To see the other types of publications on this topic, follow the link: Paleodrainage analysis.

Journal articles on the topic 'Paleodrainage analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 journal articles for your research on the topic 'Paleodrainage analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rubin, Hillel, and Robert W. Buddemeier. "Analysis of aquifer mineralization by paleodrainage channels." Journal of Hydrology 277, no. 3-4 (June 2003): 280–304. http://dx.doi.org/10.1016/s0022-1694(03)00123-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hayakawa, Ericson H., and Dilce F. Rossetti. "Late quaternary dynamics in the Madeira river basin, southern Amazonia (Brazil), as revealed by paleomorphological analysis." Anais da Academia Brasileira de Ciências 87, no. 1 (March 2015): 29–49. http://dx.doi.org/10.1590/0001-3765201520130506.

Full text
Abstract:
Ancient drainage systems are being increasingly documented in the Amazon basin and their characterization is crucial for reconstructing fluvial evolution in this area. Fluvial morphologies, including elongate belts, are well preserved along the Madeira River. Digital Elevation Model from the Shuttle Radar Topography Mission favored the detection of these features even where they are covered by dense rainforest. These paleomorphologies are attributed to the shifting position of past tributaries of the Madeira River through avulsions. These radial paleodrainage networks produced fan-shaped morphologies that resemble distributary megafans. Distinguishing avulsive tributary systems from distributary megafans in the sedimentary record is challenging. Madeira´s paleodrainage reveals the superposition of tributary channels formed by multiple avulsions within a given time period, rather than downstream bifurcation of coexisting channels. Channel avulsion in this Amazonian area during the late Quaternary is related to tectonics due to features as: (i) straight lineaments coincident with fault directions; (ii) northeastward tilting of the terrain with Quaternary strata; and (iii) several drainage anomalies, including frequent orthogonal drainage inflections. These characteristics altogether lead to propose that the radial paleodrainage present at the Madeira River margin results from successive avulsions of tributary channels over time due to tectonics.
APA, Harvard, Vancouver, ISO, and other styles
3

PETROVIĆ, Aleksandar S., Jelena ĆALIĆ, and Vojkan GAJOVIĆ. "Paleodrainage network reconstruction on Miroč Mt. (Eastern Serbia)." Revista de Geomorfologie 18, no. 1 (November 14, 2016): 69–76. http://dx.doi.org/10.21094/rg.2016.119.

Full text
Abstract:
The paper represents a geomorphological study related to the transitional forms between fluvial and karstic process. Karst areas of eastern Serbia are distributed in a large number of relatively isolated segments, and therefore abound in contact karst features. In many cases, central parts of karst areas, away from the contacts, host a variety of relict and dry valleys. Morphological analysis of these valleys may reveal the remnants of paleodrainage networks and help to reconstruct the morphological evolution of the area. This is a case study of the karst of Miroč Mt. in north-eastern Serbia, where geomorphological analysis and relief visualization using the Geomorphological Information System enabled the detection of paleodrainage directions and patterns in the vicinity of the Danube Gorge. Three paleo-river systems were detected, the largest of which is that of the Suva Reka (51 km2).
APA, Harvard, Vancouver, ISO, and other styles
4

Pérez-Consuegra, Nicolás, Mauricio Parra, Carlos Jaramillo, Daniele Silvestro, Sebastián Echeverri, Camilo Montes, José María Jaramillo, and Jaime Escobar. "Provenance analysis of the Pliocene Ware Formation in the Guajira Peninsula, northern Colombia: Paleodrainage implications." Journal of South American Earth Sciences 81 (January 2018): 66–77. http://dx.doi.org/10.1016/j.jsames.2017.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nehyba, Slavomír, Jiří Otava, Pavla Tomanová Petrová, and Adéla Gazdová. "The foreland state at the onset of the flexurally induced transgression: data from provenance analysis at the peripheral Carpathian Foredeep (Czech Republic)." Geologica Carpathica 70, no. 3 (June 1, 2019): 241–60. http://dx.doi.org/10.2478/geoca-2019-0014.

Full text
Abstract:
Abstract The Žerotice Formation recognised in a confined area NE–SE of Znojmo represents a basal member of the sedimentary succession of the southwestern margin of the Carpathian Foredeep in Moravia (Czech Republic). Two facies associations were recognised within the formation. The first one mantles the pre-Neogene basement with an irregular unconformity, reflects arid climatic conditions and deposition of episodic shallow, high-energy stream flows and/or mass flows (alluvial to fluvial deposits). The second facies association is interpreted as lagoonal to distal flood plain deposits. The barren unfossiliferous deposits of the Žerotice Formation are covered by nearshore marine Eggenburgian deposits. The boundary between these deposits represents a sequence boundary (i.e. the basal forebulge unconformity). Detailed provenance studies of successive beds below and above this sequence boundary showed differences in the source area and paleodrainage. Both the local primary crystalline rocks (Moravian and Moldanubian Unit, Thaya Batholith) and older sedimentary cover (especially Permo–Carboniferous sedimentary rocks) form the source of the Žerotice Formation. All these geological units are located only a few km away from the preserved areal extent of the deposits of the Žerotice Formation (short transport and a local source). The source areas of the overlying marine Eggenburgian beds are located far more to the W and NW in the Moldanubian and Moravian Units (longer transport, extended source area). Local confined preservation of the Žerotice Formation is preliminarily explained as connected with a tectonically predisposed paleovalley.
APA, Harvard, Vancouver, ISO, and other styles
6

Fambrini, Gelson Luís, Virgínio Henrique M. L. Neumann, José Acioli B. Menezes-Filho, Wellington F. Da Silva-Filho, and Édison Vicente De Oliveira. "Facies architecture of the fluvial Missão Velha Formation (Late Jurassic–Early Cretaceous), Araripe Basin, Northeast Brazil: paleogeographic and tectonic implications." Acta Geologica Polonica 67, no. 4 (December 1, 2017): 515–45. http://dx.doi.org/10.1515/agp-2017-0029.

Full text
Abstract:
Abstract Sedimentological analysis of the Missão Velha Formation (Araripe Basin, northeast Brazil) is the aim of this paper through detailed facies analysis, architectural elements, depositional systems and paleocurrent data. The main facies recognized were: (i) coarse-grained conglomeratic sandstones, locally pebbly conglomerates, with abundant silicified fossil trunks and several large-to-medium trough cross-stratifications and predominantly lenticular geometry; (ii) lenticular coarse-to-medium sandstones with some granules, abundant silicified fossil wood, and large-to-medium trough cross-stratifications, cut-and fill features and mud drapes on the foresets of cross-strata, (iii) poorly sorted medium-grained sandstones with sparse pebbles and with horizontal stratification, (iv) fine to very fine silty sandstones, laminated, interlayered with (v) decimetric muddy layers with horizontal lamination and climbing-ripple cross-lamination. Nine architectural elements were recognized: CH: Channels, GB: Gravel bars and bed forms, SB: Sand bars and bedforms, SB (p): sand bedform with planar cross-stratification, OF: Overbank flow, DA: Downstream-accretion macroforms, LS: Laminated sandsheet, LA: Lateral-accretion macroforms and FF: Floodplain fines. The lithofacies types and facies associations were interpreted as having been generated by alluvial systems characterized by (i) high energy perennial braided river systems and (ii) ephemeral river systems. Aeolian sand dunes and sand sheets generated by the reworking of braided alluvial deposits can also occur. The paleocurrent measurements show a main dispersion pattern to S, SE and SW, and another to NE/E. These features imply a paleodrainage flowing into the basins of the Recôncavo-Tucano-Jatobá.
APA, Harvard, Vancouver, ISO, and other styles
7

Beranek, Luke P., Victoria Pease, Robert A. Scott, and Tonny B. Thomsen. "Detrital zircon geochronology of Ediacaran to Cambrian deep-water strata of the Franklinian basin, northern Ellesmere Island, Nunavut: implications for regional stratigraphic correlations." Canadian Journal of Earth Sciences 50, no. 10 (October 2013): 1007–18. http://dx.doi.org/10.1139/cjes-2013-0026.

Full text
Abstract:
Enigmatic successions of deep-water strata referred to as the Nesmith beds and Grant Land Formation comprise the exposed base of the Franklinian passive margin sequence in northern Ellesmere Island, Nunavut. To test stratigraphic correlations with Ediacaran to Cambrian shallow-water strata of the Franklinian platform that are inferred by regional basin models, >500 detrital zircons from the Nesmith beds and Grant Land Formation were analyzed for sediment provenance analysis using laser ablation (LA–ICP–MS) and ion-microprobe (SIMS) methods. Samples of the Nesmith beds and Grant Land Formation are characterized by 1000–1300, 1600–2000, and 2500–2800 Ma detrital zircon age distributions and indicate provenance from rock assemblages of the Laurentian craton. In combination with regional stratigraphic constraints, these data support an Ediacaran to Cambrian paleodrainage model that features the Nesmith beds and Grant Land Formation as the offshore marine parts of a north- to northeast-directed depositional network. Proposed stratigraphic correlations between the Nesmith beds and Ediacaran platformal units of northern Greenland are consistent with the new detrital zircon results. Cambrian stratigraphic correlations within northern Ellesmere Island are permissive, but require further investigation because the Grant Land Formation provenance signatures agree with a third-order sedimentary system that has been homogenized by longshore current or gravity-flow processes, whereas coeval shallow-water strata yield a restricted range of detrital zircon ages and imply sources from local drainage areas or underlying rock units. The detrital zircon signatures of the Franklinian passive margin resemble those for the Cordilleran and Appalachian passive margins of Laurentia, which demonstrates the widespread recycling of North American rock assemblages after late Neoproterozoic continental rifting and breakup of supercontinent Rodinia.
APA, Harvard, Vancouver, ISO, and other styles
8

Liang, Wendong, Eduardo Garzanti, Sergio Andò, Paolo Gentile, and Alberto Resentini. "Multimineral Fingerprinting of Transhimalayan and Himalayan Sources of Indus-Derived Thal Desert Sand (Central Pakistan)." Minerals 9, no. 8 (July 26, 2019): 457. http://dx.doi.org/10.3390/min9080457.

Full text
Abstract:
As a Quaternary repository of wind-reworked Indus River sand at the entry point in the Himalayan foreland basin, the Thal Desert in northern Pakistan stores mineralogical information useful to trace erosion patterns across the western Himalayan syntaxis and the adjacent orogenic segments that fed detritus into the Indus delta and huge deep-sea fan throughout the Neogene. Provenance analysis of Thal Desert sand was carried out by applying optical and semi-automated Raman spectroscopy on heavy-mineral suites of four eolian and 11 fluvial sand samples collected in selected tributaries draining one specific tectonic domain each in the upper Indus catchment. In each sample, the different types of amphibole, garnet, epidote and pyroxene grains—the four dominant heavy-mineral species in orogenic sediment worldwide—were characterized by SEM-EDS spectroscopy. The chemical composition of 4249 grains was thus determined. Heavy-mineral concentration, the relative proportion of heavy-mineral species, and their minerochemical fingerprints indicate that the Kohistan arc has played the principal role as a source, especially of pyroxene and epidote. Within the western Himalayan syntaxis undergoing rapid exhumation, the Southern Karakorum belt drained by the Hispar River and the Nanga Parbat massif were revealed as important sources of garnet, amphibole, and possibly epidote. Sediment supply from the Greater Himalaya, Lesser Himalaya, and Subhimalaya is dominant only for Punjab tributaries that join the Indus River downstream and do not contribute sand to the Thal Desert. The detailed compositional fingerprint of Thal Desert sand, if contrasted with that of lower course tributaries exclusively draining the Himalaya, provides a semi-actualistic key to be used, in conjunction with complementary provenance datasets and geological information, to reconstruct changes in paleodrainage and unravel the relationship between climatic and tectonic forces that controlled the erosional evolution of the western Himalayan-Karakorum orogen in space and time.
APA, Harvard, Vancouver, ISO, and other styles
9

Scott, Matthew, Paul J. Sylvester, and Derek H. C. Wilton. "A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada." Minerals 11, no. 3 (March 4, 2021): 265. http://dx.doi.org/10.3390/min11030265.

Full text
Abstract:
A number of hydrocarbon discoveries have been made recently in the Flemish Pass Basin and Central Ridge, offshore Newfoundland, Canada, but there is only limited geological information available. The primary goal of this study was to determine the sedimentary provenance and paleodrainage patterns of mudstones and sandstones from the Upper Jurassic Rankin Formation, including the Upper and Lower Kimmeridgian Source Rock (organic-rich shale) members and Upper and Lower Tempest Sandstone Member reservoirs, in this area. A combination of heavy mineral analysis, whole-rock geochemistry and detrital zircon U-Pb geochronology was determined from cores and cuttings from four offshore wells in an attempt to decipher provenance. Detrital heavy minerals in 20 cuttings samples from the studied geologic units are dominated by either rutile + zircon + apatite ± chromite or rutile + apatite + tourmaline, with minor zircon, indicating diverse source lithologies. Whole rock Zr-Th-Sc trends suggest significant zircon recycling in both mudstones and sandstones. Detrital zircon U-Pb ages were determined in two mudstone and four sandstone samples from the four wells. Five major U-Pb age groups of grains were found: A Late Jurassic group that represents an unknown source of syn-sedimentary magmatism, a Permian–Carboniferous age group which is interpreted to be derived from Iberia, a Cambrian–Devonian group derived from the Central Mobile Belt of the Newfoundland–Ireland conjugate margin, and two older age groups (late Neoproterozoic and >1 Ga) linked to Avalonia. The Iberian detritus is abundant in the Central Ridge and southern Flemish Pass region and units containing sizable populations of these grains are interpreted to be derived from the east whereas units lacking this population are interpreted to be sourced from the northeast and possibly also the west. The Upper Tempest Sandstone contains Mesozoic zircons, which constrain the depositional age of this unit to be no older than Late Tithonian.
APA, Harvard, Vancouver, ISO, and other styles
10

Allred, Isaac, and Mike Blum. "Demarcation of Early Pennsylvanian paleovalleys in depozones of the Appalachian foreland-basin system based on detrital-zircon U-Pb and Hf analysis." Journal of Sedimentary Research 92, no. 10 (October 5, 2022): 919–33. http://dx.doi.org/10.2110/jsr.2021.128.

Full text
Abstract:
Abstract Detrital-zircon (DZ) U-Pb data show that Appalachian-affiliated sediment was transported to western Laurentia by the Carboniferous, yet additional DZ U-Pb data from the eastern United States suggest that sediment-routing systems were oriented south toward the Ouachita deepwater sink. Within this context, this study presents DZ U-Pb ages from the Lower Pennsylvanian Caseyville Formation of Illinois, and U-Pb ages and εHf values from the coeval Pottsville Formation of Alabama as well as sandstone petrographic data from the Caseyville Formation, the Pottsville Formation, and the Jackfork Group of the Ouachita Basin to document provenance, delineate drainage divides in the Appalachian foreland-basin system, and comment on the unlikelihood of transcontinental sediment routing from the eastern United States to western United States at this time. Two DZ U-Pb age distributions from quartz arenite sandstones of the Caseyville Formation display prominent ca. 1250–950 Ma, 1550–1300 Ma, 1800–1600 Ma, and 3500–3000 Ma ages, consistent with ultimate derivation from Grenville, Midcontinent granite–rhyolite, Yavapai–Mazatzal, and Superior provinces, as well as minor contributions from ca. 500–400 Ma and 2000–1800 Ma grains. Two DZ U-Pb age distributions from sublitharenite sandstones of the Pottsville Formation display prominent ca. 500–400 Ma, 1250–950 Ma, 1550–1300 Ma, and 1800–1600 Ma ages, consistent with ultimate derivation from Appalachian, Grenville, Midcontinent granite–rhyolite, and Yavapai–Mazatzal provinces, as well as minor contributions from ca. 2000–1800 Ma and 3500–3000 Ma grains. The Pottsville Formation samples demonstrate a greater percentage of Appalachian and Grenville ages relative to the Caseyville Formation samples, whereas the Caseyville Formation samples have elevated Yavapai–Mazatzal and Superior percentages relative to the Pottsville. We interpret these differences to suggest parallel fluvial systems in the foredeep and back-bulge depozones of the Appalachian foreland-basin system. Like DZ studies of modern deep-sea fans that demonstrate an affinity to feeder fluvial systems, this study demonstrates fidelity between endmember segments of ancient fluvial-to-deepwater systems. Multidimensional scaling (MDS) analysis shows that DZ samples from the Pottsville and Caseyville formations cluster with deepwater Jackfork Group samples, and we infer a source-to-sink relationship from these two distinct source areas to the Ouachita terminal sink. One example of large-scale inclined strata thickness from the Caseyville Formation also suggests a drainage basin area of > 105 km2. Contextualized with these observations, we suggest that the foredeep and backbulge depozones of the Appalachian foreland-basin system steered distinct Early Pennsylvanian rivers across emergent continental shelves during periods of low sea-level, which discharged to distinct slope canyons and sourced > 100-km-long deep-sea fans. Clearly circumscribed, southward- or southwestward-oriented paleodrainage areas provide a template of the Appalachian foreland-basin system, and as such the central and southern Appalachians were an unlikely source for the Appalachian signature observed in the western United States at this time.
APA, Harvard, Vancouver, ISO, and other styles
11

Frederick, Bruce C., Mike D. Blum, John W. Snedden, and Richard H. Fillon. "Early Mesozoic synrift Eagle Mills Formation and coeval siliciclastic sources, sinks, and sediment routing, northern Gulf of Mexico basin." GSA Bulletin 132, no. 11-12 (April 24, 2020): 2631–50. http://dx.doi.org/10.1130/b35493.1.

Full text
Abstract:
Abstract The sedimentary architecture and provenance of the early Mesozoic incipient northern Gulf of Mexico basin remains controversial due to both lack of outcrop exposure and sample scarcity across the southern United States with subcrop depths approaching 6 km. The Eagle Mills Formation and coeval deposition across the northern Gulf of Mexico provides both a stratigraphic foundation for some ∼15-km-thick overlying Mesozoic and Cenozoic deposits, and a coeval pre-salt equivalent for southern synrift deposits, in one of the most economically significant hydrocarbon basins in the world. This study presents more than 3200 new detrital zircon U-Pb analyses from sixteen Late Triassic pre-salt, siliciclastic, subcrop well samples, and combines over 14,000 linear kilometers of 2-D multi-channel seismic reflection data, 1511 geophysical well logs, and biostratigraphic data from 2478 wells to construct basin-scale pre-salt isochore and structure maps spanning the northern Gulf of Mexico margin from Florida to the USA-Mexican border. The data show that incipient Gulf of Mexico paleodrainage pathways held individual distinctions between basement sources and tectonic controls in three primary regions across the northern Gulf of Mexico: (1) The western Gulf of Mexico paleodrainage extended from the Central Texas uplift highlands to the submarine Potosi Fan on the western margin of Laurentia with local tributary sources from the East Mexico Arc, Yucatán/Maya, and Marathon-Ouachita provinces as evidenced by inverse Monte Carlo unmixing of peri-Gondwanan (ca. 700–500 Ma), Appalachian/Ouachita (500–280 Ma), Grenville (1250–950 Ma), and Mid-Continent/Granite-Rhyolite Province (1500–1300 Ma) detrital zircon ages. Isochore and associated geophysical well and seismic data suggest that by Early Jurassic time this depocenter had shifted into the present-day western Gulf of Mexico as East Mexico Arc development continued. (2) Southerly drainage in the north-central Gulf of Mexico region bifurcated around the Sabine and Monroe uplifted terranes with southwestern flow characterized by peri-Gondwanan detrital zircon ages from late Paleozoic accreted basement or discrete flexural successor basins, and southeastern fluvial networks distinguished by traditional North American basement province sources including Grenville, Mid-Continent, and Yavapai-Mazatzal. (3) Eastern Gulf of Mexico regional paleodrainage, with regional southern flow dictated by the brittle extensional tectonics of the South Georgia Rift as well as the regional southern flexure of the South Florida Basin, resulted in almost all pre-salt detrital zircon siliciclastic ages from this region to be dominated by local Gondwanan/peri-Gondwanan aged sources including the proximal Suwannee terrane and Osceola Granite complex. These regional, synrift sediment provenance models provide the first critical allochthonous evidence of Late Triassic–Early Jurassic paleodrainage stemming from the Appalachian-Ouachita hinterlands into the incipient northern Gulf of Mexico basin with critical implications for pre-salt hydrocarbon exploration and carbon sequestration reservoir potential.
APA, Harvard, Vancouver, ISO, and other styles
12

Cather, Steven M., Matthew T. Heizler, and Thomas E. Williamson. "Laramide fluvial evolution of the San Juan Basin, New Mexico and Colorado: Paleocurrent and detrital-sanidine age constraints from the Paleocene Nacimiento and Animas formations." Geosphere 15, no. 5 (August 14, 2019): 1641–64. http://dx.doi.org/10.1130/ges02072.1.

Full text
Abstract:
Abstract Understanding the tectonic and landscape evolution of the Colorado Plateau−southern Rocky Mountains area requires knowledge of the Laramide stratigraphic development of the San Juan Basin. Laramide sediment-transport vectors within the San Juan Basin are relatively well understood, except for those of the Nacimiento and Animas formations. Throughout most of the San Juan Basin of northwestern New Mexico and adjacent Colorado, these Paleocene units are mudstone-dominated fluvial successions intercalated between the lowermost Paleocene Kimbeto Member of the Ojo Alamo Sandstone and the basal strata of the lower Eocene San Jose Formation, both sandstone-dominated fluvial deposits. For the Nacimiento and Animas formations, we present a new lithostratigraphy that provides a basis for basin-scale interpretation of the Paleocene fluvial architecture using facies analysis, paleocurrent measurements, and 40Ar/ 39Ar sanidine age data. In contrast to the dominantly southerly or southeasterly paleoflow exhibited by the underlying Kimbeto Member and the overlying San Jose Formation, the Nacimiento and Animas formations exhibit evidence of diverse paleoflow. In the southern and western part of the basin during the Puercan, the lower part of the Nacimiento Formation was deposited by south- or southeast-flowing streams, similar to those of the underlying Kimbeto Member. This pattern of southeasterly paleoflow continued during the Torrejonian in the western part of the basin, within a southeast-prograding distributive fluvial system. By Torrejonian time, a major east-northeast–flowing fluvial system, herein termed the Tsosie paleoriver, had entered the southwestern part of the basin, and a switch to northerly paleoflow had occurred in the southern San Juan Basin. The reversal of paleoslope in the southern part of the San Juan Basin probably resulted from rapid subsidence in the northeast part of the basin during the early Paleocene. Continued Tiffanian-age southeastward progradation of the distributive fluvial system that headed in the western part of the basin pushed the Tsosie paleoriver beyond the present outcrop extent of the basin. In the eastern and northern parts of the San Juan Basin, paleoflow was generally toward the south throughout deposition of the Nacimiento and the Animas formations. An important exception is a newly discovered paleodrainage that exited the northeastern part of the basin, ∼15 km south of Dulce, New Mexico. There, an ∼130-m-thick Paleocene sandstone (herein informally termed the Wirt member of the Animas Formation) records a major east-flowing paleoriver system that aggraded within a broad paleovalley carved deeply into the Upper Cretaceous Lewis Shale. 40Ar/ 39Ar dating of detrital sanidine documents a maximum depositional age of 65.58 ± 0.10 Ma for the Wirt member. The detrital sanidine grains are indistinguishable in age and K/Ca values from sanidines of the Horseshoe ash (65.49 ± 0.06 Ma), which is exposed 10.5 m above the base of the Nacimiento Formation in the southwestern part of the basin. The Wirt member may represent the deposits of the Tsosie paleoriver where it exited eastward from the basin. Our study shows that the evolution of Paleocene fluvial systems in the San Juan Basin was complex and primarily responded to variations in subsidence-related sedimentary accommodation within the basin.
APA, Harvard, Vancouver, ISO, and other styles
13

Aalto, K. R., W. D. Sharp, and P. R. Renne. "40Ar/39Ar dating of detrital micas from Oligocene-Pleistocene sandstones of the Olympic Peninsula, Klamath Mountains, and northern California Coast Ranges: provenance and paleodrainage patterns." Canadian Journal of Earth Sciences 35, no. 7 (July 1, 1998): 735–45. http://dx.doi.org/10.1139/e98-025.

Full text
Abstract:
Sandstones of the Eocene-Miocene Hoh assemblage of the Olympic Peninsula and Late Oligocene - Miocene Weaverville Formation (Klamath Mountains) were studied to determine if the Hoh sandstones could be tectonically transported equivalents of the Weaverville Formation. Distinct Hoh sandstone types exposed between La Push and the Hoh River include (1) highly brecciated and veined, quartz-poor, mica-poor volcaniclastic sandstone preserved in mélange blocks; and (2) relatively unveined and unbrecciated, quartzose micaceous sandstone preserved in mélange blocks and bounding turbidites. 40Ar/39Ar laser heating analyses of single crystals of detrital muscovite grains from quartzose Hoh sandstones yield Late Cretaceous - early Tertiary ages, consistent with contributions to Hoh detritus from the Idaho batholith. Volcaniclastic mélange block sandstones could be derived from older Tertiary volcanic terranes of the northeast Olympic Peninsula, or from Mesozoic accretionary terranes. Analyses of muscovites from the fluviatile Weaverville Formation of the Klamath Mountains, California, yield Pennsylvanian ages with a possible source within the Klamath Central Metamorphic terrane. No provenance link was detected between the Hoh assemblage and Weaverville Formation. Analyses of muscovites from Pliocene and Pleistocene sandstones of the Wildcat Group of the northern California Coast Ranges yield both Cretaceous - early Tertiary and Pennsylvanian ages, suggesting derivation from both local and distant sources. Although an ancestral "Snake River" paleodrainage system to the Klamath Mountains region was shutoff during Weaverville sedimentation, it may have been reestablished in the Late Miocene when Idaho-derived sediments were again transported to northwestern California.
APA, Harvard, Vancouver, ISO, and other styles
14

Monami, Shifat J., Ashraf Uddin, and Willis E. Hames. "Multi-proxy provenance of the lower Pennsylvanian Pottsville sandstone of the northern Appalachian basin in Pennsylvania, U.S.A: Paleodrainage, sources, and detrital history." Journal of Sedimentary Research 92, no. 3 (March 31, 2022): 304–19. http://dx.doi.org/10.2110/jsr.2020.189.

Full text
Abstract:
ABSTRACT The lower Pennsylvanian Pottsville Formation, in the Appalachian foreland basin, constitutes a late Paleozoic clastic wedge formed close to the Appalachian orogenic belt. In this study, we analyzed Pottsville sandstone from the western bituminous and eastern anthracite fields in Pennsylvania to evaluate the detrital history of the sediments. Petrographic modal analyses show that sandstone in the western bituminous field ranges from quartzarenite to sublitharenite, with mean composition of Qt84F1L15; sampled sandstone from the eastern anthracite field is dominated by sublitharenite to litharenite with mean composition of Qt70F2L29. Heavy-mineral assemblages from both fields are dominated by ultrastable minerals (zircon, rutile, and tourmaline), apatite, sphene, spinel, siderite, and abundant opaques. Almost all the studied sandstone samples are garnet-depleted except one from the eastern anthracite field. The chemical composition of chromium- and zinc-rich spinel in samples from both fields might suggest exhumation of an arc terrane and ophiolitic belt with ultramafic igneous rocks. Particularly, the ternary plot of Fe3+–Cr3+–Al3+ end members for the chrome spinels possibly suggest a derivation from an alpine-type peridotite complex. Laser 40Ar/39Ar analyses of detrital muscovite from eastern anthracite fields and western bituminous fields record separate ages, with the former characterized by prominent Middle to Late Ordovician Taconic and Middle Devonian Acadian ages with two discrete modes at 463 and 369 Ma, and the latter dominated by Late Ordovician Taconic, Middle Devonian Acadian, and Late Devonian Neoacadian ages with discrete modes at 445, 397, 360, and 351 Ma. The new data suggest that early Pennsylvanian sedimentation in the Appalachian foreland basin was controlled by southward, southwestward, and westward drainage systems that originated in the Appalachian orogenic belt to the east and northeast.
APA, Harvard, Vancouver, ISO, and other styles
15

Drummond, Justin B. R., T. Kurt Kyser, Robert R. Bowell, Noel P. James, and Daniel Layton-Matthews. "Diagenesis of paleodrainages in Lake Way and Lake Maitland, Western Australia, and the role of authigenic Mg-clays and dolomite in the genesis of channel and playa uranium deposits." Canadian Mineralogist 59, no. 5 (September 1, 2021): 947–84. http://dx.doi.org/10.3749/canmin.2000053.

Full text
Abstract:
ABSTRACT This study integrates mineralogical and hydrogeochemical analysis of channel and playa uranium deposits to characterize aquifer evolution and the physico-chemical mechanisms that result in the accumulation of uranium into potentially economic deposits. This subset of surficial U deposits occur in Tertiary to Recent calcrete and dolomitic, clay-rich fluvial paleochannel and palustrine sediments, wherein uranium is largely bound in the potassium-uranyl-vanadate mineral carnotite [K2(UO2)2(VO4)2·3H2O]. Scanning electron microanalysis indicates that the carnotite mineralization is part of a late-diagenetic mineral assemblage that critically includes Mg-clays (sepiolite and stevensite), amorphous magnesium silicate, and synsedimentary dolomite. This authigenic mineral assemblage is observed concentrated in fractures and pores in groundwater calcrete and silty salt marsh “palustrine” sediments. Drill-hole gamma ray and conductivity data from the Centipede-Millipede uranium deposit indicate that the locus of uranium mineralization occurs near the present-day water table where oxidizing fresh-to-brackish groundwater interacts with playa brine, forming a hypopycnal groundwater estuary beneath the clay pan and salt marsh. It is interpreted that effective U fixing occurs in areas where groundwater, near-saturated with respect to carnotite, is hydrologically focused upward and into the zone of evaporation. The appreciable precipitation deficit in the Northern Yilgarn is interpreted to produce an evaporation-driven positive feedback mechanism that results in the co-precipitation of Mg-clays, dolomite, and carnotite. The presence of vanadium-rich Mn-oxide phases in high-grade U ore zones indicates that Mn-redox cycling may serve an important role in increasing the local activity of V, and thus carnotite saturation. Mineralogical comparison of other channel and playa uranium deposits throughout Western Australia and Namibia have identified a similar mineral association and paragenetic trend, suggesting that contemporaneous evaporative precipitation of Mg-clays and dolomite are integral in achieving carnotite saturation and precipitation.
APA, Harvard, Vancouver, ISO, and other styles
16

Blowick, Aoife, Georgia Pe-Piper, David J. W. Piper, Yuanyuan Zhang, and Shane Tyrrell. "First-cycle sand supply and the evolution of the eastern Canadian continental margin: Insights from Pb isotopes in the Mesozoic Scotian Basin." GSA Bulletin, September 10, 2020. http://dx.doi.org/10.1130/b35419.1.

Full text
Abstract:
Provenance analysis provides a powerful means to understand, connect, and reconstruct source-to-sink systems and Earth surface processes, if reliable toolkits can be developed, refined, and applied. Deciphering sediment routing to the Scotian Basin, offshore eastern Canada, is marred by sedimentary recycling but is critical to understanding the evolution of the Canadian margin in response to the evolving Labrador rift. In this study, Pb isotopes in detrital K-feldspars were fingerprinted in 13 wells across the Scotian Basin to track first-cycle sand supply. Unlike previous approaches, which utilized less labile proxies such as zircon, detrital K-feldspars are unlikely to survive multiple sedimentary cycles. The Pb-isotopic data reveal a dynamic seesaw effect between hinterland sources across the Jurassic-Cretaceous boundary, reflecting the complex interplay between the northward propagation of uplift along the rising Labrador rift flank and the reactivation of fault systems in the lower drainage basin. Pb isotopes in K-feldspar record progressively increasing long-distance supply from eastern Labrador, as early as the Callovian in the central basin, alongside diminishing but persistent local sourcing from adjacent Appalachian terranes. Comparison with more resilient mineral proxies, notably zircon, appears to confirm recycling in the lower drainage basin and highlights the limitations of using a single mineral proxy in isolation. This case study serves as an example of the growing potential of multiproxy provenance toolkits not only to decipher sediment-routing corridors in paleodrainage systems, but to better define and connect the drivers, mechanisms, and spatial and temporal ranges of Earth surface processes and tectonic events.
APA, Harvard, Vancouver, ISO, and other styles
17

Cao, Licheng, Lei Shao, Douwe J. J. van Hinsbergen, Tao Jiang, Di Xu, and Yuchi Cui. "Provenance and evolution of East Asian large rivers recorded in the East and South China Seas: A review." GSA Bulletin, February 7, 2023. http://dx.doi.org/10.1130/b36559.1.

Full text
Abstract:
Large rivers are the arteries of continents. Those originating from the Tibetan Plateau and traversing East Asia have a relatively young history due to continuous Cenozoic perturbations. However, it has been a long journey to reconstruct their genesis and dynamic evolution, in which many puzzles and challenges remain. The river history is documented by provenance information in the ultimate sediment sinks in the East and South China Seas, but a regional-scale correlation of provenance data is still developing. Here, we explore the promise of this provenance perspective by reconstructing the evolution of three large rivers in China (the Yangtze, Pearl, and Red Rivers) by compiling and reevaluating a large volume of published provenance data (zircon U-Pb geochronology, K-feldspar Pb isotopes, and whole-rock Nd isotopes) from both Cenozoic strata and modern sediments from the East and South China Seas and the large river basins. Unlike traditional approaches that average provenance signatures, intersample variability was carefully evaluated. The general inheritance of zircon age spectral patterns and small fluctuations of Nd isotopes in the Neogene strata suggest provenance stabilization in the East and South China Seas and the establishment of near-modern drainage configurations. The paleodrainage basins before the Miocene are interpreted to have been smaller than their modern sizes, and drainage expansion likely occurred over the Oligocene. Our analysis suggests that the widely accepted models that link drainage between the ancient Yangtze and Red Rivers may be unlikely. The compiled provenance signatures and prior paleocurrent measurements of Paleogene strata distributed in the southeastern Tibetan Plateau margin show sediment supplied from local terranes instead of through-flowing river systems.
APA, Harvard, Vancouver, ISO, and other styles
18

Abreu, João Marcelo S., Brandon T. Waltz, James S. Albert, and Nivaldo M. Piorski. "Genetic differentiation through dispersal and isolation in two freshwater fish species from coastal basins of Northeastern Brazil." Neotropical Ichthyology 18, no. 3 (2020). http://dx.doi.org/10.1590/1982-0224-2019-0114.

Full text
Abstract:
Abstract The coastal basins in Northeastern Brazil used in this study make up two different ecoregions for freshwater fishes (Amazonas estuary and coastal drainages, and Parnaiba) and two areas of endemism for Characiformes (Maranhão and Parnaíba), and exhibits a diversified yet poorly explored freshwater fish fauna. The population structure and biogeography of two migratory freshwater fish species that are commercially exploited from Maranhão and Parnaíba regions were herein analyzed. Molecular sequence data and statistical analyses were used to estimate haplotypes networks and lineage divergence times and correlated with hydrographic history of drainage and paleodrainages of the region. A total of 171 sequences was produced for both species, Schizodon dissimilis (coI, n = 70) and Prochilodus lacustris (D-loop, n = 101). All analyses identified the presence of three genetically delimited groups of S. dissimilis and six groups of P. lacustris. The lineage time analyses indicate diversification among these species within the past 1 million year. The results indicate the influence of geodispersal in the formation of the ichthyofauna in the studied area through headwater stream capture events and reticulated connections between the mouths of rivers along the coastal plain due to eustatic sea level fluctuations.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography