Academic literature on the topic 'Parabolae'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Parabolae.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Parabolae"
Andronov, I. L. "Some new methods of time series analysis: Applications to the AGB stars." Symposium - International Astronomical Union 180 (1997): 341. http://dx.doi.org/10.1017/s0074180900131183.
Full textBelserene, Emilia Pisani. "Moving Through The Instability Strip." International Astronomical Union Colloquium 139 (1993): 419. http://dx.doi.org/10.1017/s025292110011810x.
Full textCova, Ramón J. "A Bose description of the 1-D para-Bose and para-Fermi oscillators." Canadian Journal of Physics 87, no. 6 (June 2009): 619–24. http://dx.doi.org/10.1139/p09-034.
Full textAcharya, Aviseka, Sonja Brungs, Yannick Lichterfeld, Jürgen Hescheler, Ruth Hemmersbach, Helene Boeuf, and Agapios Sachinidis. "Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes." Cells 8, no. 4 (April 14, 2019): 352. http://dx.doi.org/10.3390/cells8040352.
Full textFoster, Douglas J., and Charles C. Mosher. "Suppression of multiple reflections using the Radon transform." GEOPHYSICS 57, no. 3 (March 1992): 386–95. http://dx.doi.org/10.1190/1.1443253.
Full textSwadener, J. G., and G. M. Pharr. "Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution." Philosophical Magazine A 81, no. 2 (February 2001): 447–66. http://dx.doi.org/10.1080/01418610108214314.
Full textG. Swadener, G. M. Pharr, J. "Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution." Philosophical Magazine A 81, no. 2 (February 1, 2001): 447–66. http://dx.doi.org/10.1080/014186101300012309.
Full textAndronov, I. L. "Method of running parabolae: Spectral and statistical properties of the smoothing function." Astronomy and Astrophysics Supplement Series 125, no. 1 (October 1997): 207–17. http://dx.doi.org/10.1051/aas:1997217.
Full textGhedina, A., and R. Ragazzoni. "Optimum configurations for two off-axis parabolae used to make an optical relay." Journal of Modern Optics 44, no. 7 (July 1997): 1259–67. http://dx.doi.org/10.1080/09500349708230735.
Full textAntón, Beatriz. "La asociación simbólica entre la salamandra, Cleón y los pescadores de anguilas en los Emblemata (1596) de Denis Lebey." Veleia, no. 38 (January 27, 2021): 251–68. http://dx.doi.org/10.1387/veleia.21655.
Full textDissertations / Theses on the topic "Parabolae"
REIMER, ANDREW P. "Le je(u) de La mémoire tatouée ." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1132344191.
Full textHertz, Erik. "Parabolic Synthesis." Licentiate thesis, Department of Electrical and Information Technology Faculty of Engineering, LTH, Lund University, Lund, Sweden, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-22338.
Full textSilk, Melissa. "The Possibilities of the Parabola." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13160.
Full textHeyer, Claudius. "Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomials." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20137.
Full textThe first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$. In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
Gantz, Christian. "On parabolic bundles." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320221.
Full textBoger, D. (Dorin). "Parabolic Springer resolution." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104605.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-75).
Let G be a reductive group over a field k = k. Let P be a parabolic subgroup. We construct a functor Groupoid ... is a connected space, which induces an action of generalizing a classical result. It is also a part of a study of natural equivalences between ... for P, Q associated parabolic subgroups.
by D. Boger.
Ph. D.
Smorlesi, Anna Sofia <1995>. "Aleksandra Ekster: una parabola del colore." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/20164.
Full textTaher, Chadi. "Calculating the parabolic chern character of a locally abelain parabolic bundle : the chern invariants for parabolic bundles at multiple points." Nice, 2011. http://www.theses.fr/2011NICE4013.
Full textSchaller, Christian James 1969. "Venus ejecta parabolas: Comparing theory with observation." Thesis, The University of Arizona, 1998. http://hdl.handle.net/10150/278652.
Full textSternesjö, Malin. "Parabolen, biblioteket och spelet." Thesis, Konstfack, Institutionen för Konst (K), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:konstfack:diva-6106.
Full textBooks on the topic "Parabolae"
Martuszewska, Anna. Pozytywistyczne parabole. Gdańsk: Wydawn. Uniwersytetu Gdańskiego, 1997.
Find full textBook chapters on the topic "Parabolae"
Gardner, Martin. "Parabolas." In The Last Recreations, 285–301. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-0-387-30389-5_18.
Full textGrabe, Michael. "Parabolas." In Measurement Uncertainties in Science and Technology, 265–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04888-8_17.
Full textPisani, Edgard. "Parabole." In Une politique mondiale pour Nourrir le monde, 9–10. Paris: Springer Paris, 2007. http://dx.doi.org/10.1007/978-2-287-71811-3_2.
Full textBondarenko, Nataliya. "Emissivity Parabola." In Encyclopedia of Planetary Landforms, 1–5. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9213-9_448-1.
Full textGhosh, Debdas, and Debjani Chakraborty. "Fuzzy Parabola." In An Introduction to Analytical Fuzzy Plane Geometry, 145–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15722-7_6.
Full textBondarenko, Nataliya. "Emissivity Parabola." In Encyclopedia of Planetary Landforms, 700–703. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-3134-3_448.
Full textAbels, Helmut. "Double Obstacle Limit for a Navier-Stokes/Cahn-Hilliard System." In Parabolic Problems, 1–20. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_1.
Full textEscher, Joachim, Martin Kohlmann, and Boris Kolev. "Geometric Aspects of the Periodic μ-Degasperis-Procesi Equation." In Parabolic Problems, 193–209. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_10.
Full textFarwig, R., H. Kozono, and H. Sohr. "Global Leray-Hopf Weak Solutions of the Navier-Stokes Equations with Nonzero Time-dependent Boundary Values." In Parabolic Problems, 211–32. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_11.
Full textFattorini, H. O. "Time and Norm Optimality of Weakly Singular Controls." In Parabolic Problems, 233–49. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0075-4_12.
Full textConference papers on the topic "Parabolae"
Lebedev, Vitaly B., and S. V. Saulevich. "Thomson parabolic spectrograph with microchannel plate framing camera as register of ionic parabolae." In 19th Intl Congress on High-Speed Photography and Photonics. SPIE, 1991. http://dx.doi.org/10.1117/12.24027.
Full textLi, Lifang, Andres Kecskemethy, A. F. M. Arif, and Steven Dubowsky. "A Novel Approach for Designing Parabolic Mirrors Using Optimized Compliant Bands." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47096.
Full textShih, Hui-Ru, Horn-Sen Tzou, and Wei Zheng. "Photonic Control of a Free-Floating Parabolic Membrane Shell." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41141.
Full textRadzevich, Anna Vladimirovna, Margarita Anatolievna Chizhik, and Viktor Yurievich Yurkov. "Geometric Modeling of Parabolic Power Particle Streams." In 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-852-858.
Full textWolf, Jörg. "A direct proof of the Caffarelli-Kohn-Nirenberg theorem." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-34.
Full textWrzosek, Dariusz. "Chemotaxis models with a threshold cell density." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-35.
Full textRaczyński, Andrzej. "Existence of solutions for a model of self-gravitating particles with external potential." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-18.
Full textNikolopoulos, C. V., and D. E. Tzanetis. "Blow-up time estimates for a non-local reactive-convective problem modelling sterilization of food." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-16.
Full textOrpel, Aleksandra. "On the existence of multiple positive solutions for a certain class of elliptic problems." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-17.
Full textArkeryd, Leif. "On stationary kinetic systems of Boltzmann type and their fluid limits." In Nonlocal Elliptic and Parabolic Problems. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc66-0-1.
Full textReports on the topic "Parabolae"
Author, Not Given. Solar parabolic trough. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/1216669.
Full textAnthony Messina, Anthony Messina. The Parabolic Solar Trough. Experiment, September 2012. http://dx.doi.org/10.18258/0050.
Full textSCIENCE AND TECHNOLOGY CORP HAMPTON VA. Analytic Parabolic Equation Solutions. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada218588.
Full textHeirich, Alan, and Stephen Taylor. A Parabolic Load Balancing Method. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada442993.
Full textKinoshita, G. Shenandoah parabolic dish solar collector. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/5914387.
Full textStine, W. B. Progress in parabolic dish technology. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/6110524.
Full textHeirich, Alan, and Stephen Taylor. A Parabolic Theory of Load Balance. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada443334.
Full textHolmes, Eleanor, Laurie Gainey, and John Hanna. Upgrades to the Parabolic Equation Model. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada211899.
Full textBarrios, Amalia E. A Terrain Parabolic Equation Model (TPEM). Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada264672.
Full textPrice, H., and D. Kearney. Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/3771.
Full text