Academic literature on the topic 'Paraelectrics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Paraelectrics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Paraelectrics"
WANG, C. L., and M. L. ZHAO. "BURNS TEMPERATURE AND QUANTUM TEMPERATURE SCALE." Journal of Advanced Dielectrics 01, no. 02 (April 2011): 163–67. http://dx.doi.org/10.1142/s2010135x1100029x.
Full textCoak, Matthew J., Charles R. S. Haines, Cheng Liu, Stephen E. Rowley, Gilbert G. Lonzarich, and Siddharth S. Saxena. "Quantum critical phenomena in a compressible displacive ferroelectric." Proceedings of the National Academy of Sciences 117, no. 23 (May 26, 2020): 12707–12. http://dx.doi.org/10.1073/pnas.1922151117.
Full textCourtens, E., B. Hehlen, G. Coddens, and B. Hennion. "New excitations in quantum paraelectrics." Physica B: Condensed Matter 219-220 (April 1996): 577–80. http://dx.doi.org/10.1016/0921-4526(95)00817-9.
Full textDelRe, Eugenio, Mario Tamburrini, and Aharon J. Agranat. "Soliton electro-optic effects in paraelectrics." Optics Letters 25, no. 13 (July 1, 2000): 963. http://dx.doi.org/10.1364/ol.25.000963.
Full textDas, Nabyendu, and Suresh G. Mishra. "Fluctuations and criticality in quantum paraelectrics." Journal of Physics: Condensed Matter 21, no. 9 (February 4, 2009): 095901. http://dx.doi.org/10.1088/0953-8984/21/9/095901.
Full textTosatti, E., and R. Martoňák. "Rotational melting in displacive quantum paraelectrics." Solid State Communications 92, no. 1-2 (October 1994): 167–80. http://dx.doi.org/10.1016/0038-1098(94)90870-2.
Full textVorotiahin, I. S., Yu M. Poplavko, and Y. M. Fomichov. "Features of Dielectric Nonlinearity in Paraelectrics." Ukrainian Journal of Physics 60, no. 04 (April 2015): 339–50. http://dx.doi.org/10.15407/ujpe60.04.0339.
Full textKleemann, W., Y. G. Wang, P. Lehnen, and J. Dec. "Phase transitions in doped quantum paraelectrics." Ferroelectrics 229, no. 1 (May 1999): 39–44. http://dx.doi.org/10.1080/00150199908224315.
Full textWang, Y. G., W. Kleemann, J. Dec, and W. L. Zhong. "Dielectric properties of doped quantum paraelectrics." Europhysics Letters (EPL) 42, no. 2 (April 15, 1998): 173–78. http://dx.doi.org/10.1209/epl/i1998-00225-3.
Full textWang, Y. G., W. Kleemann, W. L. Zhong, and L. Zhang. "Impurity-induced phase transition in quantum paraelectrics." Physical Review B 57, no. 21 (June 1, 1998): 13343–46. http://dx.doi.org/10.1103/physrevb.57.13343.
Full textDissertations / Theses on the topic "Paraelectrics"
Agudelo, Estrada Santiago Alberto. "Interface chemistry and electronic structure in voltage-adjustable paraelectric capacitances for 5G applications." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP131.
Full textThe deployment of 5G technology has raised significant issues of energy consumption. This can be minimized by adjusting the antenna impedance to 50 ohms. Impedance matching is also crucial for Near Field Communications (NFC) to ensure energy-efficient contactless communications. To meet 5G and NFC requirements, a voltage-controllable impedance matching circuit with highly tunable capacitance (varactor) is needed. Specifically, a tuning ratio of at least 5 and low dielectric losses in the 5G band (2-5 GHz) are essential to preserve energy efficiency (leakage current ~1 nA). Voltage-tunable paraelectric (PE) capacitors meet this need due to their field-dependent relative permittivity εᵣ (E). The perovskite Ba₁₋ᵧSrᵧTiO₃ (BST) is widely used in 4G varactors for its excellent tunability/losses compromise, offering superior quality factors compared to other technologies. However, an acoustic resonance frequency fᵣ of 3 GHz due to electrostriction limits current 4G applications. Thus, 5G and NFC require improved varactors, specifically with fᵣ > 5 GHz and an operating voltage < 3 V. A BST thickness below 50 nm, shifting fᵣ above 6 GHz, can meet these specifications. However, these thin varactors exhibit degraded tunability and higher leakage current, due to reduced dielectric permittivity near electrodes from uncompensated polarization charges and static leakage through bulk-limited transport. Enhancing the Schottky Barrier Height (SBH) at the electrode/BST interface through band alignment can significantly reduce leakage by preventing carrier injection into the dielectric. Ab initio calculations highlight the importance of incorporating a perovskite Interface Control Layer (ICL) of a few nanometers of conductive or dielectric films between the bottom electrode and the BST in varactors. Factors such as rumpling, polar discontinuity, and interfacial B-site cation environment asymmetry can enhance interface polarizability and the Schottky Barrier Height (SBH). Understanding the mechanisms controlling electrode/PE interfaces is crucial for 5G and NFC applications, revealing chemical and electrostatic modifications of SBH and chemical potential. We propose investigating the electronic and chemical states of these interfaces at the sub-micrometric scale, compared with DFT calculations. Combinatorial Pulsed Laser Deposition (CPLD) was used to vary chemical compositions and thicknesses orthogonally on a single substrate. Chemical modulation at the Ba atoms and Ba diffusion into the dielectric STO up to the surface, driven by strain release to reduce system energy. Second, a variable polar discontinuity was induced at the LSMO/BST interface by inserting a 3 u.c. thick ICL of La₁₋ₓSrₓMnO₃ (a polar discontinuity between 1 and 0 e⁻). We investigated the interface polarization relative to BST thickness. Photoemission spectroscopy showed modulation of the work function φ, interface carrier density at the Fermi level, and interface polarization, demonstrating the impact of the 1.2 nm thick chemically modulated ICL. Finally, we fabricated voltage-tunable BST varactors using ICL engineering. We investigated the SBH versus polar discontinuity at the interface. Operando HAXPES provided access to both top and bottom interfaces, allowing us to estimate the electronic band structure and quantify the SBH. Inducing a polar discontinuity at the interface resulted in a reduction of leakage current. For 10x10 µm² BST-engineered varactors, the leakage current is expected to be close to 1 nA, an improvement by two orders of magnitude compared to current 4G cellphone varactors
Martonak, Roman. "Models of quantum paraelectric behaviour of perovskites." Doctoral thesis, SISSA, 1993. http://hdl.handle.net/20.500.11767/4058.
Full textLinnik, Ekaterina. "Propriétés spectrales des paraélectriques quantiques." Electronic Thesis or Diss., Amiens, 2022. http://www.theses.fr/2022AMIE0037.
Full textA quantum paraelectric SrTiO3 is a material situated in close proximity to a quantum critical point of ferroelectric transition in which the critical temperature of ferroelectric state is suppressed down to 0 K. However, the understanding of the behaviour of the phase transition in the vicinity of this point remains challenging. Here we study the solid solutions based on the SrTiO3 to approach the pre-critical regions of the phase diagram and study the outcome of the coexistence of quantum fluctuations and thermal motion. It will allow the discovery of the novel phase statements and physical properties, occurring due to competition of quantum and classical regimes. We study the crystal structure and lattice dynamics of quantum paraelectric BaxSr1 xTiO3 solid solutions using X-Ray diffraction, Raman and terahertz-infrared (THz-IR)-spectroscopies in a temperature range 4-300K. The X-Ray diffraction and Raman spectroscopy reveal the cubic-to-tetragonal non-polar structural phase transition at about 100K. At the same time, Raman spectra manifest the presence of polar modes, TO2 and TO4, normally prohibited in paraelectric phase. Emergence of these modes indicates the appearance of the polar nanoregions in a broad temperature range. The modes become more intensive at low temperatures, the temperature dependence of their intensities on cooling reveals the kink-like change of the slope from flat to steep, indicating on activation of polar nanoregions. The transmission THz-IR-spectra show, that squared frequencies of the polar TO1 soft modes, responsible for the ferroelectric transition, follow the Cochran’s behavior at high temperatures. However, at low temperatures, it does not vanish at extrapolated Curie temperature but saturates, demonstrating the plateau feature below 20K. This behavior, coherent with the known saturation of the dielectric constant, indicates that transition to ferroelectric phase in BaxSr1-xTiO3 is suppressed by quantum fluctuations and system stays in the quantum paraelectric state at very low temperatures. Using the concentration of Pb in PbxSr1-xTiO3 solid solutions as a tuning parameter and applying the combination of Raman and dielectric spectroscopy methods we approach the quantum critical point in PbxSr1-xTiO3 and study the interplay of classical and quantum phenomena in the region of criticality. We obtain the critical temperature of PbxSr1-xTiO3 and the evolution of the temperature-dependent dynamical properties of the system as a function of x to reveal the mechanism of the transition. We show that the ferroelectric transition occurs gradually through the emergence of the polar nanoregions. We study also the cubic-to-tetragonal structural transition, occurring at higher temperatures, and show that its properties are almost concentration-independent and not affected by the quantum criticality. We also study the dielectric properties for the PbxSr1-xTiO3 in detail and show that in the composition with x = 0.005, a smooth plateau is observed in the temperature dependence of the dielectric permittivity. The height of the plateau depends on the Pb concentration and gradually decreases when x increases. This plateau arises due to random quantum fluctuations of the ions which dominate at low temperatures and concentrations. At higher x, the thermal fluctuations become more pronounced; therefore the plateau disappears
Braun, Hubertus [Verfasser]. "Titanate-based paraelectric glass-ceramics for applications in GHz electronics / Hubertus Braun." Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1071503707/34.
Full textPlonka, Rafael. "Impact of the interface on the paraelectric-to-ferroelectric phase transition in epitaxial BaSrTiO_tn3 thin film capacitors." Jülich Forschungszentrum, Zentralbibliothek, 2007. http://d-nb.info/1000127257/34.
Full textAtamalian, Aleksandra. "Puslaidininkinių – feroelektrinių kristalų lūžio rodiklio ir dvejopo lūžio tyrimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110627_113402-11889.
Full textIn Solid State Science Laboratory we measured birefringence on temperature of grown SbSI, TlInS2 and TGS crystals. The measurement of birefringence helps to evaluate the ferroelectric phase transition of TGS, TlInS2 ir SbSI crystals. Refractive indices of SbSI crystal in paraelectric and ferroelectric phase we investigated by DFT method with program Wien2k. The theoretical results of birefringence were compared with experimental results.
Xiao, Bo. "GROWTH, CHARACTERIZATION AND APPLICATIONS OF MULTIFUNCTIONAL FERROELECTRIC THIN FILMS." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1936.
Full textSidoruk, Jakob. "Konkurrierende ferroische Ordnungsparameter in SrTiO3: Domänenverhalten und Schaltverhalten." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://hdl.handle.net/11858/00-1735-0000-0022-5F60-D.
Full textPlonka, Rafael [Verfasser]. "Impact of the interface on the paraelectric-to-ferroelectric phase transition in epitaxial BaSrTiO_tn3 thin film capacitors / Rafael Plonka. [Forschungszentrum Jülich in der Helmholtz-Gemeinschaft, Institut für Festkörperforschung (IFF), Elektronische Materialien (IFF-6)]." Jülich : Forschungszentrum, Zentralbibliothek, 2007. http://d-nb.info/1000127257/34.
Full textBaylis, Samuel Andrew. "Tunable patch antenna using semiconductor and nano-scale Barium Strontium Titanate varactors." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0001970.
Full textBooks on the topic "Paraelectrics"
From Quantum Paraelectric/Ferroelectric Perovskite Oxides to High Temperature Superconducting Copper Oxides -- In Honor of Professor K.A. Müller for His Lifework. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-0475-9.
Full textBook chapters on the topic "Paraelectrics"
Dolin, S. P., A. A. Levin, T. Yu Mikhailova, and M. V. Solin. "Quantum-Chemical Approach to Zero-Dimensional Antiferroelectrics and Quantum Paraelectrics of the K3H(SO4)2 Family." In Vibronic Interactions: Jahn-Teller Effect in Crystals and Molecules, 263–68. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0985-0_30.
Full textVillars, P., K. Cenzual, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk, and R. Zaremba. "KPb2Nb5O15 paraelectric." In Landolt-Börnstein - Group III Condensed Matter, 526. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22847-6_441.
Full textVillars, P., K. Cenzual, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, I. Savysyuk, and R. Zaremba. "Pb2KTa5O15 paraelectric." In Landolt-Börnstein - Group III Condensed Matter, 531. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22847-6_446.
Full textRigamonti, Attilio, and Pietro Carretta. "Dielectrics and Paraelectric-Ferroelectric Phase Transitions." In Structure of Matter, 477–503. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17897-4_16.
Full textGeru, Ion, and Dieter Suter. "Exciton Paramagnetic, Paraelectric, and Zero-Field Resonances." In Resonance Effects of Excitons and Electrons, 27–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35807-4_2.
Full textSamara, G. A. "From Ferroelectric to Quantum Paraelectric: KTa1-xNbxO3 (KTN), a Model System." In Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials, 179–88. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0520-3_14.
Full textFang, Huazhi, Yi Wang, Shun-Li Shang, and Zi-Kui Liu. "Nature of Ferroelectric-Paraelectric Phase Transition and Origin of Negative Thermal Expansion in PbTiO3." In Zentropy, 627–43. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781032692401-20.
Full textTkach, Alexander, and Paula M. Vilarinho. "Nonstoichiometry Role on the Properties of Quantum-Paraelectric Ceramics." In Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89499.
Full text"Dipolar and Quantum Paraelectric Behavior." In Properties of Perovskites and Other Oxides, 467–501. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814293365_0008.
Full text"Ferroelectric-paraelectric Phase Transition Thermodynamic Modeling." In Integration of Ferroelectric and Piezoelectric Thin Films, 49–65. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118616635.ch3.
Full textConference papers on the topic "Paraelectrics"
Ulrich, Anja, Kamal Brahim, Andries Boelen, Bart Kuyken, and Christian Haffner. "Quantum paraelectric parametric amplifiers." In Quantum 2.0, QTh2C.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2c.6.
Full textArago, C., M. I. Marques, C. L. Wang, and J. A. Gonzalo. "Quantum paraelectrics revisited under effective field approach." In 2009 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2009. http://dx.doi.org/10.1109/isaf.2009.5307524.
Full textHoffmann, Matthias C. "THz driven soft mode dynamics in quantum paraelectrics." In Terahertz Emitters, Receivers, and Applications XIV, edited by Manijeh Razeghi and Mona Jarrahi. SPIE, 2023. http://dx.doi.org/10.1117/12.2681933.
Full textGrimalsky, V., S. Koshevaya, J. Escobedo-Alatorre, and E. Jatirian-Foltides. "Formation of short terahertz electromagnetic pulses in nonlinear paraelectrics." In 2017 IEEE 30th International Conference on Microelectronics (MIEL). IEEE, 2017. http://dx.doi.org/10.1109/miel.2017.8190076.
Full textMatsushita, E., and S. Segawa. "Note on Oxygen Isotope Effect and Ferroelectric Transition in Quantum Paraelectrics." In 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. IEEE, 2007. http://dx.doi.org/10.1109/isaf.2007.4393235.
Full textGrimalsky, V., S. Koshevaya, J. Esobedo-Alatorre, Y. Gomez-Badillo, and Yu Rapoport. "Modulation Instability of Terahertz Beams in Paraelectrics in a Wide Temperature Range." In 2020 IEEE Ukrainian Microwave Week (UkrMW). IEEE, 2020. http://dx.doi.org/10.1109/ukrmw49653.2020.9252663.
Full textGrimalsky, V., S. Koshevaya, J. Escobedo-Alatorre, and Yu Rapoport. "Frequency multiplication of terahertz radiation in waveguides on the base of paraelectrics." In 2016 IEEE Radar Methods and Systems Workshop (RMSW). IEEE, 2016. http://dx.doi.org/10.1109/rmsw.2016.7778563.
Full textGrimalsky, V., S. Koshevaya, J. Escobedo-A, and Y. Gomez-B. "Generation of Harmonics of Terahertz Radiation in Paraelectrics in a Wide Temperature Range." In 2019 IEEE 31st International Conference on Microelectronics (MIEL). IEEE, 2019. http://dx.doi.org/10.1109/miel.2019.8889649.
Full textVenturini, E. L. "Pressure As A Probe Of The Physics Of Compositionally-Substituted Quantum Paraelectrics: SrTiO3." In Fundamental Physics of Ferroelectrics 2003. AIP, 2003. http://dx.doi.org/10.1063/1.1609931.
Full textSin'ko, D. V., and Boris V. Anikeev. "Photorefractive effect in paraelectric DKDP." In Nonlinear Optics of Liquid and Photorefractive Crystals, edited by Gertruda V. Klimusheva and Andrey G. Iljin. SPIE, 1996. http://dx.doi.org/10.1117/12.239225.
Full textReports on the topic "Paraelectrics"
Miller, Virginia, and Frank Crowne. Landau-Devonshire Parameters for the Tunable Paraelectric Material BaTi.9(Sc,Ta).05O3. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada478947.
Full text