Dissertations / Theses on the topic 'Parallel Hybrid-Electric Propulsion System'

To see the other types of publications on this topic, follow the link: Parallel Hybrid-Electric Propulsion System.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 42 dissertations / theses for your research on the topic 'Parallel Hybrid-Electric Propulsion System.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Harmon, Frederick G. "Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaloun, Adham. "Conception de chaînes de traction hybrides et électriques par optimisation sur cycles routiers." Thesis, Centrale Lille Institut, 2020. http://www.theses.fr/2020CLIL0019.

Full text
Abstract:
La conception des chaînes de traction hybrides est une tâche complexe, qui fait appel à des experts de différents domaines s'appuyant sur des compétences et des outils distincts. En plus de cela, la recherche d'une solution optimale nécessite un retour système. Cela peut être, selon la granularité des modèles de composants, très coûteux en temps de calcul. Ceci est d'autant plus vrai lorsque la performance du système est déterminée par sa commande, comme c'est le cas du véhicule hybride. En fait, différentes possibilités peuvent être sélectionnées pour fournir le couple requis aux roues pendant le cycle de conduite. Ainsi, le principal obstacle est d'atteindre l'optimalité tout en conservant une méthodologie rapide et robuste. Dans ces travaux de thèse, de nouvelles approches visant à exploiter le potentiel complet de l'hybridation sont proposées et comparées. La première stratégie est une approche bi-niveaux composée de deux blocs d'optimisation imbriqués: un processus d'optimisation des paramètres de design externe qui calcule la meilleure valeur de consommation de carburant à chaque itération en se basant sur une version améliorée de la programmation dynamique pour l'optimisation de la commande. Deux stratégies de conception systémique différentes basées sur le schéma itératif sont également proposées. La première approche est basée sur la réduction de modèle tandis que la seconde se repose sur des techniques précises de réduction de cycle. Cette dernière permet l'utilisation de modèles de haute précision sans pénaliser le temps de calcul. Une approche simultanée est ensuite mise en œuvre, qui optimise à la fois les variables de conception et les paramètres d'une nouvelle stratégie efficace à base de règles. Cette dernière permettra une optimisation plus rapide par rapport à l'optimisation directe de toutes les variables de décision. Enfin, une technique basée sur l'utilisation des méta-modèles est explorée
Designing hybrid powertrains is a complex task, which calls for experts from various fields. In addition to this, finding the optimal solution requires a system overview. This can be, depending on the granularity of the models at the component level, highly time-consuming. This is even more true when the system’s performance is determined by its control, as it is the case of the hybrid powertrain. In fact, various possibilities can be selected to deliver the required torque to the wheels during the driving cycle. Hence, the main obstacle is to achieve optimality while keeping the methodology fast and robust. In this work, novel approaches to exploit the full potential of hybridization are proposed and compared. The first strategy is a bi-level approach consisting of two nested optimization blocks: an external design optimization process that calculates the best fuel consumption value at each iteration, found through control optimization using an improved version of dynamic programming. Two different systemic design strategies based on the iterative scheme are proposed as well. The first approach is based on model reduction while the second approach relies on precise cycle reduction techniques. The latter enables the use of high precision models without penalizing the calculation time. A co-optimization approach is implemented afterwards which adjusts both the design variables and parameters of a new efficient rule-based strategy. This allows for faster optimization as opposed to an all-at-once approach. Finally, a meta-model based technique is explored
APA, Harvard, Vancouver, ISO, and other styles
3

BOGGERO, LUCA. "Design techniques to support aircraft systems development in a collaborative MDO environment." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710702.

Full text
Abstract:
The aircraft design is a complex multidisciplinary and collaborative process. Thousands of disciplinary experts with different design competences are involved within the whole development process. The design disciplines are often in contrast with each other, as their objectives might be not coincident, entailing compromises for the determination of the global optimal solution. Therefore, Multidisciplinary Design and Optimization (MDO) algorithms are being developed to mathematically overcome the divergences among the design disciplines. However, a MDO formulation might identify an optimal solution, but it could be not sufficient to ensure the success of a project. The success of a new project depends on two factors. The first one is relative to the aeronautical product, which has to be compliant with all the capabilities actually demanded by the stakeholders. Furthermore, a “better” airplane may be developed in accordance with customer expectations concerning better performance, lower operating costs and fewer emissions. The second important factor refers to the competitiveness among the new designed product and all the other competitors. The Time-To-Market should be reduced to introduce in the market an innovative product earlier than the other aeronautical industries. Furthermore, development costs should be decreased to maximize profits or to sell the product at a lower price. Finally, the development process must reduce all the risks due to wrong design choices. These two main motivations entail two main objectives of the current dissertation. The first main objective regards the assessment and development of design techniques for the integration of the aircraft subsystems conceptual design discipline within a collaborative and multidisciplinary development methodology. This methodology shall meet all the necessities required to design an optimal and competitive product. The second goal is relative to the employment of the proposed design methodology for the initial development of innovative solutions. As the design process is multidisciplinary, this thesis is focused on the on-board systems discipline, without neglecting the interactions among this discipline with all the other design disciplines. Thus, two kinds of subsystems are treated in the current dissertation. The former deals with hybrid-electric propulsion systems installed aboard Remotely Piloted Aerial Systems (RPASs) and general aviation airplanes. The second case study is centered on More and All Electric on-board system architectures, which are characterized by the removal of the hydraulic and/or pneumatic power generation systems in favor of an enhancement of the electrical system. The proposed design methodology is based on a Systems Engineering approach, according to which all the customer needs and required system functionalities are defined since the earliest phase of the design. The methodology is a five-step process in which several techniques are implemented for the development of a successful product. In Step 1, the design case and the requirements are defined. A Model Based Systems Engineering (MBSE) approach is adopted for the derivation and development of all the functionalities effectively required by all the involved stakeholders. All the design disciplines required in the MDO problem are then collected in Step 2. In particular, all the relations among these disciplines – in terms of inputs/outputs – are outlined, in order to facilitate their connection and the setup of the design workflow. As the present thesis is mainly focused on the on-board system design discipline, several algorithms for the preliminary sizing of conventional and innovative subsystems (included the hybrid propulsion system) are presented. In the third step, an MDO problem is outlined, determining objectives, constraints and design variables. Some design problems are analyzed in the present thesis: un-converged and converged Multidisciplinary Design Analysis (MDA), Design Of Experiments (DOE), optimization. In this regard, a new multi-objective optimization method based on the Fuzzy Logic has been developed during the doctoral research. This proposed process would define the “best” aircraft solution negotiating and relaxing some constraints and requirements characterized by a little worth from the user perspective. In Step 4, the formulation of the MDO problem is then transposed into a MDO framework. Two kinds of design frameworks are here considered. The first one is centered on the subsystems design, with the aim of preliminarily highlighting the impacts of this discipline on the entire Overall Aircraft Design (OAD) process and vice-versa. The second framework is distributed, as many disciplinary experts are involved within the design process. In this case, the level of fidelity of the several disciplinary modules is higher than the first framework, but the effort needed to setup the entire workflow is much higher. The proposed methodology ends with the investigation of the design space through the implemented framework, eventually selecting the solution of the design problem (Step 5). The capability of the proposed methodology and design techniques is demonstrated by means of four application cases. The first case study refers to the initial definition of the physical architecture of a hybrid propulsion system based on a set of needs and capabilities demanded by the customer. The second application study is focused on the preliminary sizing of a hybrid-electric propulsion system to be installed on a retrofit version of a well-known general aviation aircraft. In the third case study, the two kinds of MDO framework previously introduced are employed to design conventional, More Electric and All Electric subsystem architectures for a 90-passenger regional jet. The last case study aims at minimizing the aircraft development costs. A Design-To-Cost approach is adopted for the design of a hybrid propulsion system.
APA, Harvard, Vancouver, ISO, and other styles
4

Kaloun, Adham. "Conception de chaînes de traction hybrides et électriques par optimisation sur cycles routiers." Thesis, Ecole centrale de Lille, 2020. http://www.theses.fr/2020ECLI0019.

Full text
Abstract:
La conception des chaînes de traction hybrides est une tâche complexe, qui fait appel à des experts de différents domaines s'appuyant sur des compétences et des outils distincts. En plus de cela, la recherche d'une solution optimale nécessite un retour système. Cela peut être, selon la granularité des modèles de composants, très coûteux en temps de calcul. Ceci est d'autant plus vrai lorsque la performance du système est déterminée par sa commande, comme c'est le cas du véhicule hybride. En fait, différentes possibilités peuvent être sélectionnées pour fournir le couple requis aux roues pendant le cycle de conduite. Ainsi, le principal obstacle est d'atteindre l'optimalité tout en conservant une méthodologie rapide et robuste. Dans ces travaux de thèse, de nouvelles approches visant à exploiter le potentiel complet de l'hybridation sont proposées et comparées. La première stratégie est une approche bi-niveaux composée de deux blocs d'optimisation imbriqués: un processus d'optimisation des paramètres de design externe qui calcule la meilleure valeur de consommation de carburant à chaque itération en se basant sur une version améliorée de la programmation dynamique pour l'optimisation de la commande. Deux stratégies de conception systémique différentes basées sur le schéma itératif sont également proposées. La première approche est basée sur la réduction de modèle tandis que la seconde se repose sur des techniques précises de réduction de cycle. Cette dernière permet l'utilisation de modèles de haute précision sans pénaliser le temps de calcul. Une approche simultanée est ensuite mise en œuvre, qui optimise à la fois les variables de conception et les paramètres d'une nouvelle stratégie efficace à base de règles. Cette dernière permettra une optimisation plus rapide par rapport à l'optimisation directe de toutes les variables de décision. Enfin, une technique basée sur l'utilisation des méta-modèles est explorée
Designing hybrid powertrains is a complex task, which calls for experts from various fields. In addition to this, finding the optimal solution requires a system overview. This can be, depending on the granularity of the models at the component level, highly time-consuming. This is even more true when the system’s performance is determined by its control, as it is the case of the hybrid powertrain. In fact, various possibilities can be selected to deliver the required torque to the wheels during the driving cycle. Hence, the main obstacle is to achieve optimality while keeping the methodology fast and robust. In this work, novel approaches to exploit the full potential of hybridization are proposed and compared. The first strategy is a bi-level approach consisting of two nested optimization blocks: an external design optimization process that calculates the best fuel consumption value at each iteration, found through control optimization using an improved version of dynamic programming. Two different systemic design strategies based on the iterative scheme are proposed as well. The first approach is based on model reduction while the second approach relies on precise cycle reduction techniques. The latter enables the use of high precision models without penalizing the calculation time. A co-optimization approach is implemented afterwards which adjusts both the design variables and parameters of a new efficient rule-based strategy. This allows for faster optimization as opposed to an all-at-once approach. Finally, a meta-model based technique is explored
APA, Harvard, Vancouver, ISO, and other styles
5

Ren, Zhongling. "Optimization Methods for Hybrid Electric Vehicle Propulsion System." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235932.

Full text
Abstract:
Design of hybrid vehicles is a hot topic because of the strict restriction on the emissions of the vehicle. The optimal design of hybrid vehicles becomes necessary to reduce the cost or emissions of the vehicle. The propulsion system of a hybrid electric vehicle is inherently more complex than that of a conventional vehicle as an electric power supply branch is added. The design involves topology design, component design and control design, where all phases are interrelated. The idea to handle all the three design phases together is called system level design. Due to its complexity, it is not possible time wise to evaluate all possible design options. Optimization algorithms are therefore needed to speed up the process. The variable types that appear in each design phase are different and multiple algorithms are needed. In this thesis, different algorithms are studied for their robustness for both continuous variables and discrete variables, as well as benchmarked for the Volvo internal optimization platform afterwards. Standard test cases are used to validate the algorithms and several features are added to an algorithm to make it more generic and efficient. Based on theoretical and experimental studies, recommendations for the selection of algorithms are proposed based on different types of variables.Based on the optimization platform, several different optimization coordination architectures for system level design are introduced and simultaneous and nested coordination architectures are tested by one specific industrial case in the second part of the thesis. Both methods appeared to be promising according to the result of the test case and they managed to reduce the convergence time dramatically. The vehicle model used was not precise enough to prove which method is the superior one but a more precise model can be introduced in the future to facilitate such a conclusion.
Hybridfordon är ett aktuellt ämne, på grund av den strikta regleringen gällande fordonsutsläpp. Den optimala designen av hybridfordon är nödvändig för att reducera kostnaden eller utsläppen. Motorsystemet hos ett elektriskt hybridfordon blir mer komplicerat än det hos ett konventionellt fordon, eftersom man måste ta hänsyn till försörjningen av elektrisk energi. Designprocessen involverar design av topologi, design av komponenter samt design av kontrollsystem. Idéen om att sammanfoga alla tre designfaser kallas systemnivådesign. På grund av komplexiteten är det tidsmässigt inte möjligt att evaluera samtliga möjliga designval. Därför behövs optimeringsalgoritmer för att snabba på processen. Olika typer av variabler berörs i de olika designfaserna och därför behövs olika algoritmer. I avhandlingen undersöks olika algoritmers robusthet för kontinuerliga och diskreta variabler samt deras prestanda mot en intern optimeringsplattform. Standardiserade testfall används för att validera algoritmerna vartefter algoritmerna görs mer effektiva och generella. Baserat på teoretiska och experimentella studier föreslås rekommendationer för val av algoritmer baserat på olika typer av variabler. Baserat på optimeringsplattformen introduceras flera olika optimeringskoordinationsarkitekturer för systemnivådesign, och samtidiga och samordnade koordinationsarkitekturer testas för ett specifikt industrifall i den andra delen av avhandlingen. Båda metoderna tycktes vara lovande enligt resultatet av testfallet, och de lyckades sänka konvergensperioden dramatiskt. Den använda fordonsmodellen var inte tillräckligt exakt för att bevisa vilken metod som är den överlägsna, men en mer exakt modell kan introduceras i framtiden för att underlätta en sådan slutsats.
APA, Harvard, Vancouver, ISO, and other styles
6

Dreier, Dennis. "Assessing the potential of fuel saving and emissions reduction of the bus rapid transit system in Curitiba, Brazil." Thesis, KTH, Energi och klimatstudier, ECS, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176398.

Full text
Abstract:
The transport sector contributes significantly to global energy use and emissions due to its traditional dependency on fossil fuels. Climate change, security of energy supply and increasing mobility demand is mobilising governments around the challenges of sustainable transport. Immediate opportunities to reduce emissions exist through the adoption of new bus technologies, e.g. advanced powertrains. This thesis analysed energy use and carbon dioxide (CO2) emissions of conventional, hybrid-electric, and plug-in hybrid-electric city buses including two-axle, articulated, and biarticulated chassis types (A total of 6 bus types) for the operation phase (Tank-to-Wheel) in Curitiba, Brazil. The systems analysis tool – Advanced Vehicle Simulator (ADVISOR) and a carbon balance method were applied. Seven bus routes and six operation times for each (i.e. 42 driving cycles) are considered based on real-world data. The results show that hybrid-electric and plug-in hybrid-electric two-axle city buses consume 30% and 58% less energy per distance (MJ/km) compared to a conventional two-axle city bus (i.e. 17.46 MJ/km). Additionally, the energy use per passenger-distance (MJ/pkm) of a conventional biarticulated city bus amounts to 0.22 MJ/pkm, which is 41% and 24% lower compared to conventional and hybrid-electric two-axle city buses, respectively. This is mainly due to the former’s large passenger carrying capacity. Large passenger carrying capacities can reduce energy use (MJ/pkm) if the occupancy rate of the city bus is sufficient high. Bus routes with fewer stops decrease energy use by 10-26% depending on the city bus, because of reductions in losses from acceleration and braking. The CO2 emissions are linearly proportional to the estimated energy use following from the carbon balance method, e.g. CO2 emissions for a conventional two-axle city bus amount to 1299 g/km. Further results show that energy use of city bus operation depends on the operation time due to different traffic conditions and driving cycle characteristics. An additional analysis shows that energy use estimations can vary strongly between considered driving cycles from real-world data. The study concludes that advanced powertrains with electric drive capabilities, large passenger carrying capacities and bus routes with a fewer number of bus stops are beneficial in terms of reducing energy use and CO2 emissions of city bus operation in Curitiba.
APA, Harvard, Vancouver, ISO, and other styles
7

Lundin, Johan. "Flywheel in an all-electric propulsion system." Licentiate thesis, Uppsala universitet, Elektricitetslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-222030.

Full text
Abstract:
Energy storage is a crucial condition for both transportation purposes and for the use of electricity. Flywheels can be used as actual energy storage but also as power handling device. Their high power capacity compared to other means of storing electric energy makes them very convenient for smoothing power transients. These occur frequently in vehicles but also in the electric grid. In both these areas there is a lot to gain by reducing the power transients and irregularities. The research conducted at Uppsala university and described in this thesis is focused on an all-electric propulsion system based on an electric flywheel with double stator windings. The flywheel is inserted in between the main energy storage (assumed to be a battery) and the traction motor in an electric vehicle. This system has been evaluated by simulations in a Matlab model, comparing two otherwise identical drivelines, one with and one without a flywheel. The flywheel is shown to have several advantages for an all-electric propulsion system for a vehicle. The maximum power from the battery decreases more than ten times as the flywheel absorbs and supplies all the high power fluxes occuring at acceleration and braking. The battery delivers a low and almost constant power to the flywheel. The amount of batteries needed decreases whereas the battery lifetime and efficiency increases. Another benefit the flywheel configuration brings is a higher energy efficiency and hence less need for cooling. The model has also been used to evaluate the flywheel functionality for an electric grid application. The power from renewable intermittent energy sources such as wave, wind and current power can be smoothened by the flywheel, making these energy sources more efficient and thereby competitive with a remaining high power quality in the electric grid.
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, Qing. "Small-Signal Modeling and Stability Specification of a Hybrid Propulsion System for Aircrafts." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103515.

Full text
Abstract:
This work utilizes the small-signal impedance-based stability analysis method to develop stability assessment criteria for a single-aisle turboelectric aircraft with aft boundary-layer propulsion (STARC-ABL) system. The impedance-based stability analysis method outperforms other stability analysis methods because it does not require detailed information of individual components for system integration, therefore, a system integrator can just require the vendors to make the individual components meet the impedance specifications to ensure whole system stability. This thesis presents models of a generator, motor, housekeeping loads, and battery all with power electronics interface which form an onboard electrical system and analyzes the relationship between the impedance shape of each component and their physical design and control loop design. Based on the developed small-signal model of the turbine-generator-rectifier subsystem and load subsystem, this thesis analyzes the impact of electromechanical dynamics of the turbofan passed through the generator on the dc distribution system, concluding that the rectifier can mitigate the impact. Finally, to ensure the studied system stable operation during the whole flying profile, the thesis provides impedance specifications of the dc distribution system and verifies the specifications with several cases in time-domain simulations.
M.S.
Electric aircraft propulsion (EAP) technologies have been a trend in the aviation industry for their potential to reduce environmental emissions, increase fuel efficiency and reduce noise for commercial airplanes. Achieving these benefits would be a vital step towards environmental sustainability. However, the development of all-electric aircraft is still limited by the current battery technologies and maintenance systems. The single-aisle turboelectric aircraft with aft boundary-layer (STARC-ABL) propulsion concept is therefore developed by NASA aiming to bridge the gap between the current jet fuel-powered aircraft and future all-electric vehicles. The plane uses electric motors powered by onboard gas turbines and transfers the generated power to other locations of the airplane like the tail fan motor to provide distributed propulsion. Power electronics-based converter converts electricity in one form of electricity to another form, for example, from ac voltage to dc voltage. This conversion of power is very important in the whole society, from small onboard chips to Mega Watts level electrical power system. In the aircraft electrical power system context, power electronics converter plays an important role in the power transfer process especially with the recent trend of using high voltage dc (HVDC) distribution instead of conventional ac distribution for the advantage of increased efficiency and better voltage regulation. The power generated by the electric motors is in ac form. Power electronics converter is used to convert the ac power into dc power and transfer it to the dc bus. Because the power to drive the electric motor to provide distributed propulsion is also in ac form, the dc power needs to be converted back into ac power still through a power electronics converter. With a high penetration of power electronics into the onboard electrical power system and the increase of electrical power level, potential stability issues resulted from the interactions of each subsystem need to be paid attention to. There are mainly two stability-related studies conducted in this work. One is the potential cross-domain dynamic interaction between the mechanical system and the electrical system. The other is a design-oriented study to provide sufficient stability margin in the design process to ensure the electrical system’s stable operation during the whole flying profile. The methodology used in this thesis is the impedance-based stability analysis. The main analyzing process is to find an interface of interest first, then grouped each subsystem into a source subsystem and load subsystem, then extract the source impedance and load impedance respectively, and eventually using the Nyquist Criterion (or in bode plot form) to assess the stability with the impedance modeling results. The two stability-related issues mentioned above are then studied by performing impedance analysis of the system. For the electromechanical dynamics interaction study, this thesis mainly studies the rotor dynamics’ impact on the output impedance of the turbine-generator-rectifier system to assess the mechanical dynamics’ impact on the stability condition of the electrical system. It is found that the rotor dynamics of the turbine is masked by the rectifier; therefore, it does not cause stability problem to the pre-tuned system. For the design-oriented study, this thesis mainly explores and provides the impedance shaping guidelines of each subsystem to ensure the whole system's stable operation. It is found that the stability boundary case is at rated power level, the generator voltage loop bandwidth is expected to be higher than 300Hz, 60˚ to achieve a 6dB, 45˚ stability margin, and load impedance mainly depends on the motor-converter impedance.
APA, Harvard, Vancouver, ISO, and other styles
9

Nakka, Sai Krishna Sumanth. "Co-design of Hybrid-Electric Propulsion System for Aircraft using Simultaneous Multidisciplinary Dynamic System Design Optimization." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1602153187738909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Geiß, Ingmar [Verfasser]. "Sizing of the Series Hybrid-electric Propulsion System of General Aviation Aircraft / Ingmar Geiß." München : Verlag Dr. Hut, 2021. http://nbn-resolving.de/urn:nbn:de:101:1-2021100123334382521757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lao, Keng Weng. "A novel electric traction power supply system using hybrid parallel power quality compensator." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2550461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Marquez, Brunal Eduardo De Jesus. "Model and Control System Development for a Plug-In Parallel Hybrid Electric Vehicle." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71388.

Full text
Abstract:
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is participating in the EcoCAR 3 Advanced Vehicle Technology Competition series organized by Argonne National Labs (ANL), and sponsored by General Motors (GM) and the U.S. Department of Energy (DOE). EcoCAR 3 is a 4-year collegiate competition that challenges student with redesigning a 2016 Chevrolet Camaro into a hybrid. The five main goals of EcoCAR 3 are to reduce petroleum energy use (PEU) and green house gas (GHG) emissions while maintaining safety, consumer acceptability, and performance, with an increased focus on cost and innovation. HEVT selected a P3 Plug-in Parallel hybrid electric vehicle (PHEV) to meet design goals and competition requirements. This study presents different stages of the vehicle development process (VDP) followed to integrate the HEVT Camaro. This work documents the control system development process up to Year 2 of EcoCAR 3. The modeling process to select a powertrain is the first stage in this research. Several viable powertrains and the respective vehicle technical specifications (VTS) are evaluated. The P3 parallel configuration with a V8 engine is chosen because it generated the set of VTS that best meet design goals and EcoCAR 3 requirements. The V8 engine also preserves the heritage of the Camaro, which is attractive to the established target market. In addition, E85 is chosen as the fuel for the powertrain because of the increased impact it has on GHG emissions compared to E10 and gasoline. The use of advanced methods and techniques like model based design (MBD), and rapid control prototyping (RCP) allow for faster development of engineering products in industry. Using advanced engineering techniques has a tremendous educational value, and these techniques can assist the development of a functional and safe hybrid control system. HEVT has developed models of the selected hybrid powertrain to test the control code developed in software. The strategy developed is a Fuzzy controller for torque management in charge depleting (CD) and charge sustaining (CS) modes. The developed strategy proves to be functional without having a negative impact of the energy consumption characteristics of the hybrid powertrain. Bench testing activities with the V8 engine, a low voltage (LV) motor, and high voltage (HV) battery facilitated learning about communication, safety, and functionality requirements for the three components. Finally, the process for parallel development of models and control code is presented as a way to implement more effective team dynamics.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
13

Chakravarthula, Venkata Adithya. "Transient Analysis of a Solid Oxide Fuel Cell/ Gas Turbine Hybrid System for Distributed Electric Propulsion." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484651177170392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ollas, Fredrik, and Viðarsson Gestur Ernir. "Proposed Design and Feasibility Study of a Hybrid-Electric Propulsion System for a Ten Passenger Aircraft." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264347.

Full text
Abstract:
This study aims to propose a hybridized version of a propulsion system for a 10-passenger aircraft and compare it to a conventional (reference) aircraft which uses a fossil fuelled turbofan for propulsion. The hybridized powertrain includes a fossil fuelled gas turbine, which is only used for producing electricity, coupled in a series configuration with a battery storage, that provide power to two electrically ducted fans. The comparison mainly aims towards total energy consumption and carbon dioxide emissions; hence, these are aimed to be reduced in the hybridized solution. The aircrafts are compared when flying the same pre-defined route that is a 900 km long distance, cruising at an altitude of 7500 m at 150 m/s. Rate of climb, climb speed and descent angle are optimized, with regards to energy demand. The hybridized propulsion system is evaluated in three different scenarios, that is: 2020, Near Future- and Advanced Future scenario, which contain different component properties that address different future predictions. An experiment is conducted with a small scale electrical ducted fan, operating in a wind tunnel, to measure different quantities such as power and thrust. These results are then scaled up and used as design parameters for a proposed fan design that is of sufficient size to propel the hybridized aircraft. The results show that the hybridized concept, at design conditions, proves feasible in all scenarios. The mass of the aircraft increases as the hybridized system is introduced, but nevertheless the fuel consumption decreases where the reduction depends highly on energy density of the batteries.
Målet med den här studien är att föreslå en el-hybridiserad version av ett framdrivningssystem för ett passagerarflygplan om 10 personer, och jämföra det med ett konventionellt (referens) flygplan som använder fossildrivna turbofläktmotorer för framdrift. Det el-hybridiserade framdrivningssystemet består utav en fossildriven gasturbin vars syfte är att generera elektricitet, kopplat i en seriell konfiguration med ett batterilager, som förser två elektriskt drivna kanaliserade fläktar. Jämförelsen syftar framförallt till energiförbrukning och koldioxidutsläpp; därav, målet är att reducera dessa i el-hybrid lösningen. Flygplanen jämförs när de presterar samma förutbestämda rutt som är 900 km lång, har en kryssning altitud på 7500 m i 150 m/s. Andra rutt parametrar är optimerade, med hänsyn till energiförbrukning. Det el-hybridiserade framdrivningssystemet är utvärderat i tre olika scenarier, som är: 2020- , Near Future- och Anvanced Future scenario, som alla innebär olika komponentegenskaper som representerar olika framtida förutsägelser. Ett experiment är utfört med en småskalig elektrisk kanaliserad fläkt, som körs i en vindtunnel, för att mäta kvantiteter som effekt och framdrivningskraft. Dessa resultat är sedan skalade upp och använda som designparametrar för en föreslagen fläkt design som är tillräckligt stor för att driva det el-hybridiserade flygplanet. Resultaten visar att det el-hybridiserade konceptet, under designförhållandena, visar sig vara möjlig i alla scenarier. Vikten av flygplanet ökar när det el-hybridiserade konceptet är applicerat, men bränsleförbrukningen minskar ändå, där mängden reducerat bränsle i allra högsta grad beror på energi-densiteten i batterierna.
APA, Harvard, Vancouver, ISO, and other styles
15

Beckman, Mathias, and Gerald Volden Alex Christy. "Performance Assessment of Electrical Motor for Electric Aircraft Propulsion Applications : Evaluation of the Permanent Magnet Motor and its Limitations in Aircraft Propulsion." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-45157.

Full text
Abstract:
This thesis project will evaluate which kind of electrical motor is best suited for aircraft propulsion and which parameters effect the efficiency. An economic analysis was conducted, comparing the fuel price (Jet A1) for a gas turbine and the electricity price for an electric motor of 1MW. The study was conducted by using analytical methods in MATLAB. Excel was used to compile and present the data. The data used in this thesis project were assumed with regards to similar studies or pre-determined values. The main losses for the Permanent Magnet Synchronous Motor (PMSM) were calculated to achieve a deeper understanding of the most important parameters and how these parameters need to improve to allow for future electric propulsion systems. The crucial parameters for the losses were concluded to be the temperature, voltage level, electrical frequency, magnetic flux density, size of the rotor and rotational speed. The three main losses of a PMSM was illustrated through the analytical equations used in MATLAB. The calculations present how the ohmic losses depend on the temperature (0-230°C) at different voltages (700V and 1000V), how the core losses depend on frequency (0-1000Hz) at different magnetic flux densities and how the windage losses depend on rotational speed (7000-10000 rpm). It could be concluded that at 8500 rpm an efficiency of 91,26% could be achieved at 700V, 1.5T and 90.4% at 1000V, 1.65T. The decrease in efficiency is a result of the increase in magnetic flux density. When looking at the economic viability of electrical integration the power to weight ratio and energy price was compared for the gas turbine and electrical motor including an inverter and battery. This resulted in a conclusion that a pure electrical system may not compete with a gas turbine in 30 years of time due to the low energy density of the battery. It was also concluded that the emissions during cruise could be lowered significantly. If the batteries were charged in Sweden the emissions would decrease from ~937 kg CO2 to ~31 kg CO2. If the batteries were charged in the Nordic region the emissions would decrease to ~119kg CO2. However, if the batteries were to be charged in the US the carbon dioxide emission would be ~1084 kg CO2, which is an increase in CO2 emission compared to the gas turbine.
APA, Harvard, Vancouver, ISO, and other styles
16

Laperriere, David Daniel. "Electromechanical Modeling and Open-Loop Control of Parallel-Plate Pulsed Plasma Microthrusters with Applied Magnetic Fields." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-062605-150837/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Collin, Philippe. "Design, taking into account the partial discharges phenomena, of the electrical insulation system (EIS) of high power electrical motors for hybrid electric propulsion of future regional aircrafts." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30116.

Full text
Abstract:
La réduction des émissions de CO2 est un enjeu majeur pour l'Europe dans les années à venir. Les transports sont aujourd'hui à l'origine de 24% des émissions globales de CO2. L'aviation ne représente que 2% des émissions globales de CO2. Cependant, le trafic aérien est en pleine expansion et, déjà, des inquiétudes apparaissent. A titre d'exemple, en Suède, depuis les années 1990, les émissions de CO2 dues au trafic aérien ont augmenté de 61%. Ce constat explique l'apparition du mouvement "Flygskam" qui se repend dans de plus en plus de pays Européen. C'est dans ce contexte que l'Union Européenne a lancé en septembre 2016 le projet Hybrid Aircraft Academic research on Thermal and Electrical Components and Systems (HASTECS). Le consortium regroupe différents laboratoires et Airbus. Ce projet s'inscrit dans le programme "Clean Sky 2" qui vise à développer une aviation plus verte. L'objectif ambitieux est de réduire de 20% les émissions de CO2 et le bruit produits par les avions d'ici 2025. Pour cela, le consortium étudie une architecture hybride de type série. La propulsion est assurée par des moteurs électriques. Deux cibles ont été définies. En 2025, les moteurs doivent atteindre une densité de puissance de 5kW/kg, système de refroidissement inclus. En 2035, la densité de puissance des moteurs sera doublée pour atteindre 10kW/kg. Pour atteindre ces cibles, le niveau de tension sera considérablement augmenté, au-delà du kilovolt. Le risque de décharges électriques dans les stators des moteurs électriques est considérablement accru. L'objectif de cette thèse est de mettre au point un outil d'aide au design du Système d'Isolation Electrique (SIE) primaire du stator de moteur électrique piloté par convertisseur. Elle est découpée en cinq parties. La première partie commence par préciser les enjeux et défis d'une aviation plus verte. Le SIE du stator de moteur électrique est développé. Enfin, les contraintes qui s'appliquent sur le SIE dans l'environnement aéronautique sont identifiées. La deuxième partie présente les différents types de décharges électriques que l'on peut retrouver. Le principal risque vient des Décharges Partielles (DP) qui détériorent peu à peu le SIE. Le principal mécanisme pour expliquer l'apparition des DP est l'avalanche électronique. Le critère de Paschen permet d'évaluer le Seuil d'Apparition des Décharges Partielles (SADP). Différentes techniques permettent de détecter et mesurer l'activité des DP. Des modèles numériques permettent d'évaluer le SADP. La troisième partie présente une méthode originale pour déterminer les lignes de champ électrique dans un problème électrostatique. Elle n'utilise qu'une formulation en potentiel scalaire. La quatrième partie présente une étude expérimentale pour établir une correction du critère de Paschen. Un bobinage de moteur électrique est très loin des hypothèses dans lesquelles ce critère a été originellement défini. Enfin, la cinquième partie est consacrée à l'élaboration de l'outil d'aide au design du SIE. Des abaques sont construites afin de fournir des recommandations sur le dimensionnement des différents isolants dans une encoche de stator. Une réduction du SADP due à une variation combinée de la température et de la pression est prise en compte
Reducing CO2 emissions is a major challenge for Europe in the years to come. Nowadays, transport is the source of 24% of global CO2 emissions. Aviation accounts for only 2% of global CO2 emissions. However, air traffic is booming and concerns are emerging. For instance, CO2 emissions from air traffic have increased by 61% in Sweden since the 1990s. This explains the emergence of the "Flygskam" movement which is spreading in more and more European countries. It is in this context that the European Union launched in September 2016 the project Hybrid Aircraft Academic research on Thermal and Electrical Components and Systems (HASTECS). The consortium brings together different laboratories and Airbus. This project is part of the program "Clean Sky 2" which aims to develop a greener aviation. The ambitious goal is to reduce CO2 emissions and the noise produced by aircraft by 20% by 2025. To do that, the consortium is studying a serial hybrid architecture. Propulsion is provided by electric motors. Two targets are defined. In 2025, the engines must reach a power density of 5kW/kg, including the cooling system. In 2035, the power density of the engines will be doubled to reach 10kW/kg. To reach these targets, the voltage level will be considerably increased, beyond one kilovolt. The risk of electric discharges in the stators of electric motors is considerably increased. The objective of this thesis is to develop a tool to assist in the design of the primary Electrical Insulation System (EIS) of the stator of an electric motor controlled by a converter. It is organized in 5 parts. The first part begins by clarifying the issues and challenges of a greener aviation. The electric motor stator EIS is developed. Finally, the constraints that apply to the EIS in the aeronautical environment are identified. The second part presents the different types of electric discharges that can be found. The main risk comes from Partial Discharges (PD) which gradually deteriorate the EIS. The main mechanism for explaining the appearance of PD is the electronic avalanche. The Paschen criterion makes it possible to evaluate the Partial Discharge Inception Voltage (PDIV). Different techniques are used to detect and measure the activity of PD. Numerical models are used to evaluate the PDIV. The third part presents an original method for determining the electric field lines in an electrostatic problem. It only uses a scalar potential formulation. The fourth part presents an experimental study to establish a correction of the Paschen criterion. An electric motor winding is very far from the hypotheses in which this criterion was originally defined. Finally, the fifth part is devoted to the development of the SIE design aid tool. Graphs are generated to provide recommendations on the sizing of the various insulators in a stator slot. A reduction in the PDIV due to a combined variation in temperature and pressure is taken into account
APA, Harvard, Vancouver, ISO, and other styles
18

Dai, Ping. "Réjection de perturbation sur un système multi-sources - Application à une propulsion hybride." Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2251/document.

Full text
Abstract:
Ce mémoire porte sur l'étude d'un système de gestion d'énergie électrique dans un système multi-sources soumis à des perturbations exogènes. L'application visée est l'alimentation d'une propulsion hybride diesel/électrique équipée d'un système d'absorption des pulsations de couple. Les perturbations exogènes considérées peuvent être transitoires ou persistantes. Une perturbation transitoire correspond à une variation rapide du couple de charge, due par exemple à une accélération ou une décélération du véhicule. Une perturbation persistante provient du système de compensation des pulsations de couple générées par le moteur thermique. Le premier objectif du contrôle est de maintenir constante la tension du bus continu. Le deuxième objectif est d'absorber dans un système de stockage rapide constitué de super condensateur ces perturbations qui peuvent à terme provoquer une usure prématurée de la batterie. Le troisième objectif est de compenser l'auto-décharge dans le super condensateur en maintenant constante sa tension nominale. Les deux sources (batterie et super condensateur) sont reliées au bus continu par l'intermédiaire de deux convertisseurs boost DC/DC. La commande consiste à piloter les rapports cycliques de chaque convertisseur. C'est un système non linéaire où la commande est multiplicative de l'état. L'approche classique consistant à résoudre les équations Francis-Byrnes-Isidori ne s'applique pas directement dans ce cas où la sortie et la matrice d'interconnection dépendent de la commande. De plus, si cette approche est bien adaptée au rejet de perturbations persistantes, elle montre ces limites pour le rejet de perturbations non persistantes combiné à des objectifs de régulation. Notre approche a consisté à écrire le système sous un formalisme Port-Controlled Hamiltonian et à s'affranchir de la contrainte de la dépendance de la matrice d'interconnection avec la commande en utilisant la théorie des perturbations singulières. La commande du système dégénéré peut ensuite être calculée par une approche passive. Les performances de cette commande ont été testées en simulation et à l'aide d'un banc d'essai expérimental. Les résultats montrent l'efficacité du système d'absorption des différents types de perturbation tout en respectant les deux objectifs de régulation
This thesis presents the research of energy management in a battery/ultracapacitor hybrid energy storage system with exogenous disturbance in hybrid electric vehicular application. Transient and harmonic persistent disturbances are the two kinds of disturbances considered in this thesis. The former is due to the transient load power demand during acceleration and deceleration, and the latter is introduced from the process of the internal combustion engine torque ripples compensation. Our control objective is to absorb the disturbances causing battery wear via the ultracapacitor, and meanwhile, to maintain a constant DC voltage and to compensate the self-discharge in the ultracapacitor to maintain it operating at the nominal state of charge. The object system is nonlinear due to the multiplicative relation between the input and the state. The traditional approach to solve Francis-Byrnes-Isidori equations cannot be directly applied in this case since the interconnect matrix depends on the control input. Besides, even if this approach is well suited to the rejection of persistent disturbances, it shows the limits for the case of non-persistent disturbances which is also our object. Our contributed control method is realized through a cascade control structure based on the singular perturbation theory. The ultracapacitor current with the fastest motion rate is controlled in the inner fast loop through which we impose the desired dynamic to the system. The reduced system controlled in the outer slow loop is a Hamiltonian system and the controller is designed via interconnection and damping assignment. Simulations and experiments have been carried out to evaluate the control performance. A contrast of the system responses with and without the control algorithm shows that, with the control algorithm, the ultracapacitor effectively absorbs the disturbances; and verifies the effectiveness of the control algorithm
APA, Harvard, Vancouver, ISO, and other styles
19

Khanna, Yash. "Conceptual design and development of thermal management system for hybrid electric aircraft engine. : A study to develop a physical model and investigate the use of Mobil Jet Oil II as coolant for aircraft electrical propulsion under different scenarios and time horizons." Thesis, Mälardalens högskola, Framtidens energi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-46612.

Full text
Abstract:
The ever-increasing levels of greenhouse gas emissions has led to the scientific community starting to explore the viability of electrical aircraft system, with the most prominent research and product development for hybrid electric system, which forms the transition phase from combustion to fully electric aircrafts. The primary objective of this thesis is to find solutions towards thermal management of the electrical components of a hybrid electric aircraft propulsion system, which generate a significant amount of heat while operating at heavy load conditions required to propel an aircraft. In view of these objectives a micro channel cold plate liquid cooling system, has been dynamically modelled using a combination of lumped parameter and thermal resistance methods of heat transfer analysis. The study investigates the prospects of using Mobil Jet Oil II, typically used as an aircraft lubricant as a coolant for the thermal management system. The primary components of this model are lithium ion battery, DC-AC inverter, permanent magnet motor, cross flow finned micro channel heat exchanger, centrifugal pump and ducts. The electrical components have been dimensioned according to energy storage and load requirements considering their efficiencies and gravimetric power/energy. The system has been simulated and analyzed under different scenarios considering the coolant inlet temperature, air temperature across the heat exchanger and on two-time horizons. Analysis has been done to study the dynamic trends of the component temperature and the coolant at different stages of the system. The scope of the study includes an evaluation of the added weight of the thermal management system under different time horizons and their comparison with results from a reference study. From the simulation results it can be concluded that Mobil Jet Oil II is a promising option as a coolant and therefore its use as a common fluid for gas turbine lubrication and as coolant, will benefit the aircraft as now no extra coolant reservoir is required, allowing reduction in weight carried by the aircraft.
APA, Harvard, Vancouver, ISO, and other styles
20

Manning, Peter Christopher. "Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/49436.

Full text
Abstract:
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP) of designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle, the selected powertrain is a Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV) with P2 (between engine and transmission) and P4 (rear axle) motors, a lithium-ion battery pack, an internal combustion engine, and an automatic transmission. Development of a charge sustaining control strategy for this vehicle involves coordination of controls for each of the main powertrain components through a distributed control strategy. This distributed control strategy includes component controllers for each individual component and a single supervisory controller responsible for interpreting driver demand and determining component commands to meet the driver demand safely and efficiently. For example, the algorithm accounts for a variety of system operating points and will penalize or reward certain operating points for other conditions. These conditions include but are not limited to rewards for discharging the battery when the state of charge (SOC) is above the target value or penalties for operating points with excessive emissions. Development of diagnostics and remedial actions is an important part of controlling the powertrain safely. In order to validate the control strategy prior to in-vehicle operation, simulations are run against a plant model of the vehicle systems. This plant model can be run in both controller Software- and controller Hardware-In-the-Loop (SIL and HIL) simulations. This paper details the development of the controls for diagnostics, major selection algorithms, and execution of commands and its integration into the Series-Parallel PHEV through the supervisory controller. This paper also covers the plant model development and testing of the control algorithms using controller SIL and HIL methods. This paper details reasons for any changes to the control system, and describes improvements or tradeoffs that had to be made to the control system architecture for the vehicle to run reliably and meet its target specifications. Test results illustrate how changes to the plant model and control code properly affect operation of the control system in the actual vehicle. The VT Malibu is operational and projected to perform well at the final competition.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
21

Samoilenko, Yelyzaveta, and Єлизавета Олександрівна Самойленко. "Preliminary design of a regional passenger aircraft with a hybrid power plant." Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/53187.

Full text
Abstract:
Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету". Керівник роботи: доцент, к.т.н. Юцкевич Святослав Сергійович
This bachelor thesis is dedicated to the design and development of the domestic aircraft with hybrid electric propulsion system. The method of design is analysis of the prototypes and selections of the most advanced technical decisions. The diploma work contains drawings of design of the short-range aircraft with commercial cargo payload capacity up to 6000 kg, calculations and drawings of the aircraft layout, the cargo compartment and equipment.
Ця бакалаврська робота присвячена конструюванню та розробці вітчизняного літака з гібридною електрорушійною системою. Методом проектування є аналіз прототипів і підбір найсучасніших технічних рішень. Дипломна робота містить креслення конструкції літака малої дальності з комерційною вантажопідйомністю до 6000 кг, розрахунки та креслення компоновки літака, вантажного відсіку та обладнання.
APA, Harvard, Vancouver, ISO, and other styles
22

Čech, Tomáš. "Zkoumání vlivu přítlaku na životnost olověných akumulátorů pro hybridní elektrická vozidla." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219873.

Full text
Abstract:
The goal of the thesis is to study literature and to become familiar with problems of accumulators operating in the mode of hybrid electric vehicles (HEV). To work up problems of a potential impact of the influence on the system of the lead accumulator. Assemble the experimental cells with discontinuous system of parallel fins and to treat them with different operating modes. Then to evaluate the results.
APA, Harvard, Vancouver, ISO, and other styles
23

Dinca, Dragos. "Development of an Integrated High Energy Density Capture and Storage System for Ultrafast Supply/Extended Energy Consumption Applications." Cleveland State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=csu1495115874616384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Jianning. "Co-Optimisation du Dimensionnement et du Contrôle des Groupe Motopropulseurs Innovants." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC057/document.

Full text
Abstract:
Des technologies avancées sont très demandées dans l'industrie automobile pour respecter les réglementations de consommation de carburant de plus en plus rigoureuses. La co-optimisation du dimensionnement et du contrôle des groupes motopropulseurs avec une efficacité de calcul améliorée est étudiée dans cette thèse.Les composants des groupes motopropulseurs, tels que le moteur, la batterie et le moteur électrique, sont modélisés analytiquement au niveau descriptif et prédictif afin de permettre une optimisation du contrôle rapide et une optimisation du dimensionnement scalable. La consommation d'énergie minimale des véhicules hybrides-électriques est évaluée par des nouvelles méthodes optimales. Ces méthodes – y compris Selective Hamiltonian Minimization et GRaphical-Analysis-Based energy Consumption Optimization – permettent d'évaluer une consommation minimale d'énergie avec une efficacité de calcul améliorée. De plus, la méthode de Fully-Analytic energy Consumption Evaluation (FACE) approxime la consommation d'énergie minimale sous forme analytique en fonction des caractéristiques de la mission et des paramètres de conception des composants du groupe motopropulseur. Plusieurs cas d’études sont présentées en détail par rapport aux approches de co-optimisation à bi-niveaux et à uni-niveau, ce qui montre une réduction efficace du temps de calcul requis par le processus global de co-optimisation
Advanced technologies are highly demanded in automotive industry to meet the more and more stringent regulations of fuel consumption. Cooptimization of design and control for vehicle propulsion systems with an enhanced computational efficiency is investigated in this thesis.Powertrain components, such as internal combustion engines, batteries, and electric motor/generators, are analytically modeled at descriptive and predictive level correspondingly for the development of fastrunning control optimization and for the scalability of design optimization. The minimal fuel consumption of a hybrid-electric vehicle is evaluated through novel optimization methods. These methods – including the Selective Hamiltonian Minimization, and the GRaphical-Analysis-Based energy Consumption Optimization – are able to evaluate the minimal energy consumption with the enhanced computational efficiency. In addition, the Fully-Analytic energy Consumption Evaluation method approximates the minimal energy consumption in closed form as a function of the mission characteristics and the design parameters of powertrain components.A few case studies are presented in details via the bi-level and uni-level co-optimization approaches, showing an effective improvement in the computational efficiency for the overall co-optimization process
APA, Harvard, Vancouver, ISO, and other styles
25

Amghar, Bilal. "Modélisation, observabilité et commande de convertisseurs multicellulaires parallèles dans un environnement dédié." Phd thesis, Université de Cergy Pontoise, 2013. http://tel.archives-ouvertes.fr/tel-00880757.

Full text
Abstract:
Les convertisseurs de puissance multicellulaires trouvent une place privilégiée dans le contrôle des systèmes de très forte puissance. Dans ce travail de thèse une nouvelle classe de convertisseurs de puissance est étudiée les Convertisseurs Multicellulaires Parallèles (CMP). La topologie de ces convertisseurs repose sur une association de n cellules de commutationinterconnectées par l'intermédiaire d'inductances indépendantes, appelées aussiinductances de liaison. Le CMP permet d'atteindre un courant de sortie égal à n fois le courant d'entrée du convertisseur, l'inconvénient majeur de ce type de convertisseur est le déséquilibrage des courants de branches . Dans le but de réduire et d'économiser le nombre de capteurs, nous avons proposé dans la première partie de la thèse une analyse d'observabilité spécifique à une classe de système dynamique hybride appelée Z(TN)-Observability et synthétisé un observateur hybride en utilisant l'algorithme super twisting. La deuxièmepartie du travail a été consacrée à la synthèse d'une loi de commande pour la régulation des courants de branches. En effet, le régulateur proposé est un régulateur hybride en basant sur la modélisation par réseaux de pétri de l'algorithme de contrôle. Enfin, Les deux parties théoriques sont suivies par une réalisation pratique d'un CMP à trois cellules de commutation pour valider les deux approches proposées. Les résultats expérimentaux nous ont montré les performances de l'observateur et le régulateur de courant et de tension de sortie.
APA, Harvard, Vancouver, ISO, and other styles
26

Matlock, Jay Michael Todd. "Evaluation of hybrid-electric propulsion systems for unmanned aerial vehicles." Thesis, 2019. http://hdl.handle.net/1828/11484.

Full text
Abstract:
The future of aviation technology is transitioning to cleaner, more efficient and higher endurance aircraft solutions. As fully electric propulsion systems still fall short of the operational requirements of modern day aircraft, there is increasing pressure and demand for the aviation industry to explore alternatives to fossil fuel driven propulsion systems. The primary focus of this research is to experimentally evaluate hybrid electric propulsion systems (HEPS) for Unmanned Aerial Vehicles (UAV) which combine multiple power sources to improve performance. HEPS offer several potential benefits over more conventional propulsion systems such as a smaller environmental impact, lower fuel consumption, higher endurance and novel configurations through distributed propulsion. Advanced operating modes are also possible with HEPS, increasing the vehicle’s versatility and redundancy in case of power source failure. The primary objective of the research is to combine all of the components of a small-scale HEPS together in a modular test bench for evaluation. The test bench uses components sized for a small-scale UAV including a 2.34kW two-stroke 35cc engine and a 1.65kW brushless DC motor together with an ESC capable of regenerative braking. Individual components were first tested to characterize performance, and then all components were assembled together in a parallel configuration to observe system-level performance. The parallel HEPS is capable of functioning in the four required operating modes: EM Only, ICE Only, Dash Mode (combined EM and ICE power) as well as Regenerative Mode where the onboard batteries get recharged. Further, the test bench was implemented with a supervisory controller to optimize system performance and run each component in the most efficient region to achieve torque requirements programmed into mission profiles. The logic based controller operates with the ideal operating line (IOL) concept and is implemented with a custom LabView GUI. The system is able to run on electric power or ICE power interchangeably without making any modifications to the transmission as the one-way bearing assembly engages for whichever power source is rotating at the highest speed. The most impressive of these sets of tests is the Dash mode testing where the output torque of the propeller is supplied from both the EM and ICE. Working in tandem, it was proved that the EM was drawing 19.9A of current which corresponds to an estimated 0.57Nm additional torque to the propeller for a degree of hybridization of 49.91%. Finally, the regenerative braking mode was proven to be operational, capable of recharging the battery systems at 13A. All of these operating modes attest to the flexibility and convenience of having a hybrid-electric propulsion system. The results collected from the test bench were validated against the models created in the aircraft simulation framework. This framework was created in MATLAB to simulate the performance of a small UAV and compare the performance by swapping in various propulsion systems. The purpose of the framework is to make direct comparisons of HEPS performance for parallel and series architectures against conventional electric and gasoline configuration UAVs, and explore the trade-offs. Each aircraft variable in the framework was modelled parametrically so that parameter sweeps could be run to observe the impact on the aircraft’s performance. Finally, rather than comparing propulsion systems in steady-state, complex mission profiles were created that simulate real life applications for UAVs. With these experiments, it was possible to observe which propulsion configurations were best suited for each mission type, and provide engineers with information about the trade-offs or advantages of integrating hybrid-electric propulsion into UAV design. In the Pipeline Inspection mission, the exact payload capacities of each aircraft configuration could be observed in the fuel burn versus CL,cruise parameter sweep exercise. It was observed that the parallel HEPS configuration has an average of 3.52kg lower payload capacity for the 35kg aircraft (17.6%), but has a fuel consumption reduction of up to 26.1% compared to the gasoline aircraft configuration. In the LIDAR Data collection mission, the electric configuration could be suitable for collection ranges below 100km but suffers low LIDAR collection times. However, at 100km LIDAR collection range, the series HEPS has an endurance of 16hr and the parallel configuration has an endurance of 19hr. In the Interceptor mission, at 32kg TOW, the parallel HEPS configuration has an endurance/TOW of 1.3[hr/kg] compared to 1.15[hr/kg] for the gasoline aircraft. This result yields a 13% increase in endurance from 36.8hr for gasoline to 41.6hr for the parallel HEPS. Finally, in the Communications Relay mission, the gasoline configuration is recommended for all TOW above 28kg as it has the highest loiter endurance.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
27

Zhu, Haijia. "Modelling, design and energy management of a hybrid electric ship – a case study." Thesis, 2020. http://hdl.handle.net/1828/11726.

Full text
Abstract:
The widely-used passenger and car ferries, sailing regularly and carrying heavy loads, form a unique type of marine vessel, providing vital transportation links to the coastal regions. Modern ferry ships usually are equipped with multiple diesel engines as prime movers. These diesel engines consume a large amount of marine diesel fuel with high fuel costs, and high emissions of greenhouse gas (GHG) and other harmful air pollutants, including CO2, HC, NOx, SO2, CO, and PM. To reduce fuel costs and the harmful emissions, the marine industry and ferry service providers have been seeking clean ship propulsion solutions. In this work, the model-based design (MBD) and optimization methodology for developing advanced electrified vehicles (EV) are applied to the modelling, design and control optimizations of clean marine vessels with a hybrid electric propulsion system. The research focuses on the design and optimization of the hybrid electric ship propulsion system and uses an open deck passenger and car ferry, the MV Tachek, operated by the British Columbia Ferry Services Inc. Canada, as a test case. At present, the ferry runs on the Quadra Island – Cortes Island route in British Columbia, Canada, with dynamically changing ocean conditions in different seasons over a year. The research first introduces the ship operation profile, using statistical ferry operation data collected from the ferry’s voyage data recorder and a data acquisition system that is specially designed and installed in this research. The ship operation profile model with ship power demand, travelling velocity and sailing route then serves as the design and control requirements of the hybrid electric marine propulsion system. The development of optimal power control and energy management strategies and the optimization of the powertrain architecture and key powertrain component sizes of the ship propulsion system are then carried out. Both of the series and parallel hybrid electric propulsion architectures have been studied. The sizes of crucial powertrain components, including the diesel engine and battery energy storage system (ESS), are optimized to achieve the best system energy efficiency. The optimal power control and energy management strategies are optimized using dynamic programming (DP) over a complete ferry sailing trip. The predicted energy efficiency and emission reduction improvements of the proposed new ship with the optimized hybrid propulsion system are compared with those of two benchmark vessels to demonstrate the benefits of the new design methodology and the optimized hybrid electric ship propulsion system design. These two benchmarks include a conventional ferry with the old diesel-mechanical propulsion system, and the Power Take In (PTI) hybrid electric propulsion systems installed on the MV Tachek at present. The simulation results using the integrated ship propulsion system model showed that the newly proposed hybrid electric ship could have 17.41% fuel saving over the conventional diesel-mechanical ship, and 22.98% fuel saving over the present MV Tachek. The proposed optimized hybrid electric propulsion system, combining the advantages of diesel-electric, pure electric, and mechanical propulsions, presented considerably improved energy efficiency and emissions reduction. The research forms the foundation for future hybrid electric ferry design and development.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
28

Chang, Chen Chia, and 陳加昌. "Study of Parallel Hybrid Electric Power System." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/80626493035996751888.

Full text
Abstract:
碩士
大葉大學
車輛工程學系碩士班
92
This research has designed a new hybrid electric system, which is characterized by two mechanisms: internal combustion engine energy distribution mechanism and dual energy integration mechanism. The internal combustion engine energy distribution mechanism comprises first pulley set and second pulley set, whereby it’s possible to adjust its radius ratio and change the output load to road surface, output speed and corresponding load to maintain an optimal operating state of engine in a given generator rotational speed. In this way, engine energy can maintain the engine in an optimal state. For dual energy integration mechanism, any power source can be individually actuated by electric motor and the power transmitted from internal combustion engine energy distribution mechanism. Moreover, a one-way clutch can prevent the actuated power source from reversion, so any output power source will not be affected by another inactive power. Also, two input power sources can be integrated into a bigger power source via dual energy integration mechanism, thus resulting in twice the output energy and obtaining necessary tractive power. A dynamic equation is therefore derived from this system to obtain the flow direction of power source. Furthermore, dynamic equations of various system components can be established by modularized software Matlab/simulink, and fuzzy logic is used to control and develop this system’s dual energy integration mechanism as a control strategy. It can be learnt from system simulation that, after the engine energy is distributed by the controller of dual energy integration mechanism, subjected to deceleration ratio of first pulley set of internal combustion engine distribution mechanism and added to generator torque transmitted from second pulley set, the engine can maintain an optimum state under various operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
29

Liang, Jia-Yuan. "Design and Development of Propulsion System for Hybrid Electric Vehicles." 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2709200717363600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SU, HUNG-YI, and 蘇鴻毅. "Study of a New Parallel Hybrid Electric Power System." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/01719453180747198089.

Full text
Abstract:
碩士
大葉大學
機械工程研究所碩士班
94
This research has used a new parallel hybrid electric system, which is characterized by one mechanism: dual energy integration and distribution mechanism, any power source can be individually actuated by electric motor and internal combustion engine. Moreover, a one-way clutch can prevent the actuated power source from reversion, so electric motor output power source will not be affected by another inactive power. Also, two input power sources can be integrated into a bigger power source via dual energy integration and distribution mechanism, thus resulting in twice the output energy and obtaining necessary tractive power. And use ECVT (Electronic Continuously Variable Transmission) transmission, with utilize the electronic controlled way to adjust and control the motor to maintain the internal combustion engine in an optimum state under various operating conditions. Dynamic equations of various system components can be established by modularized software Matlab/simulink, and fuzzy logic is used to control and develop this system’s dual energy integration and distribution mechanism as a control strategy. From the results of system simulation, the controller of dual energy integration and distribution mechanism, can maintain an optimum state of the internal combustion engine under various operating conditions. Thus that can provides the engineers a better reference to reduce designing errors and shorten the designing schedule, which could reduce the HEV cost and increase the design and commercial competitive ability of HEV vehicle.
APA, Harvard, Vancouver, ISO, and other styles
31

KUO-PAO, LI, and 李國寶. "The Study of Control System for Parallel Hybrid Electric Golf Vehicle." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/48084611929606821252.

Full text
Abstract:
碩士
大葉大學
車輛工程學系碩士班
93
ABSTRACT The main purpose of this study is the design of the hybrid golf vehicle control system, used the DC 36 V motor and a 150 c.c. water-cool internal combustion engine. The single chip is electronic control unit (ECU) is used to integrate hybrid power control system. The hybrid power system is divided into two models: model one is pure motor driving, another driving model combine motor with engine. The design of the electronic control system of electronic control unit (ECU) is divided into two parts: one part is controller such as master controller、 exciting current controller、 engine speed controller, anther part is monitor, such as engine speed monitor and vehicle speed monitor. To verify the control strategies of the hybrid golf vehicle control system, the Fuzzy Logic Control is used to finish this simulation work. The implementation of the exciting current controller and engine speed controller are use P controller. The master controller and other controllers have many input signals, such as battery voltage、 throttle valve position、 engine speed. The output signals are stepper motor signal and exciting current signal. Finally, through the power integrate mechanism can integrate the motor power and engine power.
APA, Harvard, Vancouver, ISO, and other styles
32

lin, Fan Zheng, and 范鎮麟. "Study of Energy Management Strategy of New Parallel Hybrid Electric Power System." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/79453849511576993225.

Full text
Abstract:
碩士
大葉大學
機械工程研究所碩士班
93
This research has designed study of energy management strategy of new parallel hybrid electric power system, which is characterized by the power integration distributing mechanism. When the electric motor and engine provide the power in the power integration distributing mechanism, the power source can provide power to the power integration distributing mechanism by oneself or at the same time. Moreover, a one-way clutch can prevent the actuated power source from reversion, so any output power source will not be affected by another inactive power. Also, two input power sources can be integrated into a bigger power source via the power integration distributing mechanism, thus resulting in twice the output energy and obtaining necessary the tractive power. A dynamic equation is therefore derived from this system to obtain the flow direction of power source. Furthermore, dynamic equations of various system components can be established by modularized software Matlab/simulink, and fuzzy logic is used to control and develop the energy management strategy of new parallel hybrid electric power system. It can be found from system simulation, the energy of the engine or the electric motor is controlled by the fuzzy logic. The electric motor and engine are adjustable to go to the best operating conditions by controller. The engine can maintain an optimum state under various operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
33

Su, Ming-Che, and 蘇明哲. "DSP-Based Energy Management System of New Parallel Hybrid Electric Heavy Motorcycle." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/39176662410683594371.

Full text
Abstract:
碩士
大葉大學
機電自動化研究所碩士班
95
Transform of the conventional mini- or medium-size motorcycles into hybrid electric vehicles is very difficult, because their physical space is very limited and the cost of the hybrid power system is very high. Combine the advantages of internal combustion engine and electric motor, the parallel hybrid electric motorcycle systems have proved they can reduce emission, save energy and raise mileage. By using adaptable control strategy and complex electromechanical systems, a high performance and high efficiency hybrid electric vehicle with very low emission and very low energy consumption can be established. In this thesis, by using the energy management strategy, we have established and improved the performance of the driver and controller. Based on a digital signal processor (DSP), we have developed the energy management system for the new parallel hybrid electric system. The Li-ion battery management system has also developed in this thesis. On the other hand, under a real platform test, we verify and modify the performances of the energy management system. In addition, the energy management system controller adequately adjust the switch of battery and power unit to achieve the purpose of effectively manage the electric control system and make the internal combustion engine run at its sweet spot in most cases. Moreover, it also can robustly protect Li-ion battery no matter what operation modes are. The hybrid electric heavy motorcycle would have the merits of energy-saving. In addition, we also have installed a prototype of the hybrid electric heavy-duty motorcycle.
APA, Harvard, Vancouver, ISO, and other styles
34

Yang, Chung-Hung, and 楊慶宏. "Electrical Control System and Li-ion Battery Management System of Parallel Hybrid Electric Heavy Motorcycle." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/52286700447311828940.

Full text
Abstract:
碩士
大葉大學
機電自動化研究所碩士班
94
In a world where environment protection and energy conservation are growing concerns, the development of hybrid electric vehicles (HEV) has taken on an accelerated pace. We put our attention on the development and research of hybrid electric heavy motorcycle since it is much more widespread than HEV for individual transportation in Taiwan. Electrical control system in the thesis is mainly focused on the new parallel hybrid system; among them include car's using the instant battery charger, Li-ion battery management system (combined SMBus) and electrical control system main controller (combined DSP). In the motor control, by using the totally invariant variable structure system and linear matrix inequality theory, we design a modified output feedback controller. The controller using only output variable is proposed to stabilize the mismatched uncertainty system robustly that mismatched variable structure systems is asymptotically stable with good performance.
APA, Harvard, Vancouver, ISO, and other styles
35

Chuan-Che, Lu, and 呂哲權. "Study of Dynamic Simulation and Control of a New Parallel Hybrid Electric Power System." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/23098332508673175319.

Full text
Abstract:
碩士
大葉大學
車輛工程學系碩士班
94
This thesis primarily focus on studying dynamic simulation and controlling design of a new parallel hybrid electric power system, which is included innovative power integration and distribution mechanism. Any power source can be individually actuated by electric motor and internal combustion engine. Two input power sources can be integrated into a powerful source via power integration and distribution mechanism, thus resulting in twice the output energy and obtaining necessary tractive power. In the dynamic simulation, the dynamic equations of whole new parallel hybrid electric power system can be established by using Matlab/simulink, and design the fuzzy logic controller of this system. The analysis and dynamic simulation of this new hybrid electric power system has been established in detail. It can be found by the way of dynamic simulation and energy management strategy, this fuzzy logic controller can be suitable to adjust two power sources of electric motor and internal combustion engine. The internal combustion engine can maintain an optimum state under various operating conditions. The change of each power source can also reach good operation and decrease the unnecessary power loss. The research results of this thesis have already completed a new set of low fuel consumption, low pollution and high performance hybrid electric power system.
APA, Harvard, Vancouver, ISO, and other styles
36

liao, Su-Der, and 廖樹德. "The Research and Development of Optimal Electrical Management System of Hybrid Battery for the Parallel Hybrid Electric Motorcycle." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/56236408709534284428.

Full text
Abstract:
碩士
大葉大學
車輛工程學系碩士班
95
There are still some bottleneck problems, which exit for the electric vehicles such as: mileage, charging…ect. All these problems seem not easily to be solved during the short time. Hybrid Electric Vehicle (HEV) becomes a transient solution. The HEV can use energy resources efficiency and reduce the pollution of the environment. But most HEV use lead-acid Battery on the world. We know lead-acid Battery has low output efficiency on heavy load immediately and easily causes power carry output delay.  The purpose of this study is to solve this problem by hybrid battery systems. The main structure is that Li-ion Battery as secondary system and lead-acid battery as prime system to improve efficiency of output power under large-current discharge.  We estimate the state of charge (SOC) of lead-acid battery and Li-ion battery in charge and discharge. By the experimental data, such as load voltage, discharge current, battery temperature, and the curve fitting technique, the equation of estimable state of charge of battery can be obtained. Through a series of experimental test, the simulations are demonstrated well efficiency and the feasibility of the proposed equations of SOC. Finally, we use LabVIEW to program manage system of Hybrid Electric Vehicle (HEV). Not only show state of charge of batteries to driver but also optimal control between Li-ion battery and Lead-acid Battery.
APA, Harvard, Vancouver, ISO, and other styles
37

Taia, Jui Hung, and 戴睿宏. "DSP Based 20kW Generator/Lithium Battery Management System and Application of Parallel Hybrid Electric Vehicles." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/46471364693664883751.

Full text
Abstract:
碩士
大葉大學
機電自動化研究所碩士班
96
The generator and lithium battery management system plays an important role in many electromechanical devices. In a hybrid electric vehicles (HEV), the generator and lithium battery management system is not only the core unit of high performance but also the decisive unit of energy-conservation and reduce carbons. In this thesis, we develop an adaptive battery charge system and energy management strategy for HEV. They both cooperate with each other and turn into key unit of energy-conservation and reduce carbons. The adaptability battery charge system can immediately regulate optimum charge for lithium battery according to energy of power source. Based on this method, we design many suitable automation charge mode. It is able to charge the lithium battery on the condition of ultra-low energy source. Hence, it reaches these functions of improving the storing efficiency and reducing energy losses. Moreover, it can also equilibrium charge at the same time to lengthen the battery life. We will apply this adaptability battery charge system in the HEV platform. Because the power of generator and lithium battery is possible more than 10 kW, the circuit design and stability operation of this system are not an easy task. We consider power of generator modulation, charging and discharging reacting of lithium battery and safety norm to accomplish the adaptability battery charge system of HEV. Besides, we also achieved the construction of the prototype vehicle to real application and test in this research. Through the real experiments, we have proved the exactitude of theory and the practicability of the novel method. The adaptability battery charge system can not limits the application to the kind of particular battery and vehicle system, it can also apply to any kind of real-time electricity generation system of the frequently change energy.
APA, Harvard, Vancouver, ISO, and other styles
38

Chang, Ching Huang, and 張敬煌. "Evaluation of Performance and Development of User Interface for the Parallel Hybrid Electric Heavy Motorcycle System." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/92928032107023176388.

Full text
Abstract:
碩士
大葉大學
車輛工程學系碩士班
94
The electrically operated vehicles are the zero exhaust pollution environmental protection transportation vehicle, but because the endurance and the performance are not good, thus affects the electric car the market. Although the traditional internal combustion engine the exhaust pollution is serious, but unifies merit of and the electrically operated motor the internal combustion engine characteristic the compound powered vehicle (Hybrid Electric Vehicle, HEV), is surely kind of province can also the low pollution has the environmental protection concept the vehicles. Connect in parallel compound electronic heavy-duty motorcycle experiment platform by existing heavy-duty internal-combustion engine and electronic motorcycle motor of motorcycle on the market and cooperate innovative power combine by oneself The organization plans to make up. This system adopts the organic whole type motor / the generator and dual axle type power combine the organization. Connect in parallel compound no matter change, vehicle of load power make internal-combustion engine, can maintain best state turn round, behind experiment, Connect in parallel compound electronic heavy-duty motorcycle system can deal with various kinds of road surface states all, when the system is exported with a pair of motive force, combine via power organization is it produce high-power deal with tight severe road demand to combine, in the vehicle in case of heavy load, operate in low oil consumption and operating area of low pollution after the internal-combustion engine is started, the fuel consumption saves 60% more than the general traditional vehicle. Uses the LabVIEW establishment to test bench the immediate supervisory system and the magnetic powder type brakes the control formula, the immediate supervisory system monitors and records various power supplies output, may cause the integrated system research and development time to reduce, applies the brake in the supervisory system establishment internal combustion engine break spec. fuel consumption (BSFC) to monitor the region, may know whether the internal combustion engine in the hypothesis best revolution area, does establish the magnetic powder type to brake control formula its goal is for can follow the hypothesis applied load correctly, and achieves the automated test.
APA, Harvard, Vancouver, ISO, and other styles
39

CHUANG, CHIA HAO, and 莊佳豪. "Development of Electrical Control System and Performance Analysis for a New Parallel Hybrid Electric Heavy Motorcycle." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/37771677056878499266.

Full text
Abstract:
碩士
大葉大學
機電自動化研究所碩士班
95
With growing concerns over environmental protection and energy conservation, the hybrid electric vehicle (HEV) has taken center stage. The electric vehicle is a transportation implement of zero emission; however, its performance and driving distance are not acceptable in most cases. Thus the electric vehicle is not accepted extensively. On the other hand, the hybrid electric vehicle (HEV) not only achieves minimum fuel consumption and minimum emissions but also reduce pollution. The hybrid electric heavy motorcycle would have the merits of energy-saving. In this study investigates a new parallel hybrid electric heavy motorcycle, the aim of research is integral performance analysis and electrical control system. Its includes:(1) The simulation and performance analysis of integral systems: to simulate and analyze situations which the vehicle operate under variations of vehicle load; (2) Electrical control system: the major controller of the systems used by Digital Signal Processor (DSP) and control the vehicle under variations of driving pattern. In order to achieves minimum fuel consumption and minimum emissions, the internal combustion engine always operates at the sweet spot. The linear matrix inequality (LMI) method is applied in the design of dynamic output feedback controller for mismatched uncertain variable structure system (VSS). Using this new LMI theory based output feedback variable structure control (VSC), the mismatched variable structure systems is asymptotically stable with better performance. The electric control system and major controller of the hybrid electric vehicle have been achieved on the experimental platform. The prototype of hybrid vehicle is also established. The performances of the new hybrid electric vehicle are proved by experiment and operate actuality.
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Siyang. "Model-based design of hybrid electric marine propulsion system using modified low-order ship hull resistance and propeller thrust models." Thesis, 2020. http://hdl.handle.net/1828/12518.

Full text
Abstract:
Transportation is a primary pollution source contributing to 14 percent of global greenhouse gas emissions, and 12 percent of transportation emissions came from maritime activities. Emissions from the ferry industry, which carries roughly 2.1 billion passengers and 250 million vehicles annually, is a major concern for the general public due to their near-shore operations. Compared to the rapidly advancing clean automotive propulsion, fuel efficiency and emissions improvements for marine vessels are more urgent and beneficial due to the significantly higher petroleum fuel consumption and heavy pollutants and the relatively slow adoption of clean propulsion technology by the marine industry. Hybrid electric propulsion, proven to be effective for ground vehicles, presents a promising solution for more efficient clean marine transportation. Due to the diversified hull/propulsor design and operation cycle, the development of a hybrid electric marine propulsion system demands model-based design and control optimization for each unique and small batch production vessel. The integrated design and control optimization further require accurate and computation efficient hull resistance and propulsor thrust calculation methods that can be used to predict needed propulsion power and gauge vessel performance, energy efficiency, and emissions. This research focuses on improving the low-order empirical hull resistance and propulsor thrust models in the longitudinal direction by extracting model parameters from one-pass computational fluid dynamics (CFD) simulation and testing the acquired models in integrated design optimization of the marine propulsion system. The model is implemented in MATLAB/Simulink and ANSYS Aqwa and validated using operation data from BC Ferries’ ship Tachek. The modified low-order model (M-LOM) is then used in the integrated optimizations of propulsion system component sizes and operation control strategies for another BC Ferries’ ship, Skeena Queen. The performance, energy efficiency, and emissions of various propulsion options, including nature gas-mechanical and natural gas-electric benchmarks, and hybrid electric alternatives of series hybrid, parallel hybrid, and battery/pure electric are compared to demonstrate the benefits of the new method in completing these complex tasks and hybrid electric marine propulsion. The research forms the foundation for further studies to achieve more accurate propulsion demand prediction and a more comprehensive lifecycle cost assessment of clean marine propulsion solutions.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
41

Prescott, Daniel. "Development and Implementation of Control System for an Advanced Multi-Regime Series-Parallel Plug-in Hybrid Electric Vehicle." Thesis, 2015. http://hdl.handle.net/1828/6590.

Full text
Abstract:
Following the Model-Based-Design (MBD) development process used presently by the automotive industry, the control systems for a new Series-Parallel Multiple-Regime Plug-in Hybrid Electric Vehicle (PHEV), UVic EcoCAR2, have been developed, implemented and tested. Concurrent simulation platforms were used to achieve different developmental goals, with a simplified system power loss model serving as the low-overhead control strategy optimization platform, and a high fidelity Software-in-Loop (SIL) model serving as the vehicle control development and testing platform. These two platforms were used to develop a strategy-independent controls development tool which will allow deployment of new strategies for the vehicle irrespective of energy management strategy particulars. A rule-based energy management strategy was applied and calibrated using genetic algorithm (GA) optimization. The concurrent modeling approach was validated by comparing the vehicle equivalent fuel consumption between the simplified and SIL models. An equivalency factor (EF) of 1 was used in accounting for battery state of charge (SOC) discrepancies at cycle end. A recursively-defined subsystem efficiency-based EF was also applied to try to capture real-world equivalency impacts. Aggregate results between the two test platforms showed translation of the optimization benefits though absolute results varied for some cycles. Accuracy improvements to the simplified model to better capture dynamic effects are recommended to improve the utility of the newly introduced vehicle control system development method. Additional future work in redefining operation modes and mode transition threshold conditions to approximate optimal vehicle operation is recommended and readily supported by the control system platform developed.
Graduate
0540
0548
0790
d.e.prescott@gmail.com
APA, Harvard, Vancouver, ISO, and other styles
42

Predut, S., F. Ipate, Marian Gheorghe, and I. Felician Campean. "Formal Modelling of Cruise Control System Using Event-B and Rodin Platform." 2018. http://hdl.handle.net/10454/16555.

Full text
Abstract:
no
Formal modelling is essential for precisely defining, understanding and reasoning when designing complex systems, such as cyberphysical systems. In this paper we present a formal specification using Event-B and Rodin platform for a case study of a cruise control system for a hybrid propulsion vehicle and electric bicycle (e-Bike). Our work uses the EventB method, a formal approach for reliable systems specification and verification, being supported by the Rodin platform, based on theorem proving, allowing a stepwise specification process based on refinement. We also use, from the same platform, the ProB model checker for the verification of the B-Machine and iUML plug-in to visualize our model. This approach shows the benefits of using a formal modelling platform, in the context of cyberphysical systems, which provides multiple ways of analysing a system.
Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-20160210.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography