Journal articles on the topic 'Pair Formation'

To see the other types of publications on this topic, follow the link: Pair Formation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pair Formation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hadeler, K. P. "Pair formation." Journal of Mathematical Biology 64, no. 4 (July 8, 2011): 613–45. http://dx.doi.org/10.1007/s00285-011-0454-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Takeuchi, Shin. "Dislocation processes in quasicrystals—Kink-pair formation control or jog-pair formation control." Materials Science and Engineering: A 400-401 (July 2005): 306–10. http://dx.doi.org/10.1016/j.msea.2005.03.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

COX, CATHLEEN R., VALENTINA I. GOLDSMITH, and HEIDI R. ENGELHARDT. "Pair Formation in California Condors." American Zoologist 33, no. 2 (April 1993): 126–38. http://dx.doi.org/10.1093/icb/33.2.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berkowitz, J., C. A. Mayhew, and B. Ruščić. "Photoion-pair formation in Cl2." Chemical Physics 123, no. 2 (July 1988): 317–28. http://dx.doi.org/10.1016/0301-0104(88)87278-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

HALE, W. G., and R. P. ASHCROFT. "PAIR FORMATION AND PAIR MAINTENANCE IN THE REDSHANK TRINGA TOTANUS." Ibis 124, no. 4 (April 3, 2008): 471–90. http://dx.doi.org/10.1111/j.1474-919x.1982.tb03792.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Prasad, Shraddha, Manoj Kumar Dutta, and Ram Krishna Sarkar. "Breather pair formation in holographic medium." Optik 245 (November 2021): 167742. http://dx.doi.org/10.1016/j.ijleo.2021.167742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

VERHULST, TOBIAS, and JAN NAUDTS. "A MECHANISM FOR ELECTRON PAIR FORMATION." Modern Physics Letters B 25, no. 14 (June 10, 2011): 1167–77. http://dx.doi.org/10.1142/s0217984911026255.

Full text
Abstract:
We consider a lattice model in which phonons scatter with pairs of electrons carrying a net spin current. All the energy eigenvalues and eigenvectors of this model can be obtained analytically. For a suitable choice of parameters the ground state consists of a Fermi sea of non-interacting electrons, with a layer of paired electrons on top of it. The binding energy of one electron pair is partly canceled by increased kinetic energy of another pair of electrons. This results in a momentum-dependent gap in the spectrum of the electrons.
APA, Harvard, Vancouver, ISO, and other styles
8

Schmitz, S. F. Hsu, and C. Castillo-Chavez. "A note on pair-formation functions." Mathematical and Computer Modelling 31, no. 4-5 (February 2000): 83–91. http://dx.doi.org/10.1016/s0895-7177(00)00025-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, David M. D., and Neil F. Johnson. "Pair formation within multi-agent populations." Physica A: Statistical Mechanics and its Applications 363, no. 1 (April 2006): 151–58. http://dx.doi.org/10.1016/j.physa.2006.01.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matsumoto, Masakazu, Hideki Tanaka, and Koichiro Nakanishi. "Acetonitrile pair formation in aqueous solution." Journal of Chemical Physics 99, no. 9 (November 1993): 6935–40. http://dx.doi.org/10.1063/1.465838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Katayama, Yoshiki, Ryuji Fukuda, and Makoto Takagi. "Chelate and intramolecular ion-pair formation." Analytica Chimica Acta 185 (1986): 295–306. http://dx.doi.org/10.1016/0003-2670(86)80057-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hadeler, K. P. "Pair formation models with maturation period." Journal of Mathematical Biology 32, no. 1 (November 1993): 1–15. http://dx.doi.org/10.1007/bf00160370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hadeler, K. P. "Pair formation in age-structured populations." Acta Applicandae Mathematicae 14, no. 1-2 (1989): 91–102. http://dx.doi.org/10.1007/bf00046676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tarof, Scott A., and Laurene M. Ratcliffe. "Pair Formation and Copulation Behavior in Least Flycatcher Clusters." Condor 102, no. 4 (November 1, 2000): 832–37. http://dx.doi.org/10.1093/condor/102.4.832.

Full text
Abstract:
Abstract Least Flycatcher Empidonax minimus pairs form dense clusters of territories on the breeding grounds. We describe pair formation and copulation behavior (both within- and extra-pair) in Least Flycatcher clusters. Pair formation involved a complex behavioral sequence of trill vocalizations and visual display. Within-pair copulations were five times more likely to achieve cloacal contact than were extra-pair copulations. Least Flycatchers exhibited an overall within-pair mating effort of 2.0 ± 0.5 events pair−1 hr−1 compared to an extra-pair mating effort of 1.8 ± 0.3 events pair−1 hr−1. Within- and extra-pair mating behavior by focal birds were distinctly different with respect to rate, conspicuousness, duration, aggression intensity, and pre-copulatory display. The rate of territory incursions for extra-pair copulations was high. We discuss copulation behavior in the context of male and female mating tactics, and highlight the disparity in our knowledge of mating behavior in other members of this genus.
APA, Harvard, Vancouver, ISO, and other styles
15

Ramos-Requena, José Pedro, Juan Evangelista Trinidad-Segovia, and Miguel Ángel Sánchez-Granero. "Some Notes on the Formation of a Pair in Pairs Trading." Mathematics 8, no. 3 (March 5, 2020): 348. http://dx.doi.org/10.3390/math8030348.

Full text
Abstract:
The main goal of the paper is to introduce different models to calculate the amount of money that must be allocated to each stock in a statistical arbitrage technique known as pairs trading. The traditional allocation strategy is based on an equal weight methodology. However, we will show how, with an optimal allocation, the performance of pairs trading increases significantly. Four methodologies are proposed to set up the optimal allocation. These methodologies are based on distance, correlation, cointegration and Hurst exponent (mean reversion). It is showed that the new methodologies provide an improvement in the obtained results with respect to an equal weighted strategy.
APA, Harvard, Vancouver, ISO, and other styles
16

Piper, Walter H., Keren B. Tischler, and Amy Dolsen. "Mother-Son Pair Formation in Common Loons." Wilson Bulletin 113, no. 4 (December 2001): 438–41. http://dx.doi.org/10.1676/0043-5643(2001)113[0438:mspfic]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sarma, Upasha, Swati Baruah, and R. Ganesh. "Lane formation in driven pair-ion plasmas." Physics of Plasmas 27, no. 1 (January 2020): 012106. http://dx.doi.org/10.1063/1.5116216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shrinivasan, Lakshmi, and J. l. R. Rao. "Type-2 Fuzzy Logic in Pair Formation." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 1 (April 1, 2018): 94. http://dx.doi.org/10.11591/ijeecs.v10.i1.pp94-99.

Full text
Abstract:
<span>This paper gives an overview of Type-2 Fuzzy sets (T2FSs) and Type-2 fuzzy Logic system (T2FLS) considering one aviation scenario. The existing type-1 Fuzzy system has limited capability to handle the uncertainty directly. In order to overcome the limitations of Type-1 fuzzy Logic system (T1FLS), a next level of fuzzy set is introduced, that is known as T2FSs. Here we will discuss about: Type-2 fuzzy sets, type-2 membership functions, inference engine, type reduction and defuzzification. Pair formation is the undertaken aviation scenario which is very critical in a fighting situation. Crisp data are taken by the sensors of aircraft and with the techniques of data fusion, a constant decision is passed whether two aircrafts can achieve pair formation or not. Experiments are evaluated and performance is compared with ground truth and existing T1FLS, which proves better in terms of decision making while a certain amount of uncertainty is present</span>.
APA, Harvard, Vancouver, ISO, and other styles
19

Rodríguez-Mayorga, M., M. Via-Nadal, M. Solà, J. M. Ugalde, X. Lopez, and E. Matito. "Electron-Pair Distribution in Chemical Bond Formation." Journal of Physical Chemistry A 122, no. 7 (February 12, 2018): 1916–23. http://dx.doi.org/10.1021/acs.jpca.7b12556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Marchais, Sandrine, Erik S. Vermeulen, Graeme Semple, Staffan Sundell, and Håkan V. Wikström. "Ion-pair formation of hydroquinine by chromatography." Analytica Chimica Acta 426, no. 1 (January 2001): 85–93. http://dx.doi.org/10.1016/s0003-2670(00)01172-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fanali, S., L. Ossicini, and T. Prosperi. "Paper electrophoretic study of ion pair formation." Journal of Chromatography A 318 (January 1985): 440–45. http://dx.doi.org/10.1016/s0021-9673(01)90712-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

BRET, ANTOINE, A. STOCKEM, F. FIUZA, C. RUYER, L. GREMILLET, R. NARAYAN, and L. O. SILVA. "Relativistic collisionless shocks formation in pair plasmas." Journal of Plasma Physics 79, no. 4 (April 3, 2013): 367–70. http://dx.doi.org/10.1017/s0022377813000354.

Full text
Abstract:
AbstractCollisionless shocks are ubiquitous in astrophysics and in the laboratory. Recent numerical simulations and experiments have shown how these can arise from the encounter of two collisionless plasma shells. When the shells interpenetrate, the overlapping region turns unstable, triggering the shock formation. As a first step toward a microscopic understanding of the process, we here analyze in detail the initial instability phase. On the one hand, 2D relativistic PIC simulations are performed where two unmagnetized, symmetric, and initially cold pair plasmas collide. On the other hand, the instabilities at work are analyzed, as well as the field at saturation and the seed field which gets amplified. For mildly relativistic motions and onward, Weibel modes with ω=0+iδ govern the linear phase. We derive an expression for the duration of the linear phase in reasonable agreement with the simulations.
APA, Harvard, Vancouver, ISO, and other styles
23

Isimori, Hajime. "Cooper Pair Formation by Quantizing Brownian Motion." International Journal of Theoretical Physics 49, no. 5 (February 24, 2010): 1029–43. http://dx.doi.org/10.1007/s10773-010-0282-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hadeler, K. P., R. Waldstätter, and A. Wörz-Busekros. "Models for pair formation in bisexual populations." Journal of Mathematical Biology 26, no. 6 (December 1988): 635–49. http://dx.doi.org/10.1007/bf00276145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Weisz, J. F., and F. Claro. "Pair formation in two-electron correlated chains." Journal of Physics: Condensed Matter 15, no. 19 (May 7, 2003): 3213–16. http://dx.doi.org/10.1088/0953-8984/15/19/321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fanali, S., M. Lederer, P. Masia, and L. Ossicini. "Paper electrophoretic study of ion-pair formation." Journal of Chromatography A 440 (May 1988): 361–65. http://dx.doi.org/10.1016/s0021-9673(00)94539-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Fanali, S., P. Masia, and L. Ossicini. "Paper electrophoretic study of ion-pair formation." Journal of Chromatography A 403 (January 1987): 388–91. http://dx.doi.org/10.1016/s0021-9673(00)96383-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

KASUYA, Tadao. "Neutral Pair Wigner Crystal Formation in Semimetals." Journal of the Physical Society of Japan 61, no. 7 (July 15, 1992): 2206–8. http://dx.doi.org/10.1143/jpsj.61.2206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pal, Gayatri, and P. Rudra. "Pair formation in the periodic Anderson lattice." Physical Review B 49, no. 20 (May 15, 1994): 14139–46. http://dx.doi.org/10.1103/physrevb.49.14139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Krupski, Sergei, Gerald Kehr, Constantin G. Daniliuc, and Gerhard Erker. "Cyclopropane formation under frustrated Lewis pair conditions." Chemical Communications 52, no. 13 (2016): 2695–97. http://dx.doi.org/10.1039/c5cc09585a.

Full text
Abstract:
Reaction of the –CH2OSiMe3 substituted allyldimesitylphosphane with HB(C6F5)2 resulted in a hydroboration/(C6F5)2BOSiMe3 elimination sequence to give the phosphinomethyl substituted cyclopropane derivative, probably via a phosphiranium type intermediate.
APA, Harvard, Vancouver, ISO, and other styles
31

Sajid, Muhammad, Gerald Kehr, Constantin G. Daniliuc, and Gerhard Erker. "Formylborane Formation with Frustrated Lewis Pair Templates." Angewandte Chemie 126, no. 4 (December 11, 2013): 1136–39. http://dx.doi.org/10.1002/ange.201307551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sandhiya, Lakshmanan, and Hendrik Zipse. "Radical‐Pair Formation in Hydrocarbon (Aut)Oxidation." Chemistry – A European Journal 25, no. 36 (May 30, 2019): 8604–11. http://dx.doi.org/10.1002/chem.201901415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sajid, Muhammad, Gerald Kehr, Constantin G. Daniliuc, and Gerhard Erker. "Formylborane Formation with Frustrated Lewis Pair Templates." Angewandte Chemie International Edition 53, no. 4 (December 11, 2013): 1118–21. http://dx.doi.org/10.1002/anie.201307551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

FULDE, P. "COOPER PAIR BREAKING." Modern Physics Letters B 24, no. 26 (October 20, 2010): 2601–24. http://dx.doi.org/10.1142/s021798491002519x.

Full text
Abstract:
An overview is given of a number of pair-breaking interactions in superconductors. They have in common that they violate a symmetry of the pair state. In most cases pairs are formed from time reversed single-particle states, a noticeable exception being antiferromagnetic superconductors. When time reversibility is broken by an interaction acting on the electrons, the time evolution of the time-reversal operator plays an important role. Depending on whether it is nonergodic or ergodic, we deal with pair weakening or pair breaking. Numerous different interactions are analyzed and discussed. Unifying features of different pair-breaking cases are pointed out. Special attention is paid to the Zeeman effect and to scattering centers with low-energy excitations. The Kondo effect and crystalline field split rare-earth ions belong in that category. Modifications caused by strongly anisotropic pair states are pointed out. There is strong evidence that in some cases intra-atomic excitations lead to pair formation rather than pair breaking for which an explanation is provided.
APA, Harvard, Vancouver, ISO, and other styles
35

Ohata, Mari, and Keiji Wada. "Is barricade building behavior linked to pair formation in the dotillid crab Ilyoplax pusilla?" Crustacean Research 37 (2008): 63–66. http://dx.doi.org/10.18353/crustacea.37.0_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Greacen, T. "Pair-aidance, job coaching, des outils pour le rétablissement." European Psychiatry 28, S2 (November 2013): 81. http://dx.doi.org/10.1016/j.eurpsy.2013.09.216.

Full text
Abstract:
La recherche-action EMILIA (2005–2010), financée par la Commission européenne, a décrit sur huit sites européens les obstacles et les facilitateurs à l’accès à la formation et à l’emploi des personnes vivant avec un trouble psychique [1,3]. Ce programme a vu la création, à Paris, du Centre EMILIA, qui propose aujourd’hui d’expérimenter une double approche vers l’inclusion dans le monde de l’emploi. D’un côté, il s’agit de soutenir l’entreprise quant à la problématique de l’apparition d’un trouble de santé mentale chez un salarié et, de l’autre, d’intégrer des personnes handicapées psychiques directement dans l’emploi en milieu ordinaire. Le centre propose un programme de formation et de job coaching qui repense non seulement le retour ou l’accès à l’emploi mais qui crée aussi une véritable politique d’entreprise sur l’inclusion sociale des personnes vivant avec un trouble psychique. Au travers du Centre Emilia et en lien avec le médecin de santé au travail, l’entreprise propose un accompagnement, en forme de coaching individuel couplé à des formations collectives. Les formations, basées sur le modèle du rétablissement, s’appuient sur le soutien par les pairs, notamment par d’autres professionnels qui ont déjà vécu un trouble psychique, des pairs aidants [2]. Les formations collectives inter-entreprises s’avèrent être une des voies les plus efficaces pour la personne de réussir son projet de retour ou d’accès à l’emploi, en raison de la dynamique de soutien par les pairs et de mutualisation des compétences acquises lors de l’expérience du vécu de la maladie. Ces démarches individuelles de formation et de job coaching s’inscrivent dans une offre de formations pour l’ensemble des salariés à la promotion de la santé mentale en milieu professionnel, à la lutte contre la stigmatisation de la maladie mentale et à la solidarité avec les personnes vivant avec un trouble psychique.
APA, Harvard, Vancouver, ISO, and other styles
37

Hasegawa, Masaru, and Emi Arai. "Negative interplay of tail and throat ornaments at pair formation in male barn swallows." Behaviour 154, no. 7-8 (2017): 835–51. http://dx.doi.org/10.1163/1568539x-00003446.

Full text
Abstract:
Pair formation is indispensable for breeding in monogamous species, generating selection for male traits that increase the probability of pairing success. Male ornamentation is one such trait, and several empirical studies have shown the importance of each of multiple ornaments. Still, it remains unclear how multiple ornaments in combination affect the probability of pair formation. Using the Japanese barn swallow,Hirundo rustica gutturalis, we studied the interplay of two sexually selected male traits, tail length and throat coloration, during pair formation. Independent of other morphological, ornamental and abiotic variables, the probability of pair formation was predicted by the negative interplay between tail length and plumage colour saturation: males possessing more-colourful plumage with shorter tails or males possessing less-colourful plumage with longer tails had a higher probability of pair formation than others. The current findings may explain spatiotemporal variation in ornamentation and sexual selection in this model species.
APA, Harvard, Vancouver, ISO, and other styles
38

Kitamura, A., T. Sugai, and Y. Kitamura. "Homotypic pair formation during conjugation in Tetrahymena thermophila." Journal of Cell Science 82, no. 1 (June 1, 1986): 223–34. http://dx.doi.org/10.1242/jcs.82.1.223.

Full text
Abstract:
In the ciliate Tetrahymena thermophila, conjugation has been believed to occur only between cells of different mating types. We found the formation of homotypic pairs during normal conjugation by using micronuclear morphological markers. Homotypic pairs formed preferentially during the first 10 min following the first pair formation and comprised about half of the pairs. These results suggest the involvement of mating-type non-specific adhesion of cells in the initial step of conjugation. Homotypic pairs apparently persist for at least 30 min and then separate into single cells. Homotypic pairs are also formed when conjugant pairs re-form after mechanical separation of heterotypic pairs. Five kinds of glycosidases, three kinds of proteases and phospholipase C showed no effect on either the formation of homotypic pairs of their separation. The relation between the mating-type substances and the molecules responsible for mating-type non-specific adhesion of cells is discussed.
APA, Harvard, Vancouver, ISO, and other styles
39

Pratt, S. T., E. F. McCormack, J. L. Dehmer, and P. M. Dehmer. "Field-induced ion-pair formation in molecular hydrogen." Physical Review Letters 68, no. 5 (February 3, 1992): 584–87. http://dx.doi.org/10.1103/physrevlett.68.584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lukács, Ferenc, and Kálmán Burger. "Entropy-supported ion-pair formation in liquid ammonia." J. Chem. Soc., Faraday Trans. 88, no. 22 (1992): 3345–47. http://dx.doi.org/10.1039/ft9928803345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Robertson, Gregory J., Fred Cooke, R. Ian Goudie, and W. Sean Boyd. "The Timing of Pair Formation in Harlequin Ducks." Condor 100, no. 3 (August 1998): 551–55. http://dx.doi.org/10.2307/1369723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Houbiers, M., and H. T. C. Stoof. "Cooper-pair formation in trapped atomic Fermi gases." Physical Review A 59, no. 2 (February 1, 1999): 1556–61. http://dx.doi.org/10.1103/physreva.59.1556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Adeagbo, W. A., G. Fischer, A. Ernst, and W. Hergert. "Magnetic effects of defect pair formation in ZnO." Journal of Physics: Condensed Matter 22, no. 43 (October 11, 2010): 436002. http://dx.doi.org/10.1088/0953-8984/22/43/436002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Brandl, S. J., and D. R. Bellwood. "Pair formation in the herbivorous rabbitfish Siganus doliatus." Journal of Fish Biology 82, no. 6 (May 13, 2013): 2031–44. http://dx.doi.org/10.1111/jfb.12131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shannon, D. C., K. P. Killeen, and J. G. Eden. "Br2ion pair state formation by electron beam excitation." Journal of Chemical Physics 88, no. 3 (February 1988): 1719–31. http://dx.doi.org/10.1063/1.454096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hallén, Bengt, Anders Sundwall, and Sören Sandquist. "Ion Pair Formation and Gastrointestinal Absorption of Emepronium." Acta Pharmacologica et Toxicologica 57, no. 4 (March 13, 2009): 271–78. http://dx.doi.org/10.1111/j.1600-0773.1985.tb00042.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Katoh, Ryuzi, Mikiya Hara, and Seiji Tsuzuki. "Ion Pair Formation in [bmim]I Ionic Liquids." Journal of Physical Chemistry B 112, no. 48 (December 4, 2008): 15426–30. http://dx.doi.org/10.1021/jp806578h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Oohara, Wataru, and Rikizo Hatakeyama. "Pair-ion plasma generation and fullerene-dimer formation." Thin Solid Films 435, no. 1-2 (July 2003): 280–84. http://dx.doi.org/10.1016/s0040-6090(03)00377-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Vranjes, J., and S. Poedts. "Global convective cell formation in pair-ion plasmas." Physics of Plasmas 15, no. 4 (2008): 044501. http://dx.doi.org/10.1063/1.2907160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Byrne, Emily H., Paolo Raiteri, and Julian D. Gale. "Computational Insight into Calcium–Sulfate Ion Pair Formation." Journal of Physical Chemistry C 121, no. 46 (November 14, 2017): 25956–66. http://dx.doi.org/10.1021/acs.jpcc.7b09820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography