To see the other types of publications on this topic, follow the link: Parameter identification.

Journal articles on the topic 'Parameter identification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Parameter identification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Schmidt, Ulrike, Julia Mergheim, and Paul Steinmann. "MULTISCALE PARAMETER IDENTIFICATION." International Journal for Multiscale Computational Engineering 10, no. 4 (2012): 327–42. http://dx.doi.org/10.1615/intjmultcompeng.2012002175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Luque, Juan C. Cutipa, Decio Crisol Donha, and Ettore Apolonio de Barros. "AUV parameter identification." IFAC Proceedings Volumes 42, no. 18 (2009): 72–77. http://dx.doi.org/10.3182/20090916-3-br-3001.0062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Travis, C. C., and L. W. White. "Parameter identification of distributed parameter systems." Mathematical Biosciences 77, no. 1-2 (December 1985): 341–52. http://dx.doi.org/10.1016/0025-5564(85)90105-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sagara, S., and Zhen-Yu Zhao. "Identification of System Parameters in Distributed Parameter Systems." IFAC Proceedings Volumes 23, no. 8 (August 1990): 471–76. http://dx.doi.org/10.1016/s1474-6670(17)51960-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coca, D., and S. A. Billings. "Direct parameter identification of distributed parameter systems." International Journal of Systems Science 31, no. 1 (January 2000): 11–17. http://dx.doi.org/10.1080/002077200291406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wilhelm, Erik, Raffaele Bornatico, Rolf Widmer, Lennon Rodgers, and Gim Soh. "Electric Vehicle Parameter Identification." World Electric Vehicle Journal 5, no. 4 (December 28, 2012): 1090–99. http://dx.doi.org/10.3390/wevj5041090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hou, M. "Parameter Identification of Sinusoids." IEEE Transactions on Automatic Control 57, no. 2 (February 2012): 467–72. http://dx.doi.org/10.1109/tac.2011.2164736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Calm, Remei, Miguel A. Sainz, Pau Herrero, Josep Vehi, and Joaquim Armengol. "PARAMETER IDENTIFICATION WITH QUANTIFIERS." IFAC Proceedings Volumes 39, no. 9 (2006): 707–12. http://dx.doi.org/10.3182/20060705-3-fr-2907.00121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keyhani, A. "Synchronous Machine Parameter Identification." Electric Machines & Power Systems 20, no. 1 (January 1992): 45–69. http://dx.doi.org/10.1080/07313569208909568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heng, Zhang. "Parameter Identification of LCIS." IFAC Proceedings Volumes 18, no. 5 (July 1985): 1585–88. http://dx.doi.org/10.1016/s1474-6670(17)60793-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gerlach, Juergen, and Ronald Guenther. "Remarks on parameter identification." Numerische Mathematik 51, no. 1 (January 1987): 3–9. http://dx.doi.org/10.1007/bf01399691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Xu, Tao, Tian Long Shao, and Dong Fang Zhang. "Research on Generator Excitation Parameter Identification - PSS Low-Pass Link Parameter Identification." Advanced Materials Research 805-806 (September 2013): 716–20. http://dx.doi.org/10.4028/www.scientific.net/amr.805-806.716.

Full text
Abstract:
Combined with the contents of the study-PSS low-pass link parameter identification. Least-squares method is selected. Using least-square method for PSS low-pass link mathematical model are also deduced. For the results, because of the mathematical model is solving nonlinear equations, cannot used by the Newton method directly. So we choose to use Newton iterations, with this feature, choose to use MATLAB software to solve the equation. Identification of the use of MATLAB software lags after the PSS parameters obtained recognition results compared with national standards, identifying and verifying the practicability.
APA, Harvard, Vancouver, ISO, and other styles
13

Kravaris, Costas, and John H. Seinfeld. "Identification of Parameters in Distributed Parameter Systems by Regularization." SIAM Journal on Control and Optimization 23, no. 2 (March 1985): 217–41. http://dx.doi.org/10.1137/0323017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Spall, J. C., and J. P. Garner. "Parameter identification for state-space models with nuisance parameters." IEEE Transactions on Aerospace and Electronic Systems 26, no. 6 (1990): 992–98. http://dx.doi.org/10.1109/7.62251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ding, Li Jie, Zhou Jing Zhang, Ying Liu, Qi Huang, and Jun Wang. "Comparsion of Two Kinds of Optimization Algorithm for Load Model Parameter Identification." Applied Mechanics and Materials 380-384 (August 2013): 1521–24. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.1521.

Full text
Abstract:
Parameter Identification is the key technology in measurement-based load modeling. In order to identify parameters in power system ,the differential method which is based on the multiple curves fitting and interpolated method are compared in the paper. Numerical results illustrate that the differential method can improve the accuracy for load modeling parameter identifications.
APA, Harvard, Vancouver, ISO, and other styles
16

HOSHI, Takeharu, Kazuya KAWAMURA, Yo KOBAYASHI, Jun OKAMOTO, and Masakatsu G. FUJIE. "2A1-A25 Studies on Intraoperative Identification of Tissue Model Parameters : Identification Elastic Element Parameter." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2006 (2006): _2A1—A25_1—_2A1—A25_2. http://dx.doi.org/10.1299/jsmermd.2006._2a1-a25_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

KAWASAKI, Haruhisa, and Kunitoshi NISHIMURA. "Parameter Identification of Mechanical Manipulators." Transactions of the Society of Instrument and Control Engineers 22, no. 1 (1986): 76–83. http://dx.doi.org/10.9746/sicetr1965.22.76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Torres, L., G. Besançon, and C. Verde. "Leak detection using parameter identification." IFAC Proceedings Volumes 45, no. 20 (January 2012): 910–15. http://dx.doi.org/10.3182/20120829-3-mx-2028.00070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Khalfallah, Ali, Hédi Bel Hadj Salah, and Abdelwaheb Dogui. "Parameter Identification and Sensitivity Analysis." International Journal of Forming Processes 8, no. 2-3 (September 2005): 251–70. http://dx.doi.org/10.3166/ijfp.8.251-270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ľuboš, Magdolen, Danko Ján, Milesich Tomáš, Nemec Tomáš, Sloboda Karol, and Bucha Jozef. "Dual Mass Flywheel Parameter Identification." Strojnícky časopis - Journal of Mechanical Engineering 71, no. 2 (November 1, 2021): 167–78. http://dx.doi.org/10.2478/scjme-2021-0027.

Full text
Abstract:
Abstract Reducing emissions brings changes in the design of internal combustion engines and thus new challenges for dual-mass flywheels (DMF) in terms of Noise Vibration and Harshness (NVH). The first part of the article describes a simple model of a centrifugal pendulum. Consequently, a more complicated DMF dynamic model involves friction between the spring components. The second part of the article deal with the multibody model of DMF using a CAD model. The dynamic model consists of a torsion spring and two bodies. The model is compared with the experimental method, which is also described in the paper.
APA, Harvard, Vancouver, ISO, and other styles
21

Munir, Mohammad, Nasreen Kausar, and Mohammad Shakil. "Parameter identification for multiperiodic functions." Technological Forecasting and Social Change 173 (December 2021): 121134. http://dx.doi.org/10.1016/j.techfore.2021.121134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tadi, M., and Herschel Rabitz. "Explicit Method for Parameter Identification." Journal of Guidance, Control, and Dynamics 20, no. 3 (May 1997): 486–91. http://dx.doi.org/10.2514/2.4067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

BAI, E. W., and S. S. SASTRY. "Parameter identification using prior information†." International Journal of Control 44, no. 2 (August 1986): 455–73. http://dx.doi.org/10.1080/00207178608933612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, Yong Gui, Chen Rong Liu, and Peng Liu. "Industrial Robot Kinematics Parameter Identification." Advanced Materials Research 889-890 (February 2014): 1136–43. http://dx.doi.org/10.4028/www.scientific.net/amr.889-890.1136.

Full text
Abstract:
For an industrial robots with unknown parameters, on the basis of preliminary measurement and data of the Cartesian and joints coordinates which are shown on the FlexPendant, the kinematic parameters is identified by using genetic algorithms and accurate kinematics modeling of the robot is established. Experimental data could prove the validity of this method.
APA, Harvard, Vancouver, ISO, and other styles
25

Iwata, Makoto. "Parameter Identification and Vibration Control." Journal of the Robotics Society of Japan 13, no. 8 (1995): 1084–88. http://dx.doi.org/10.7210/jrsj.13.1084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Eder, Rafael, Christian Zehetner, and Wolfgang Kunze. "Comparison of Parameter Identification Techniques." MATEC Web of Conferences 70 (2016): 09007. http://dx.doi.org/10.1051/matecconf/20167009007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nawrocka, Agata, and Andrzej Kot. "Balance Platform Model Parameter Identification." Solid State Phenomena 198 (March 2013): 439–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.439.

Full text
Abstract:
In the first stage of the identification process was to build a model describing the system, using the measurement data recorded on input and output system [. The model was built without the knowledge of the mechanisms that occur in the process, only based on the relationship between the collected data. As an input parameter the defined type of motion was used, next converted to digital form by the real-time computer and sent to the axes control card. While the output signal was registered as a change of encoders position. Sampling time 20 ms was adopted. For each axis separately recorded measurements (signals were with different amplitudes and frequencies of motion tape device) [. In the next step the estimation was performed for the selection suitable algorithm, and the determination the parameters of model selected in the previous step [. The last step was to verify, to check the results of identification process. By comparing the signals obtained in response to a signal given the model of a registered object actual output signal, it is possible to visually estimate the accuracy of the identification and designation of the error. The last part of the article shows the results of various tests.
APA, Harvard, Vancouver, ISO, and other styles
28

Knowles, Ian. "Parameter identification for elliptic problems." Journal of Computational and Applied Mathematics 131, no. 1-2 (June 2001): 175–94. http://dx.doi.org/10.1016/s0377-0427(00)00275-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jakšić, Nikola. "Power law damping parameter identification." Journal of Sound and Vibration 330, no. 24 (November 2011): 5878–93. http://dx.doi.org/10.1016/j.jsv.2011.07.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Baruh, H., and L. Meirovitch. "Parameter identification in distributed systems." Journal of Sound and Vibration 101, no. 4 (August 1985): 551–64. http://dx.doi.org/10.1016/s0022-460x(85)80071-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sugisaka, M., A. Tominaga, T. Sakamoto, R. Fischl, P. Herczfeld, P. Kalata, and C. Rorres. "Parameter Identification in Solar Collectors." IFAC Proceedings Volumes 18, no. 5 (July 1985): 1101–5. http://dx.doi.org/10.1016/s1474-6670(17)60709-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhu, J., and A. Abur. "Identification of Network Parameter Errors." IEEE Transactions on Power Systems 21, no. 2 (May 2006): 586–92. http://dx.doi.org/10.1109/tpwrs.2006.873419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ohkami, T., and G. Swoboda. "Parameter identification of viscoelastic materials." Computers and Geotechnics 24, no. 4 (June 1999): 279–95. http://dx.doi.org/10.1016/s0266-352x(99)00011-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hadeler, K. P. "Parameter identification in epidemic models." Mathematical Biosciences 229, no. 2 (February 2011): 185–89. http://dx.doi.org/10.1016/j.mbs.2010.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Buggisch, H., P. Mazilu, and H. Weber. "Parameter identification for viscoelastic materials." Rheologica Acta 27, no. 4 (July 1988): 363–68. http://dx.doi.org/10.1007/bf01332157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Guenther, Ronald, Robert Hudspeth, William McDougal, and J�rgen Gerlach. "Remarks on parameter identification. I." Numerische Mathematik 47, no. 3 (September 1985): 355–61. http://dx.doi.org/10.1007/bf01389584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hudspeth, R. T., R. B. Guenther, K. L. Roley, and W. G. McDougal. "Parameter identification in radial flow." Advances in Water Resources 14, no. 5 (October 1991): 240–51. http://dx.doi.org/10.1016/0309-1708(91)90037-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sree Hari Rao, V., and Narri Yadaiah. "Parameter identification of dynamical systems." Chaos, Solitons & Fractals 23, no. 4 (February 2005): 1137–51. http://dx.doi.org/10.1016/j.chaos.2003.09.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Valente, Robertt A. F., António Andrade-Campos, José F. Carvalho, and Paulo S. Cruz. "Parameter identification and shape optimization." Optimization and Engineering 12, no. 1-2 (November 12, 2010): 129–52. http://dx.doi.org/10.1007/s11081-010-9126-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

van den Boogaard, H. F. P., M. J. J. Hoogkamer, and A. W. Heemink. "Parameter identification in particle models." Stochastic Hydrology and Hydraulics 7, no. 2 (June 1993): 109–30. http://dx.doi.org/10.1007/bf01581420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jansen, W., and E. U. Kriegel. "Parameter identification in chaotic systems." Annual Review in Automatic Programming 12 (January 1985): 162–69. http://dx.doi.org/10.1016/0066-4138(85)90019-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Carpio, A., and M. L. Rapún. "Parameter Identification in Photothermal Imaging." Journal of Mathematical Imaging and Vision 49, no. 2 (September 10, 2013): 273–88. http://dx.doi.org/10.1007/s10851-013-0459-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Larsson, Roger, and Martin Enqvist. "Sequential Aerodynamic Model Parameter Identification." IFAC Proceedings Volumes 45, no. 16 (July 2012): 1413–18. http://dx.doi.org/10.3182/20120711-3-be-2027.00293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gallrein, A., J. De Cuyper, W. Dehandschutter, and M. Bäcker. "Parameter identification for LMS CDTire." Vehicle System Dynamics 43, sup1 (January 2005): 444–56. http://dx.doi.org/10.1080/00423110500230053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Pfaff, Udo, Georg Bednarek, Bernd Kleuter, and Paul Steinmann. "Parameter identification for transmission housings." ATZ worldwide 110, no. 3 (March 2008): 46–51. http://dx.doi.org/10.1007/bf03224994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Martin, C., J. Miller, and K. Pearce. "Parameter identification by continuation methods." Applied Mathematics and Computation 34, no. 1 (November 1989): 17–27. http://dx.doi.org/10.1016/0096-3003(89)90003-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mickleborough, N. C., and Y. L. Pi. "Modal parameter identification usingZ-transforms." International Journal for Numerical Methods in Engineering 28, no. 10 (October 1989): 2307–21. http://dx.doi.org/10.1002/nme.1620281008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Furukawa, Tomonari. "Parameter identification with weightless regularization." International Journal for Numerical Methods in Engineering 52, no. 3 (September 30, 2001): 219–38. http://dx.doi.org/10.1002/nme.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

KAWAI, Tadao, and Yusuke NAITO. "Parameter Identification of Beam Using Image Processing (5th Report, Parameter Identification Using Orthogonal Functions)." Transactions of the Japan Society of Mechanical Engineers Series C 70, no. 690 (2004): 453–58. http://dx.doi.org/10.1299/kikaic.70.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Avcıoğlu, Sevil, Ali Türker Kutay, and Kemal Leblebicioğlu. "Identification of Physical Helicopter Models Using Subspace Identification." Journal of the American Helicopter Society 65, no. 2 (April 1, 2020): 1–14. http://dx.doi.org/10.4050/jahs.65.022001.

Full text
Abstract:
Subspace identification is a powerful tool due to its well-understood techniques based on linear algebra (orthogonal projections and intersections of subspaces) and numerical methods like singular value decomposition. However, the state space model matrices, which are obtained from conventional subspace identification algorithms, are not necessarily associated with the physical states. This can be an important deficiency when physical parameter estimation is essential. This holds for the area of helicopter flight dynamics, where physical parameter estimation is mainly conducted for mathematical model improvement, aerodynamic parameter validation, and flight controller tuning. The main objective of this study is to obtain helicopter physical parameters from subspace identification results. To achieve this objective, the subspace identification algorithm is implemented for a multirole combat helicopter using both FLIGHTLAB simulation and real flight-test data. After obtaining state space matrices via subspace identification, constrained nonlinear optimization methodologies are utilized for extracting the physical parameters. The state space matrices are transformed into equivalent physical forms via the "sequential quadratic programming" nonlinear optimization algorithm. The required objective function is generated by summing the square of similarity transformation equations. The constraints are selected with physical insight. Many runs are conducted for randomly selected initial conditions. It can be concluded that all of the significant parameters can be obtained with a high level of accuracy for the data obtained from the linear model. This strongly supports the idea behind this study. Results for the data obtained from the nonlinear model are also evaluated to be satisfactory in the light of statistical error analysis. Results for the real flight-test data are also evaluated to be good for the helicopter modes that are properly excited in the flight tests.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography