Academic literature on the topic 'Pareto'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pareto.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pareto"
Wei, Xin. "Multi-Objective Optimization Base on Incremental Pareto Fitness." Advanced Materials Research 1030-1032 (September 2014): 1733–36. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.1733.
Full textMornati, Fiorenzo. "Pareto Optimality in the work of Pareto." Revue européenne des sciences sociales, no. 51-2 (December 15, 2013): 65–82. http://dx.doi.org/10.4000/ress.2517.
Full textNémeth, A. B. "Between Pareto efficiency and Pareto ε-efficiency." Optimization 20, no. 5 (January 1989): 615–37. http://dx.doi.org/10.1080/02331938908843483.
Full textBusino, Giovanni. "Pareto oggi." Revue européenne des sciences sociales, no. XLVIII-146 (July 1, 2010): 113–27. http://dx.doi.org/10.4000/ress.761.
Full textYeh, Hsiaw-Chan, Barry C. Arnold, and Christopher A. Robertson. "Pareto processes." Journal of Applied Probability 25, no. 2 (June 1988): 291–301. http://dx.doi.org/10.2307/3214437.
Full textMakatura, Liane, Minghao Guo, Adriana Schulz, Justin Solomon, and Wojciech Matusik. "Pareto gamuts." ACM Transactions on Graphics 40, no. 4 (August 2021): 1–17. http://dx.doi.org/10.1145/3476576.3476758.
Full textMakatura, Liane, Minghao Guo, Adriana Schulz, Justin Solomon, and Wojciech Matusik. "Pareto gamuts." ACM Transactions on Graphics 40, no. 4 (August 2021): 1–17. http://dx.doi.org/10.1145/3450626.3459750.
Full textYeh, Hsiaw-Chan, Barry C. Arnold, and Christopher A. Robertson. "Pareto processes." Journal of Applied Probability 25, no. 02 (June 1988): 291–301. http://dx.doi.org/10.1017/s0021900200040936.
Full textIkefuji, Masako, Roger J. A. Laeven, Jan R. Magnus, and Chris Muris. "Pareto utility." Theory and Decision 75, no. 1 (January 26, 2012): 43–57. http://dx.doi.org/10.1007/s11238-012-9293-8.
Full textGreen, M. W., and B. C. Arnold. "Pareto Distributions." Applied Statistics 35, no. 2 (1986): 215. http://dx.doi.org/10.2307/2347273.
Full textDissertations / Theses on the topic "Pareto"
Anabila, Moses A. "Skew Pareto distributions." abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453191.
Full textLi, Cheuk Ming. "Pareto optimality and beyond." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=72066.
Full textOliveira, Rodolfo Lourenzutti Torres de. "Distribuição beta pareto truncada." Universidade Federal de Minas Gerais, 2012. http://hdl.handle.net/1843/BUOS-92FNQK.
Full textDepois de Vilfredo Pareto propor a distribuição Pareto (ver Arnold (1983)), em 1896, para modelar dados econômicos (salários e riquezas), foi descoberto que muitos dados nas mais diversas áreas podem ser modelados pela distribuição de Pareto. Existem aplicações da distribuição de Pareto em hidrologia (Malamud & Turcotte (2006)), geologia (Gutenberg & Richter (1944)), economia (Jayadev (2008)), física (Zaninneti & Ferraro (2008)), entre outras áreas. Além disso, diversas modificações para a distribuição de Pareto têm sido propostas. Destas, duas se destacaram, a distribuição Pareto truncada e a distribuição Pareto Generalizada. A primeira foi estudada por Aban, Meerschaert & Panorska (2006) e a segunda por Hosking & Wallis (1987).No decorrer do tempo foram propostas várias generalizações para as mais diversas distribuições de probabilidade. Atualmente uma nova família de distribuições generalizadas vem ganhando destaque. Eugene, Lee & Famoye (2002) propuseram uma generalização da distribuição Normal usando a função de distribuição acumulada da distribuição Beta. Mais tarde, Jones (2004) definiu a família de uma forma mais genérica e a chamou de família gerada da Beta. Akinsete, Famoye & Lee (2008) aplicaram essa transformação na distribuição Pareto obtendo a distribuição Beta Pareto.Zaninneti & Ferraro (2008) concluíram em seu trabalho que em muitos casos a distribuição Pareto truncada se ajusta melhor aos dados do que a distribuição Pareto. Dessa forma, considerando que a generalização Beta está em forte evidência atualmente, esse trabalho visa generalizar a família Pareto truncada usando a transformação beta, estudar a suas propriedades e compara-la com a Beta Pareto e com outras distribuições já propostas na literatura. Para lidar com o problema de estimação pontual foram utilizados dois métodos, o famoso método da máxima verossimilhança e o método da distância mínima (ver Wolfowitz (1953) e Pollard (1980)). Também é feita a aplicação da Beta Pareto Truncada a um conjunto de dados reais. Os detalhes são mostrados a seguir.
Bautista, Dianne Carrol Tan. "A Sequential Design for Approximating the Pareto Front using the Expected Pareto Improvement Function." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1237600537.
Full textLengvinaitė, Ieva. "Pareto atsitiktinių dydžių ekstremumų dydžiai." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2006. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20060530_112724-13091.
Full textGlaser, Eric L. "Pareto optimum improvement in Government contracting." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA374474.
Full text"December 1999". Thesis advisor(s): David R. Henderson, Jeffrey R. Cuskey. Includes bibliographical references (p. 131-134). Also available online.
Savulytė, Vaida. "Dvimačių Pareto dydžių maksimumų asimptotinė analizė." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070816_142229-68037.
Full textThe aim of this paper is to construct two-dimensional random variables, having one-dimensional ones, carry out the asymptotical analysis and study the speed of convergence. Two-dimensional distribution is constructed in two ways: when the components of random variables are independent and dependent. As in the last few years Pareto distribution is popular in financial models, it was chosen for the analyses. It was proved, that in both cases of independent and dependent components of the vector, the limit distribution is the same. This means that although the components of the vector are dependent, the maxima are asymptotically independent. Besides, the errors are smaller than the approximate estimate. Although, the approximate estimate in the case of independent components is smaller than in the case of dependent components, the errors are on the contrary: they are smaller when the components are dependent than when the components are independent.
Juozulynaitė, Gintarė. "Pareto atsitiktinių dydžių geometrinis maks stabilumas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100830_094813-81556.
Full textIn this work I analyzed geometric max stability of univariate and bivariate Pareto random variables. I have proved, that univariate Pareto distribution is geometrically max stable when alpha=1. But it is not geometrically max stable when alpha unequal 1. Using the criterion of geometric max stability for bivariate Pareto random variables, I have proved, that bivariate Pareto distribution function is not geometrically max stable, when vectors’ components are independent (when alpha=1, beta=1 and alpha unequal 1, beta unequal 1). Also bivariate Pareto distribution function is not geometrically max stable, when vectors’ components are dependent (when alpha=1, beta=1 and alpha unequal 1, beta unequal 1). Research of bivariate Pareto distributions submitted unexpected results. Bivariate Pareto distribution function is not geometrically max stable, when alpha=1, beta=1. But marginal Pareto distribution functions are geometrically max stable, when alpha=1, beta=1.
Bhat, N. J. "Pareto optimal design of air bearings." Thesis, University of Huddersfield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430276.
Full textPicot, Jérémy. "Variations autour du critère de Pareto." Caen, 2008. http://www.theses.fr/2008CAEN0654.
Full textBooks on the topic "Pareto"
Freund, Julien. Pareto. Washington, D.C: Plutarch Press, 1986.
Find full textde Pietri-Tonelli, Alfonso, and Georges H. Bousquet. Vilfredo Pareto. London: Palgrave Macmillan UK, 1994. http://dx.doi.org/10.1007/978-1-349-13322-2.
Full textV, Femia Joseph, ed. Vilfredo Pareto. Aldershot, Hants, England: Ashgate, 2008.
Find full textMartí, Lluís Pareto i. Graziella Pareto. Barcelona: Labor, 1992.
Find full textGiovanni, Busino, and Società italiana degli economisti. Riunione scientifica, eds. Pareto oggi. Bologna: Il Mulino, 1991.
Find full textPowers, Charles H. Vilfredo Pareto. Newbury Park, Calif: Sage Publications, 1987.
Find full textMacIntyre, Ian. The Pareto rule. Leicester: University of Leicester. Department of Economics, 1990.
Find full textSamuels, Warren J. Pareto on policy. New Brunswick: Transaction Publishers, 2012.
Find full textMacIntyre, Ian. The Pareto rule. Leicester: University of Leicester, Department of Economics, 1990.
Find full textGrachëv, G. A. Modelirovanie print͡sipa Pareto. Rostov-na-Donu: Izd-vo I͡Uzhnogo federalʹnogo un-ta, 2011.
Find full textBook chapters on the topic "Pareto"
Di Lorenzo, Renato. "Pareto." In Cassandra non era un’idiota, 85–87. Milano: Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-2004-7_13.
Full textFordahl, Clayton. "Pareto." In Vilfredo Pareto’s Contributions to Modern Social Theory, 176–90. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003305514-12.
Full textArnold, Barry C. "Pareto and Generalized Pareto Distributions." In Modeling Income Distributions and Lorenz Curves, 119–45. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72796-7_7.
Full textScruton, Roger. "Vilfredo Pareto." In Conservative Texts, 257–65. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-21728-1_18.
Full textLuc, Dinh The. "Pareto Optimality." In Multiobjective Linear Programming, 85–118. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21091-9_4.
Full textFeldman, Allan M. "Pareto optimality." In The New Palgrave Dictionary of Economics and the Law, 1405–10. London: Palgrave Macmillan UK, 2002. http://dx.doi.org/10.1007/978-1-349-74173-1_267.
Full textBach, Maurizio. "Pareto, Vilfredo." In Kindlers Literatur Lexikon (KLL), 1. Stuttgart: J.B. Metzler, 2020. http://dx.doi.org/10.1007/978-3-476-05728-0_15774-1.
Full textLuc, Dinh The. "Pareto Optimality." In Pareto Optimality, Game Theory And Equilibria, 481–515. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77247-9_18.
Full textWellmann, Andreas, and Regina Zelms. "Pareto-Prinzip." In Professionelles Zeitmanagement, 105–6. Wiesbaden: Gabler Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-84742-3_27.
Full textNg, Yew-Kwang. "Pareto Optimality." In Welfare Economics, 26–46. London: Palgrave Macmillan UK, 2004. http://dx.doi.org/10.1057/9781403944061_2.
Full textConference papers on the topic "Pareto"
Singhee, Amith, and Pamela Castalino. "Pareto sampling." In the 47th Design Automation Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1837274.1837503.
Full textVerma, Siddhartha, Panagiotis Hadjidoukas, Philipp Wirth, Diego Rossinelli, and Petros Koumoutsakos. "Pareto Optimal Swimmers." In PASC '17: Platform for Advanced Scientific Computing Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3093172.3093232.
Full textUtyuzhnikov, S. V., J. Maginot, M. D. Guenov, and Alexander M. Korsunsky. "Local Pareto Approximation." In CURRENT THEMES IN ENGINEERING SCIENCE 2007: Selected Presentations at the World Congress on Engineering—2007. AIP, 2008. http://dx.doi.org/10.1063/1.2991346.
Full textAbou-Moustafa, Karim T., Fernando de la Torre, and Frank P. Ferrie. "Pareto discriminant analysis." In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010. http://dx.doi.org/10.1109/cvpr.2010.5539925.
Full textRodriguez-Dagnino, Ramon M. "On the Pareto/M/c and Pareto/M/1/K queues." In Optics East, edited by Frank Huebner and Robert D. van der Mei. SPIE, 2004. http://dx.doi.org/10.1117/12.570535.
Full textMarca, Yuri, Hernán Aguirre, Saúl Zapotecas, Arnaud Liefooghe, Bilel Derbel, Sébastien Verel, and Kiyoshi Tanaka. "Pareto dominance-based MOEAs on problems with difficult pareto set topologies." In GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3205746.
Full textNeshatian, Kourosh, and Mengjie Zhang. "Pareto front feature selection." In the 11th Annual conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1569901.1570040.
Full textKim, Seung-Jean, Alessandro Magnani, Sikandar Samar, Stephen Boyd, and Johan Lim. "Pareto optimal linear classification." In the 23rd international conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1143844.1143904.
Full textJuefei-Xu, Felix, and Marios Savvides. "Pareto-optimal discriminant analysis." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7350871.
Full textHendriks, Martijn, Marc Geilen, and Twan Basten. "Pareto Analysis with Uncertainty." In 2011 IEEE/IFIP 9th International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2011. http://dx.doi.org/10.1109/euc.2011.54.
Full textReports on the topic "Pareto"
Phelan, Christopher, and Aldo Rustichini. Pareto Efficiency and Identity. Cambridge, MA: National Bureau of Economic Research, January 2015. http://dx.doi.org/10.3386/w20883.
Full textBrito, Dagobert, Jonathan Hamilton, Steven Slutsky, and Joseph Stiglitz. Pareto Efficient Tax Structures. Cambridge, MA: National Bureau of Economic Research, March 1990. http://dx.doi.org/10.3386/w3288.
Full textKotlikoff, Laurence, Felix Kubler, Andrey Polbin, and Simon Scheidegger. Pareto-Improving Carbon-Risk Taxation. Cambridge, MA: National Bureau of Economic Research, April 2020. http://dx.doi.org/10.3386/w26919.
Full textAllen, J. C., and D. Arceo. A Pareto Approach to Lossy Matching. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada467597.
Full textBattaglini, Marco, and Stephen Coate. Pareto Efficient Income Taxation with Stochastic Abilities. Cambridge, MA: National Bureau of Economic Research, November 2003. http://dx.doi.org/10.3386/w10119.
Full textBackus, David, Chase Coleman, Axelle Ferriere, and Spencer Lyon. Pareto Weights as Wedges in Two-Country Models. Cambridge, MA: National Bureau of Economic Research, December 2015. http://dx.doi.org/10.3386/w21773.
Full textCole, Harold, and Felix Kubler. Recursive Contracts, Lotteries and Weakly Concave Pareto Sets. Cambridge, MA: National Bureau of Economic Research, May 2011. http://dx.doi.org/10.3386/w17064.
Full textFinkelstein, Amy. When Can Partial Public Insurance Produce Pareto Improvements? Cambridge, MA: National Bureau of Economic Research, June 2002. http://dx.doi.org/10.3386/w9035.
Full textFeenstra, Robert, and Tracy Lewis. Trade Adjustment Assistance and Pareto Gains From Trade. Cambridge, MA: National Bureau of Economic Research, September 1991. http://dx.doi.org/10.3386/w3845.
Full textKrishna, Kala, Sergey Lychagin, Wojciech Olszewski, Ron Siegel, and Chloe Tergiman. Pareto Improvements in the Contest for College Admissions. Cambridge, MA: National Bureau of Economic Research, July 2022. http://dx.doi.org/10.3386/w30220.
Full text