Compatible Pairs." International Journal of Engineering & Technology 7, no. 4.15 (October 7, 2018): 301. http://dx.doi.org/10.14419/ijet.v7i4.15.23013.

Full text
Abstract:
Low-density parity checks (LDPC) codes are considered good performance error correction codes. However, decoder complexity increases with increasing code length. In this study, we introduce short-length serially concatenated LDPC codes. The proposed technique uses pairs of compatible LDPC codes that act as outer and inner serially concatenated codes. In this code pair, the inner code takes input that is the same length as the outer LDPC encoder output. This study examined two cases of LDPC codes as compatible pairs with low numbers of iterations and compared bit error rate (BER) performance to a standalone LDPC code with an additive white Gaussian noise channel. We also considered the quadrature phase shift keying QPSK, 16-quadrature amplitude modulation (QAM), and 64-QAM system modulation schemes. Simulation results demonstrate that the proposed system has good BER performance compared to a standalone LDPC code, the results summarized in table and performance curves.
APA, Harvard, Vancouver, ISO, and other styles
47

DASS, BAL KISHAN, and POONAM GARG. "BOUNDS FOR CODES CORRECTING/DETECTING REPEATED LOW-DENSITY BURST ERRORS." Discrete Mathematics, Algorithms and Applications 04, no. 04 (December 2012): 1250048. http://dx.doi.org/10.1142/s1793830912500486.

Full text
Abstract:
This paper presents lower bound on the number of parity-check digits required for linear codes that correct m-repeated low-density burst errors of length b (fixed) with weight w or less (w ≤ b). An upper bound on the number of parity-check digits required for linear codes that are capable of detecting such m-repeated low-density bursts has also been derived.
APA, Harvard, Vancouver, ISO, and other styles
48

Lentmaier, M., and K. Sh Zigangirov. "On generalized low-density parity-check codes based on Hamming component codes." IEEE Communications Letters 3, no. 8 (August 1999): 248–50. http://dx.doi.org/10.1109/4234.781010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kurkoski, B. M., K. Yamaguchi, and K. Kobayashi. "Turbo Equalization With Single-Parity Check Codes and Unequal Error Protection Codes." IEEE Transactions on Magnetics 42, no. 10 (October 2006): 2579–81. http://dx.doi.org/10.1109/tmag.2006.880472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sivasankari, S. A. "Design and Implementation of Low Density Parity Check Codes." IOSR Journal of Engineering 4, no. 9 (September 2014): 21–25. http://dx.doi.org/10.9790/3021-04922125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography