To see the other types of publications on this topic, follow the link: P2Z receptors.

Dissertations / Theses on the topic 'P2Z receptors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'P2Z receptors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Gargett, Caroline Eve, and mikewood@deakin edu au. "Studies of the human lymphocyte P2Z receptor and its activation of phospholipase D." Deakin University, 1997. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20060727.144101.

Full text
Abstract:
Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.
APA, Harvard, Vancouver, ISO, and other styles
2

Mateos-Trigos, Gabriela. "P2 receptors (P2Y₁ and P2Y₁₂) of equine platelets." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alberto, Anael Viana Pinto. "Caracterização dos receptores P2 em eosinófilos de ratos e do poro associado ao receptor P2X7." Instituto Oswaldo Cruz, 2012. https://www.arca.fiocruz.br/handle/icict/6938.

Full text
Abstract:
Submitted by Alessandra Portugal (alessandradf@ioc.fiocruz.br) on 2013-09-20T15:33:03Z No. of bitstreams: 1 Anael Viana Pinto Alberto.pdf: 4150812 bytes, checksum: 9ce0a5d780533302dcc603ae65f510fe (MD5)
Made available in DSpace on 2013-09-20T15:33:03Z (GMT). No. of bitstreams: 1 Anael Viana Pinto Alberto.pdf: 4150812 bytes, checksum: 9ce0a5d780533302dcc603ae65f510fe (MD5) Previous issue date: 2012-10-31
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil
ATP e outros nucleotídeos são liberados para o meio extracelular por vias reguladas ou pela perda da integridade de membrana. Uma vez fora da célula, esses compostos podem ativar receptores P2: P2X (receptores ionotrópicos) e P2Y (receptores acoplados a proteínas G). Além disso, O receptor P2X7 é um importante membro da família P2X, já que sua ativação pode levar a abertura de um poro membranar que permite a passagem de moléculas de até 900 Da. Os eosinófilos são as principais células efetoras em respostas alérgicas e estão associados com diversos processos fisiológicos e patológicos. Nesse trabalho investigamos a expressão de receptores P2 e suas funções em eosinófilos. Nesse contexto, nosso primeiro passo foi investigar a expressão e funcionalidade dos receptores P2X por patch clamping. Nossos resultados sugerem a presença de P2X1, de P2X2 e de P2X7. Em seguida, avaliamos por microfluorimetria a funcionalidade dos receptores P2Y, e verificamos com base na ordem de potência a possível presença de P2Y2, de P2Y4, de P2Y6 e de P2Y11. Além disso, confirmamos nossos dados por imunofluorescência. Realizamos também ensaios de migração in vitro e in vivo, para verificar se os nucleotídeos extracelulares poderiam atrair eosinófilos. O ATP foi capaz de induzir a migração dos eosinófilos, enquanto a suramina, um bloqueador P2, aboliu esse efeito, tanto in vitro, utilizando transwell, como in vivo, utilizando um modelo de pleurisia alérgica em ratos. Em seguida, avaliamos o possível papel da panexina-1 como poro associado ao receptor P2X7. Nesse trabalho utilizamos inibidores de hemicanais em experimentos de patch clamp e em ensaios de permeabilização de corante. Os resultados indicam que os inibidores de hemicanais não bloquearam a geração de corrente ou a captação de corante após a ativação do receptor P2X7 em macrófagos de ratos e camundongos. Demonstramos que eosinófilos de rato expressam receptores P2X e P2Y por imunofluorescência. Além disso, demonstramos que a ativação de receptores P2 pode aumentar a migração de eosinófilos in vitro e in vivo. Além disso, foi demonstrado que inibidores de panexina-1 não bloqueiam a captação do corante ou a corrente gerada pela ativação do receptor P2X7. Os nossos resultados demostraram que panexina-1 não é o poro associado ao receptor P2X7 em macrófagos
ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. . Additionally, P2X7 receptor is an important member of the P2X family of ionotropic receptor as its activation opens a non-selective pore allowing the passage of molecules up to 900 Da. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step were to investigate the expression and functionality of the P2X receptors by patch clamping, our results suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency suggests the presence of P2Y2, P2Y4, P2Y6 e P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did in vitro and in vivo migration assays to verify whether nucleotides could attract eosinophil. ATP increased migration of eosinophils, while suramin a P2 blocker abolished this effect in both in vitro, using trasnwell, and in vivo, using a model of rat allergic pleurisy. Next, we evaluated the putative role of pannexin-1 as the pore associated to the P2X7 receptor. We used hemichannels inhibitors in patch clamp and dye uptake experiments. The results indicate that they do not interfere with current generation or dye uptake after activation of P2X7R in rat and mouse macrophages. We have demonstrated that rat eosinophils express P2X and P2Y receptors by immunofluorescence. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo. Moreover, we demonstrated that specific inhibitors of pannexin-1 did not interfere with the dye uptake or current generated by the P2X7 activation. Our results showed that pannexin-1 is not the pore associated to the P2X7 receptor in macrophages.
APA, Harvard, Vancouver, ISO, and other styles
4

Kong, Qiongman. "Regulations and functions of P2Y₂ and P2X₇ nucleotide receptors in the central nervous system." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4847.

Full text
Abstract:
Thesis (Ph.D.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 19, 2009) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Vick, Jonathan. "The Contribution of Purinergic P2X and P2Y Receptors to the Excitability of Mouse Vomeronasal Sensory Neurons." ScholarWorks @ UVM, 2014. http://scholarworks.uvm.edu/graddis/283.

Full text
Abstract:
Olfaction, the sense of smell, allows animals to perceive the multitude of volatile and nonvolatile molecules present in the environment. In many mammals, such as mice and rats, there are four unique chemosensory organs including the (1) main olfactory epithelium (MOE), (2) septal organ, (3) Grüneberg ganglion, and (4) vomeronasal organ (VNO). While the VNO detects some general volatile odorants, it is further specialized for the detection of behaviorally relevant nonvolatile odorants or pheromones. In rodents, the VNO is encased within a bony capsule and located at the base of the nasal cavity. Odorants are detected by vomeronasal sensory neuron (VSN)s, bipolar neurons with a single axon that projects to the accessory olfactory bulb of the brain and a single dendrite capped with microvilli that project into the lumen of the VNO. In the MOE, purinergic signaling through adenosine 5'-triphosphate (ATP) gated ionotropic P2X and G-protein coupled P2Y receptors contributes a neuroprotective and neuroregenerative pathway. As virtually nothing was known about purinergic signaling in the VNO, I set out to characterize the (1) presence of the purinergic receptors and (2) ATP release pathways. In isolated VSNs, ATP elicited an increase in intracellular calcium ([Ca2+]I) and an inward current with similar potency. Adenosine and the P2Y receptor agonists adenosine 5'-diphosphate (ADP), uridine 5'-triphosphate (UTP), and uridine 5'-diphosphate (UDP) were ineffective. The increase in [Ca2+]I was dependent upon extracellular calcium and the inward current elicited by ATP was partially blocked by the P2X receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS) and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP). When coapplied with the natural stimulus dilute urine, ATP increased the inward current above that elicited by either dilute urine or ATP alone. Furthermore, ADP hyperpolarized the voltage dependence of steady state inactivation of voltage activated sodium current (INa) in a subset of VSNs. The hyperpolarization in the voltage dependence of steady state inactivation elicited by ADP was blocked in the presence of suramin, a purinergic receptor antagonist, but similar to that produced by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane permeable protein kinase C (PKC) activator. Neither ATP nor ADP affected the voltage dependence of activation, fast inactivation, or time dependent recovery from inactivation. Interestingly, ADP reversibly increased spike frequency but did not change an action potential's amplitude, latency, halfwidth, or threshold voltage. Accordingly, we detected gene expression of the P2X1 and 3 as well as P2Y1, 2, and 6 receptors in the VNO and localized the P2Y1 and 2 receptors to isolated VSNs. Thus, excitability in VSNs can be enhanced by (1) ATP eliciting an inward current through P2X receptors and (2) ADP decreasing spike adaptation during persistent firing presumably through P2Y receptors. Moreover, one possible source of ATP may be from mechanical stimulation of the VNO that accompanies vasomotor pump activation.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Xiaowei. "Involvement of purinergic P2X and P2Y2 receptors in urinary bladder sensation." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/343.

Full text
Abstract:
Interstitial cystitis (IC)/painful bladder syndrome (PBS) is a functional visceral disorder characterized by increased bladder activity and chronic pelvic pain in the absence of a pathobiological condition. Enhanced sensory transduction of peripheral bladder afferents is hypothesized to contribute to the pain and mechanical hypersensitivity of IC/PBS patients. The aim of this thesis is to test the hypothesis that purinergic receptors, including ionotropic P2X and metabotropic P2Y, are important for sensory transmission in bladder afferent neurons and may be involved in bladder hypersensitivity after bladder tissue insults. Electrophysiological, single cell RT-PCR and immunohistochemistry techniques were performed in bladder afferent neurons from naïve and bladder inflamed mice to test the hypothesis. In Chapter 2, I characterized the distribution and function of P2X receptors in thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglia (DRG) neurons innervating the urinary bladder, and found that LS and TL bladder neurons have differential purinergic signaling and distinct membrane electrical properties. In Chapter 3, I examined the sensitization of bladder afferent neurons and the plasticity of P2X receptor function in a mouse model of chemical induced bladder inflammation. P2X-mediated signals in LS and TL bladder neurons after bladder inflammation were enhanced compared with those in saline-treated controls, suggesting the importance of P2X in bladder hypersensitivity associated with cystitis. In Chapter 4, the modulation of P2Y on P2X function and the co-localization of P2Y and P2X were examined in bladder sensory neurons. It has been found that P2Y2 receptor enhances bladder sensory neuron excitability and facilitates the response of homomeric P2X2 receptor to the purinergic agonist (ATP). The present study provides evidence that LS and TL mouse bladder sensory neurons exhibit distinct P2X signaling, and the function of P2X receptors could be facilitated during bladder inflammation and modulated by activation of P2Y2 receptor, indicating an involvement of P2X and P2Y2 receptors as mechano- and chemosensors in bladder sensory transmission under normal conditions and in bladder hypersensitivity associated with inflammation.
APA, Harvard, Vancouver, ISO, and other styles
7

Dovlatova, Natalia. "Studies on placelet p2y receptors." Thesis, University of Nottingham, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hibell, Amanda Dawn. "Functional characteristics of P2X₇ receptors." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zheng, Wenxuan. "Properties of mammalian P2X₇ receptors." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/properties-of-mammalian-p2x7-receptors(1ff23f4a-47eb-4d06-b54c-bd7488c9700c).html.

Full text
Abstract:
To establish comprehensive pharmacology of P2X₇ receptors, membrane current recording, intracellular calcium transient recording and ethidium bromide uptake were carried out to examine several selective (A-740003, A- 438079) and non-selective (suramin) P2X₇ antagonists across mammalian P2X₇ receptors (human, mouse and rat). These P2X₇ receptors demonstrated species-dependent sensitivities to antagonists. In each species, A-740003 revealed variant IC50 values with different assays, indicating the assay- dependent pharmacology of P2X₇ receptors. Conventionally, pharmacology can be used to define a native current but not in the case of the human breast cancer cell line, Hs578T. It is found that P2X₇ was expressed at both mRNA and protein level. The ATP-evoked currents recorded from Hs578T cells were P2X₇-like with distinctive electrophysiological features. But the pharmacology profile of the currents did not fit with P2X₇ receptor. Further experiments are needed to either include or exclude the existence of functional P2X₇ receptors in Hs578T. Transmembrane domain 2 (TM2) is known as the pore-forming region for P2X receptors. TM2 of P2X₇ receptor was investigated with cysteine substitution scanning. The predicted α-helix structure of the TM2 segment was in good agreement with the results from the substituted cysteine accessibility method (SCAM). Thr336, Ser339, Tyr343, Phe344 and Thr348 were found important for both channel dilation and aqueous pore formation. Ser339 was further studied. Various substitutions at Ser339 were explored. The results suggest that the polarity of the side chain at Ser339 is essential for the channel dilation. Furthermore, disulfide bond formation was identified between S339C in the trimeric receptor, implying that the side chains of Ser339 might turn very close to each other during the channel opening and dilation.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Jun. "Structural determinants of P2Y₂ receptor functions." Free to MU campus, others may purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3100062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rolf, Michael George. "P2X₁ receptors and human platelet function." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Guo, C. "Trafficking and assembly of P2X receptors." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599788.

Full text
Abstract:
Within the P2X family, P2X7 is claimed to be unique in not forming heteromers; however, we have used different approaches to demonstrate that P2X4 and P2X7 interact both structurally and functionally. First, when heterologously co-expressed, P2X7 was co-localized with P2X4 at the plasma membrane and co-expression with P2X7 increased the proportion of P2X4 at the cell surface, as measured by surface biotinylation. Second, in co-expressed cells, P2X7 was co-immunoprecipitated with an anti-HA antibody that recognized an HA-tagged form of P2X4. Similarly P2X4 was co-immunoprecipitated with an antibody to P2X7. Third, co-expression with a dominant-negative mutant of P2X4 (P2X4 C353W) with either wild type P2X4 or P2X7 reduced the amplitudes of currents, whereas co-expression of a non-functional but non-dominant-negative mutant (P2X4 S341W) potentiated currents. Neither mutant exhibited an obvious trafficking defect, nor did they alter the surface expression of P2X7 as measured by biotinylation. Finally we identified novel pharmacological properties of the heteromeric receptors. Similar to P2X7 receptors, they are 1) preferentially activated by 2’,3’-O-(benzoyl-4-benzoyl)-ATP (BzATP) and ATP4- as compared to MgATP, 2) the currents desensitize slowly, 3) the currents are sensitive to extracellular Na+ and 4) currents are blocked by Brilliant Blue G (BBG). However, unlike P2X7, the heteromeric receptor currents were potentiated by ivermectin (IVM) and inhibited by 2’,3’-O-(2,4,6-trinitrophenyl) adenosine 5-triphosphate (TNP-ATP). In a separate study, molecular determinants of P2X2 receptor trafficking demonstrated that the last few amino acids within the C-terminus, which are conserved in different spliced forms of P2X2 receptors, appear to be involved in the stabilization of P2X2 receptors at the plasma membrane.
APA, Harvard, Vancouver, ISO, and other styles
13

Paramasivam, Anbalakan. "Regulation of immune cell P2X receptors." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wilkinson, William J. "Structure and function of P2X receptors." Thesis, University of Manchester, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.739404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jones, Clare Alexa. "Molecular pharmacology of P2X{sub4} and P2X{sub6} receptors for ATP." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bélanger, Danny. "Heterologous functional interactions of P2X ATP receptors." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81596.

Full text
Abstract:
Part I. In this work we show that P2X3 currents are acutely modulated by the GPCRs mGluR5 and P2Y2, and by the neurotrophin TrkA receptor, expressed in nociceptors, in the recombinant Xenopus oocyte system. The intracellular C-terminal domain of P2X 3 plays an important role in its functional coupling to TrkA. Preliminary studies suggest a role for PKC in the P2X3-TrkA cross-talk, but other routes may also contribute. Part II. Neurogenic and pharmacological stimulation of vascular smooth muscle P2X1 elicits a contractile response that we found was potentiated by serotonin acting through 5HT2A. We also found in Xenopus oocytes that P2X 1 currents in the desensitized state are potentiated by M1 ACh receptors and by phorbol ester stimulation of PKC. Part III. We have shown in Boue-Grabot et al. (2003) that there was an intracellular negative cross-talk and physical interaction between P2X2 and 5HT3A receptors. We also found a functional interaction between P2X2 and GABAA alpha2beta 3 receptor subtypes in HEK293 mammalian cells and in Xenopus oocytes; and we confirmed the findings of Sokolova et al. , (2001) in primary cultures of DRG neurons. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
17

Wildman, Scott Shaw. "Purinergic signalling : sensitisation of recombinant P2X receptors." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Thompson, Kyla Merriom. "Structure/function studies on P2X{sub7} receptors." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Royle, Stephen John. "Molecular mechanisms of P2X receptor trafficking." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Miller, Kerry Jane. "The characterisation of P2X receptor subtypes." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Smith, Fiona Marie. "Molecular determinants of P2X₂ receptor function." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Min. "Role of P2Y₂ nucleotide receptors in reactive astrogliosis." Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4268.

Full text
Abstract:
Thesis (M.S.)--University of Missouri-Columbia, 2005.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (January 22, 2007) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
23

Syed, Nawazish-i.-Husain. "Expression of P2X receptors in rat pulmonary artery." Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501814.

Full text
Abstract:
The P2X receptors expressed in rat large (LPA) and small (SPA) pulmonary artery were characterised using pharmacological and molecular techniques and signalling pathways that mediate their contractile effects were investigated. The role of P2X receptors in sympathetic neurotransmission was also investigated.
APA, Harvard, Vancouver, ISO, and other styles
24

Roberts, Jonathan A. "Signal transduction of transfected and native P2Y receptors." Thesis, University of Leicester, 1998. http://hdl.handle.net/2381/30614.

Full text
Abstract:
This thesis looks at the turkey P2Y1, human P2Y2, human P2Y4 and rat P2Y6 receptors transfected into the human astrocytoma null cell line 1321N1 to investigate signalling pathways linking G protein receptor activation to tyrosine phosphorylation, MAPK and mitogenesis. This was compared with results for the native primary cell preparation of rat brain microvascular endothelial cells. Previous work by others and us has established that all 1321N1 transfected P2Y receptors are strongly linked to an increase in PLC activation. Neither the turkey P2Y1 or human P2Y2 receptors were coupled to an increase in overall tyrosine phosphorylation assessed by PY20 antibody western blot. Pervanadate alone gave large increases in tyrosine phosphorylation, but no further increase in tyrosine phosphorylation was observed with co-addition of 2MeSATP to the turkey P2Y1 transfectants. Co-addition of UTP and a sub-maximal concentration of prevanadate on the human P2Y2 receptor gave a reduction in tyrosine phosphorylation compared to pervanadate alone. This indicated possible activation of tyrosine phosphatase activity by the human P2Y1 and human P2Y2 receptors were both shown to activate p42/p44 MAPK assessed by phospho-MAPK antibody western blotting and a nonapeptide kinase assay. Both turkey P2Y1 and human P2Y2 receptor activation of MAPK was inhibited by the MEK inhibitor PD 98059. Human P2Y4 and rat P2Y6 receptors showed no activation of MAPK. Both turkey P2Y1 and human P2Y2 MAPK activation was PKC dependant; inhibited by Ro 31-8220 and Go 6850, but not Go 6976 a calcium sensitive PKC isoform inhibitor. PKC isoforms ( or ) may be involved in this signalling pathway. Some experiments investigating Pyk2 and Shc involvement in P2Y signalling are presented.
APA, Harvard, Vancouver, ISO, and other styles
25

Brown, Julia. "Pharmacological evaluation of novel ligands of P2Y receptors." Thesis, University of Wolverhampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366088.

Full text
Abstract:
In view of the rapidly growing interest in P2Y receptors and the lack of subtype selective ligands, especially antagonists, the aim of this study was to evaluate novel ligands of P2Y receptors. This was performed using putative P2Y-selective antagonists reviewed in the literature and by designing and synthesising novel peptide ligands. Bovine aortic endothelial (BAE) cells that co-express P2Yl and P2Y2 receptors and ECV304, a human cell line were used for this study. ECV304 were evaluated as a suitable model for studying P2Y receptor pharmacology using currently available agonists and antagonists in assays of second messengers. Results showed that ECV304 cells express two P2Y receptors, a P2Y2-like receptor and a P2Y11-like receptor. During the study doubt was cast as to the origin of the human cell line ECV304. It was thought that these cells had spontaneously transformed from human umbilical vein endothelial cells. In this study it was clearly demonstrated that ECV304 cells shared the same DNA fingerprint as T24/83 bladder cancer epithelial cells and were indeed not endothelial in origin. However, ECV304 cells are human cells natively expressing P2Y receptors and are a very useful research tool for studying P2Y receptor pharmacology. Reactive blue 2 is a P2 receptor antagonist, but it is not subtype-selective, having effects at both P2X and P2Y receptors. A recent study showed that derivatives of reactive blue 2: acid blue 129, acid blue 80, acid blue 25 and acid violet 34, are P2Y- versus P2Xselective. These four derivatives have been investigated in this study for their relative selectivity at P2Y1 versus P2Y2 receptors using stimulation of inositol phosphate turnover in BAE cells as a measure of activity. Acid blue 25 failed to antagonise either the P2Y1 or the P2Y2 receptor. The other three compounds were shown to be weak antagonists that were not subtype-selective and had activity that was not truly competitiveNovel peptide ligands have been designed to mimic extracellular domains of the human P2Y2 receptor. Surprisingly, these novel mimetic peptides had "agonist-like" properties. Peptides alone directly activated second messenger production in bovine aortic endothelial cells and ECV304, and also augmented agonist responses in ECV304 cells. Interestingly, analogues of mimetic peptides were also capable of enhancing sub-maximal doses of natural agonists in ECV304 cells. These findings represent a unique action of mimetic peptides as they have effects at nonpeptide P2Y receptors. These observations indicate an important role of extracellular domains, particularly the third extracellular loop, in signal transduction by P2Y2 receptors. Furthermore, the "agonist-like" activity of P2Y2 receptor mimetic peptides has important implications for the study of P2Y receptor activation and may have therapeutic potential e. g. in the treatment of cystic fibrosis. Finally, these findings may be equally applicable to the design of allosteric modulators of other G protein-coupled receptors
APA, Harvard, Vancouver, ISO, and other styles
26

Chootip, Krongkarn. "P2 receptors in pulmonary vasculature." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Haas, Michael [Verfasser]. "Analysis of functional impairments of the human P2Y 11 nucleotide receptor with the alanine-87 - threonine mutation, and development of novel agonists specific for the human P2Y 11 and P2Y 6 receptors / Michael Haas." Magdeburg : Universitätsbibliothek, 2015. http://d-nb.info/1076590144/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Digby, Helen. "Structure/function studies of the P2X receptor." Thesis, University of Leicester, 2007. http://hdl.handle.net/2381/7987.

Full text
Abstract:
P2X receptors are a novel family of ligand-gated ion channels that open in response to the binding of extracellular ATP. There are no crystal structures available for the P2X receptor family and they share little homology with other ATP-binding proteins. For this reason, experimental evidence has been relied upon to determine the topology of the P2X receptor family and infer function. The family presents numerous drug targets for the treatment of cystic fibrosis, regulation of blood pressure, pain and irritable bowel syndrome to name a few (Khakh & North, 2006). A better understanding of the structure of P2X receptors gained through mutagenesis and more recently bioinformatic techniques will enable better drug design and development. The amino acid sequence of a protein determines its secondary structure which in turn dictates the tertiary or 3D structure. Protein function is dependent on protein structure and for this reason structural studies can give important insight into protein function. Alanine-replacement of conserved glycine residues in the P2X receptor family has been studied to determine the impact of the flexible nature of glycine in the extracellular segment of the P2X1 receptor. A key functional residue, glycine-250 (P2X1 receptor numbering), was identified and its predicted location at the C-terminal end of an a-helix confirms such a role. However, it is not possible to predict the tertiary structure of a protein based on amino acid sequence alone; the so-called ‘protein-folding problem’. Therefore, this thesis has relied upon sequence analysis and protein structure prediction methods as tools for extracting structural information from P2X receptor sequences. In particular, searching for structural templates on which to model both the putative ligand-binding segment of the P2X1 receptor and the newly defined cysteine-rich domain of the extracellular segment. Published homology models for the rat P2X4 receptor using class II aminoacyl-tRNA synthetases as structural templates exist. Such models have been validated by mutagenesis studies and residues thought to be important in ATP-binding at the P2X4 receptor have been identified. These residues have been aligned to the hP2X1 receptor sequence and the corresponding residues mutated to cysteine. It is clear that this P2X4 receptor model does not directly translate as a model of ATP-binding at the hP2X1 receptor due to inconsistencies in mutagenesis data and the unreliable nature of the original homology model. In contrast, a model of ATP-binding at the P2X1 receptor based on experimental data does provide an interesting insight into those residues involved in ATP-binding at the P2X4 receptor thus enhancing the published homology models and validating the P2X1 receptor models of ATP-binding.
APA, Harvard, Vancouver, ISO, and other styles
29

Farret, Anne. "Effets et mécanismes de l'activation des récepteurs purinergiques P2Y de la cellule beta pancréatique." Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON1T020/document.

Full text
Abstract:
Les récepteurs purinergiques P2Y ont un rôle modulateur de la sécrétion d'insuline et constituent une cible potentielle pour la recherche de nouveaux antidiabétiques. Dans le modèle du pancréas isolé perfusé de Rat, dans des conditions fonctionnelles proches de la physiologie, nous avons montré que l'activation de ces récepteurs potentialise l'effet insulino-sécrétoire d'une stimulation glucosée. Cet effet requiert le métabolisme du glucose ; il est probablement lié à une augmentation de la concentration intracellulaire de Ca2+, et est indépendant d'un effet direct sur les canaux potassiques ATP dépendants. Nous avons également étudié les effets pancréatiques de nouveaux agonistes des récepteurs P2Y, synthétisés par l'équipe du Pr B. Fischer : parmi ces dérivés, le 2-méthylthio-ATP-a-S (isomère A) est un insulino-sécrétagogue gluco-dépendant, hautement efficace et puissant (CE50 de 28,1 nmol/l), avec une très bonne sélectivité tissulaire. Par ailleurs, nous avons exploré l'implication des récepteurs P2Y dans la prolifération cellulaire en utilisant un modèle de lignée cellulaire insulino-sécrétrice issue d'insulinome de Rat (lignée INS-1E) : aux doses utilisées, l'ATP-a-S (agoniste du récepteur P2Y) et le GLP-1 entraînent une réponse insulinique comparable, mais une augmentation de l'AMPc intracellulaire d'amplitude différente ; de plus, contrairement au GLP-1, l'ATP-a-S est sans effet sur la prolifération des cellules. Enfin, en collaboration avec l'équipe du Pr C. Gachet, nous avons montré l'implication des récepteurs de sous-type P2Y1 dans la réponse insulinique d'îlots pancréatiques de Souris. Nos travaux ont donc permis d'améliorer les connaissances sur les récepteurs purinergiques P2Y des cellules ß pancréatiques en ce qui concerne leurs mécanismes d'action, leurs effets sur l'insulino-sécrétion et sur la prolifération cellulaire ; nous avons également contribué au développement d'agonistes spécifiques, potentiellement intéressants pour le traitement du diabète de type 2
P2Y purinergic receptors play a role in the modulation of insulin secretion and represent a potential therapeutic target for new antidiabetic drugs. In the model of isolated perfused rat pancreas, in functional conditions close to physiology, we have shown that the activation of these receptors amplify the glucose-induced insulin secretion. This effect requires the metabolism of glucose; it is probably related to a rise in intracellular Ca2+ concentration, and is independent from a direct effect on ATP-dependent potassium channels. We have also studied the pancreatic effects of new P2Y receptor agonists, synthesized by the group of Prof. B. Fischer: among these compounds, 2-methylthio-ATP-a-S (A isomer) is a glucose-dependent insulin secretagogue, with high efficacy and potency (EC50 at 28.1 nmol/l), and with very good tissue selectivity. On the other hand, we have investigated the implication of P2Y receptors in cell proliferation, using a model of insulin secreting cell line from rat insulinoma (INS-1E cell line): at the doses used, ATP-a-S (a P2Y receptor agonist) and GLP-1 induce a similar insulin response, but an increase in intracellular cAMP of different magnitude; moreover, in contrast to GLP-1, ATP-a-S is ineffective on cell proliferation. Finally, in collaboration with the group of Prof. C. Gachet, we have shown that the P2Y1 receptor subtype was involved in the insulin response of mice pancreatic islets. Thus, our studies contributed to the improvement of knowledge on P2Y purinergic receptors of pancreatic ß-cells, as regards their mechanisms of action, their effects on insulin secretion and on cell proliferation; we also contributed to the development of specific agonists, potentially interesting for the treatment of type 2 diabetes
APA, Harvard, Vancouver, ISO, and other styles
30

Lindsay, Susan L. "P2Y receptors in human sweat glands : localisation and function." Thesis, Glasgow Caledonian University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yu, Ningpu. "The role of P2Y₂ nucleotide receptors in vascular inflammation." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4664.

Full text
Abstract:
Thesis (Ph.D.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 12, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
32

Bradley, Helen Joanne. "Characterisation of expression and functional properties of P2Xz receptors." Thesis, University of Leeds, 2010. http://etheses.whiterose.ac.uk/21134/.

Full text
Abstract:
P2X7 receptors form non-selective cation channels at the plasma membrane and are gated by the binding of extracellular ATP. Prolonged P2X7 receptor activation also leads to formation of a pore that allows permeation of large molecules. Many cell types express P2X7 receptors. Expression is particularly high in cells of hematopoietic origin, where they have important roles in many biological processes, including release of pro-inflammatory cytokines and apoptosis. Furthermore, the· properties of P2X7 receptors, including their functional expression and pharmacology, exhibit striking species differences. However, the underlying molecular bases for these differences are not fully understood. The gene encoding human P2X7 receptors contains numerous single nucleotide polymorph isms (SNP), several of which are non-synonymous (ns- SNP). Two ns-SNP mutations, H155Y and A348T, were of particular interest due to their gain-of function effect on P2X7 receptors. Furthermore, a previous study found ATP-induced secretion of cytokines was enhanced in immune cells from individuals harbouring the A348T mutation. These two mutations were therefore examined in detail. Whole-cell patch-clamp current recordings clearly showed both mutations increased agonist-induced maximal currents, with no or very mild effect on agonist sensitivity. Cells expressing human P2X7 receptors had lower ATP-evoked maximal currents in comparison to the rat receptor. Mutations H155Y and A348T change the residues to those in the corresponding positions of the WT rat P2X7 receptor. Introduction of reciprocal mutations, Y155H and T348A into the rat P2X7 receptor reduced agonist-evoked current amplitudes. Substitution of residues surrounding His 155 and Ala348 in the human P2X7 receptor with the corresponding residues of the rat P2X7 receptor did not result in gain-of-function, with the exception F353L. However, the reciprocal mutation L353F in the rat P2X7 receptor had no effect. Taken together, these results strongly indicate that residues 155 and 348 are important in determining the functional expression of P2X7 receptors. In addition, they reveal that the residues at these two positions contribute to the differences in functional expression of human and rat P2X7 receptors. Further investigations into the functional roles of His 155 and Ala348 were performed by studying the effects of mutating to residues with side chains of distinct properties. Substitution of His 155 with leucine and aspartic acid reduced ATP-induced current amplitudes, whilst phenylatanine, arginine and alanine had no significant effect. Mutation of Ala348 revealed a discernible effect on the human P2Xy receptor in that substitution with residues with larger side chains reduced, whereas changes to residues with small side chains increased, the amplitude of ATP-evoked currents. Immunostaining and biotin labelling revealed the H155Y mutation of human P2Xy receptors increased, whilst Y155H of rat receptors decreased surface expression. No such effect on surface expression resulted from reciprocal mutations at position 348. A human P2Xy receptor model, based on the recently determined crystal structure of the zebrafish P2X4 receptor, indicates that His 155 is in the extracellular region, distant from the agonist-binding site and ion-permeating pore, whilst Ala348 is located immediately intracellular to the narrowest part of the ion-conducting pathway. Therefore, the simple and most consistent explanation for the effects of mutating residues at 155 and 348 is that the residue at 155 is important in determining receptor surface expression, and the residue at 348 is involved in single channel function. The monkey P2Xy receptor, which shares 96% sequence homology with the human P2Xy receptor, has been functionally characterised, and its pharmacological properties were similar to that of the human receptor. The monkey P2Xy receptor had a 14-fold higher sensitivity to BzATP over ATP. Furthermore, the sensitivity to ATP and BzATP was slightly lower than in comparison to human P2Xy receptors (2.5- and 2-fold, respectively). The sensitivity of the monkey P2Xy receptor to the P2Xy receptor antagonists KN-62, AZ11645373 and A-438079 was virtually indistinguishable from that of the human P2Xy receptor. Therefore the five amino acids in the extracellular domain that differ between human and monkey P2Xy receptors do not critically interact with these antagonists. The similar pharmacological profiles of human and monkey P2Xy receptors suggests the monkey provides a suitable model for to investigate P2Xy receptor involvement in human diseases.
APA, Harvard, Vancouver, ISO, and other styles
33

Menzies, Robert Ian. "Susceptibility to hypertensive renal injury mediated by P2X receptors." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/14191.

Full text
Abstract:
The renin angiotensin aldosterone system is the dominant hormonal regulatory system controlling sodium balance and therefore blood pres- sure homeostasis. Abnormal modulation of this system is implicated in the pathogenesis of hypertension and end organ injury. We have previously developed the Cyp1a1-Ren2 transgenic rat to model an- giotensin II (ANG II) dependent hypertension. In this model hyper- tension causes renal injury, predominantly in the preglomerular vas- culature. The susceptibility to renal injury has a genetic component. A consomic/congenic study identified angiotensin converting enzyme (Ace) as an important modifer. However, renal injury is unlikely to be in uenced by a single gene. In this thesis it was hypothesised that examination of a renal microar- ray to compare the relative expression in F344 (susceptible) and Lewis (relatively protected) strains would reveal further genetic factors me- diating renal injury susceptibility. Genome wide expression analysis confirmed that Ace was a key modifier gene. Furthermore, the puriner- gic receptors P2x7 and P2x4 were identified as additional candidates. Gene and protein expression of these P2X receptors were both higher in F344 compared with Lewis. Immunohistochemistry localised P2X7 and P2X4 to the renal vasculature and tubules: the expression pattern was similar in both strains but became distinct in the renal medulla. F344, but not Lewis, responded to acute antagonism of P2X7 and P2X4. F344 showed a significant drop in blood pressure but maintained renal blood ow, indicative of tonic renal vasoconstriction. When ANG II was infused into F344 rats, there was a modest increase in blood pressure and an impairment of the pressure-natriuresis mecha- nism but no overt injury. Blood oxygenation-level dependent magnetic resonance imaging of the kidney identified a decrease in renal R2* sig- nal following P2X7 and P2X4 antagonism in ANG II infused F344 rats. P2X7/4 receptor activation reduces oxygenation and suppresses pressure-natriuresis. These effects are pro-biotic and may underpin susceptibility to renal injury.
APA, Harvard, Vancouver, ISO, and other styles
34

Ahn, Jae Suk. "Regulation of P2Y₂ nucleotide receptor expression in salivary glands." free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3012944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Liao, Zhongji. "The role of the P2Y₂ nucleotide receptor in inflammation the mechanisms of P2Y₂ receptor-mediated activation of G proteins /." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://etd.missouri.edu/Fall2007/Dissertation/LiaoZ-030509-D8457/.

Full text
Abstract:
Thesis (Ph.D.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 10, 2009) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
36

Reschke, Cristina Ruedell. "RECEPTORES EP1 E EP3 MODULAM AS CRISES EPILÉPTICAS INDUZIDAS POR PENTILENOTETRAZOL E ÁCIDO CAÍNICO EM CAMUNDONGOS." Universidade Federal de Santa Maria, 2013. http://repositorio.ufsm.br/handle/1/3852.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Epilepsy is one of the most common neurologic disorders. It has been suggested that seizures may be facilitaded by inflammation. PGE2 is one of the most important inflammatory mediators, and facilitates pentylenetetrazol (PTZ)-induced seizures by stimulating EP1 and EP3 receptors. However, up to the present moment, no study has investigated whether EP1 and EP3 receptors blocking attenuate seizures induced by convulsants other than PTZ. It is also unknown whether Na+,K+-ATPase activity alterations are involved in such an effect. Therefore, in the current study we investigated whether EP1 and EP3 ligands (agonists and antagonists) modulate PTZ- and kainic acid (KA)-induced seizures, and whether alterations in Na+,K+-ATPase activity mediate such a protective effect, in mice. EP1 and EP3 antagonists (ONO-8713 and ONO-AE3-240, respectively, 10 Og/kg, s.c.) attenuated PTZ (60 mg/kg, i.p.)- and KA (20 mg/kg, i.p.)-induced seizures. The respective agonists (ONO-DI-004 and ONO-AE-248, 10 Og/kg, s.c.) facilitated seizures in both acute models, and at noneffective doses, prevented the protective effects of the antagonists. Animals injected with PTZ presented decreased Na+,K+-ATPase activity in the cerebral cortex and hippocampus. On the other hand, animals injected with KA presented increased Na+,K+-ATPase activity in the same cerebral structures at the end of the experiment. These divergent findings suggest that alterations in Na+,K+-ATPase activity in both acute models depends on the convulsant agent used and make difficult to establish a relationship between Na+,K+-ATPase activity and seizure development. Moreover, EP1 and EP3 antagonists administration abolished Na+,K+- ATPase activity alterations induced by PTZ and KA, in such a way that these alterations seem to be related more to the presence of ictal phenomenon itself than to the seizure induction mechanisms. Notwithstanding, the currrent results clearly show that EP1 and EP3 receptors might constitute novel targets for anticonvulsants development, since EP1 and EP3 decreased seizures, regardless of the convulsant agent used.
A epilepsia é uma das disfunções neurológicas mais comuns. Tem sido sugerido que as crises epilépticas podem ser facilitadas pela ocorrência de inflamação. A PGE2 é um dos mediadores inflamatórios mais importantes que, agindo por meio dos receptores EP1 e EP3, facilita as convulsões induzidas por pentilenotetrazol (PTZ). Contudo, até a presente data, nenhum estudo investigou, de maneira sistêmica, se a ativação ou bloqueio de receptores EP1 e EP3 facilitam as convulsões induzidas por outros agentes; tampouco se alterações na atividade da Na+,K+-ATPase estão envolvidas nesse efeito. Assim, no presente estudo, investigamos se ligantes (agonistas e antagonistas) de receptores EP1 e EP3 modificam as crises induzidas por PTZ e ácido caínico (KA), e se tais efeitos estão associados a alterações na atividade da enzima Na+,K+-ATPase, em camundongos. Os antagonistas EP1 e EP3 (ONO-8713 e ONO-AE3-240, respectivamente, 10 Og/Kg, s.c.) atenuaram as convulsões induzidas por PTZ (60 mg/Kg, i.p.) e KA (20 mg/Kg). Os seus respectivos agonistas (ONO-DI-004 e ONO-AE-248 de 10 Og/Kg, s.c.) facilitaram as convulsões em ambos modelos agudos de crises epilépticas e, em doses não efetivas para gerar crises, preveniram os efeitos dos antagonistas. Os animais submetidos à administração de PTZ apresentaram, ao final do experimento, a atividade Na+,K+-ATPásica diminuída no córtex cerebral e hipocampo. Por outro lado, animais tratados com KA apresentaram um aumento na atividade Na+,K+-ATPásica nestas mesmas estruturas, que se correlacionou positivamente com a vigência de status epilepticus no momento do sacrifício. Os achados divergentes no que diz respeito à alteração da atividade da Na+,K+-ATPase nos dois modelos de crises agudas sugere que tais alterações estejam relacionadas ao tipo de agente convulsivante utilizado, e dificultam estabelecer, de forma inequívoca, uma relação entre atividade desta ATPase e sensibilidade à crises agudas. Ademais, a administração de antagonistas EP1 e EP3 aboliu as alterações da atividade da Na+,K+-ATPase induzidas tanto por PTZ como por KA, de tal forma que estas parecem estar mais associadas com o fenômeno ictal em si, do que com os mecanismos de indução da crise. Contudo, os resultados mostram de forma clara que os receptores EP1 e EP3 podem se constituir possíveis novos alvos para o desenvolvimento de drogas antiepilépticas, pois antagonistas EP1 e EP3 diminuíram as crises, independente do agente convulsivante utilizado.
APA, Harvard, Vancouver, ISO, and other styles
37

Zambon, Alexander Carlos. "Cloning and signaling properties of canine P2Y₂ and P2Y₁₁ receptors : implications for epithelial cell signaling /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9974757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Majumder, Paromita. "Análise dos receptores P2X2 e P2X4 durante a diferenciação neuronal." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-05102007-145008/.

Full text
Abstract:
Durante o desenvolvimento do sistema nervoso, as oscilações da concentração de cálcio intracelular livre resultam na proliferação celular, migração e diferenciação neuronal. Nesta tese foram investigadas a participação dos receptores ionotrópicos purinérgicos dos tipos P2X2 e P2X4 seletivos ao influxo de cálcio durante a diferenciação neuronal in vitro das células de carcinoma embrionário murino P19. Identificamos o padrão diferencial de expressão de receptores purinérgicos nas células indiferenciadas e neurônios P19. O receptor P2X4 é expresso durante toda a diferenciação neuronal e o receptor P2X2 é detectado na fase tardia da diferenciação em neurônios. Através de ensaios farmacológicos, foi possível identificar a participação dos receptores metabotropicos P2Y e do receptor P2X4 na formação dos corpos embriônicos, na proliferação celular e ou na determinação do fenótipo de progenitor neural. Durante a maturação neuronal os receptores P2X2 e P2Y1 participam da determinação do fenótipo neuronal glutamatérgico NMDA e os receptores P2X2 e P2Y2 no fenótipo neuronal colinérgico. A ausência de inibidores específicos e seletivos aos receptores purinérgicos levou-nos a empregar a técnica SELEX (Systematic Evolution of Ligands by EXponential enrichment) a fim de identificar inibidores seletivos aos receptores P2X2 e P2X4. A técnica envolve a utilização da biblioteca combinatória randômica de RNA 2\'- F pirimidina modificadas resistentes a nucleases. Após 9 ciclos de seleção in vitro de SELEX (ciclo 9-P2X4), as sequências selecionadas mostraram-se seletivas a ligação somente ao receptor P2X4 e não aos receptores P2X2 ou P2X7 através de ensaios de ligação radioligante-receptor. Por patch clamping na configuração whole cell recording identificou-se que além de seletividade ao receptor, que a aplicação do RNA ciclo 9- P2X4 promoveu inibição da corrente ativada pelo ATP somente nos receptores P2X4 e não em P2X2 em celulas 1321N1 astrocitoma transfectadas. A incubação do RNA ciclo 9-P2X4 na concentração de 200 nM com as células no estágio indiferenciado inibiu a formação dos corpos embriônicos. Já utilização de 25 nM, resultou em mudanças morfológicas nas células diferenciadas. Estes dados corroboram com os dados farmacológicos que identificaram a participação do receptor P2X4 na diferenciação precoce. Após 11 ciclos P2X2 de seleção, identificou-se sequências com especificidade de ligação aos receptores P2X2. Aptâmeros, moleculas de RNA com sequência identificada e com alta afinidade ao alvo da seleção, foram isolados de ambas as bibliotecas, ciclo 9 P2X4 e ciclo 11 P2X2. A co-aplicação destes aptâmeros e ATP em ensaios de whole-cell recording resultou na inibição de 30 a 80% da corrente ativada pelo ATP nos receptores P2X2 ou P2X4. Estes testes em células PC12 de rato, que expressa os receptores endógenos, resultou em inibição da corrente ativada pelo ATP de modo semelhante. Além de termos desenvolvido aptâmeros como ferramentas para elucidar as funções dos receptores P2X2 e P2X4 durante o desenvolvimento, diferenciação, em processos fisiológicos e patológicos, estas moléculas resistentes a nucleases são as primeiras identificadas capazes de reconhecer, discernir e inibir dois subtipos de receptores purinérgicos sendo promissores para utilização terapêutica.
During the development of the nervous system, oscillations of intracellular calcium concentrations activate programs of gene expression resulting in proliferation, migration and neuronal differentiation of embryonic cells. In this thesis, the participation of ionotropic P2X2 and P2X4 receptor subtypes, whose receptor channels are highly permeable for calcium influx in the cells, was studied during the process of neuronal differentiation. We have identified differential gene expression of purinergic receptors in undifferentiated and neuronal-differentiated P19 cells. P2X4 receptor expression was present along neuronal differentiation of P19 cells, whereas P2X2 receptor expression was only detected when P19 cells became neurons. Based on purinergic receptor pharmacology we have determined the participation of P2X4 receptors in addition to metabotropic P2Y2 receptors in the formation of embryonic bodies as prerequisites for phenotype determination of P19 neural progenitor cells. Final neuronal maturation of P19 cells in the presence or absence of agonists or antagonists of purinergic receptors implicated the involvement of P2X2, P2Y1, and P2Y2 in the determination of the final neuronal phenotype, such as expression of NMDA-glutamate and cholinergic receptors. In order to further evaluate the functions of these P2X receptors and due to the absence of specific inhibitors for these receptor subtypes, we have used the SELEX technique (Systematic Evolution of Ligands by EXponential enrichment) to select for specific inhibitors for P2X2 and P2X4 receptors. The 2\' -F-pyrimidine modified, nuclease- resistant combinatorial SELEX RNA pool enriched with inhibitors of P2X4 receptors following nine cycles of in vitro selection (cycle 9-P2X4) specifically interacted with P2X4 receptors and not with P2X2 or P2X7 receptors as verified in radioligand-receptor binding studies. Moreover, whole-cell recording measurements using astrocytoma cells expressing recombinant rat P2X2 or P2X4 receptors showed inhibition of P2X4 but not of P2X2 receptors by the selected RNA molecules. RNA molecules selected in vitro in 11 reiterative SELEX cycles using the P2X2 receptor as target specifically bound to membrane extracts containing recombinant P2X2 receptors. From both selected RNA libraries (against P2X4 and P2X2 receptors) aptamers, as RNA molecules with identified sequences and high-affinity binding, were identified by cloning and DNA sequencing. The presence of these aptamers in whole-cell recording experiments resulted in 30-80% inhibition of ATP-induced receptor activity and did not provoke any inhibitory effects on P2X receptors which had not been used as selection target. The activity of the aptamers selected using recombinant receptors as targets in inhibiting wild-type P2X4 or P2X2 receptors was verified in whole-cell recording experiments with PC12 cells which endogenously express both receptor subtypes. In addition of having developed aptamers as tools to elucidate P2X2 and P2X4 receptor functions during neuronal differentiation, these nuclease-resistant aptamers are suitable for in vivo use and may turn into therapeutics in the inhibition of purinergic receptor participation in pathophysiological conditions.
APA, Harvard, Vancouver, ISO, and other styles
39

Bernier, Louis-Philippe. "Functional regulation of P2X receptor channels by phosphoinositides." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110361.

Full text
Abstract:
Long after its initial discovery as part of DNA and as the main source of energy in the cell, the nucleotide adenosine-5'-triphosphate (ATP) is now rightfully considered as an important extracellular signalling molecule. It is now known that purinergic transmission plays significant physiological roles, notably in neuro- and gliotransmission, in the modulation of the innate and adaptive immune response, in smooth muscle constriction and in regulating blood clotting. It is also actively involved in the generation and maintenance of various pathological states, including chronic neuropathic and inflammatory pain.How purinergic signalling can be implicated in such a diverse array of mechanisms via only one signalling molecule comes from the variety of receptors that are activated by ATP. Two major types of ATP-sensitive receptors exist: the P2X ionotropic receptor channels and the metabotropic P2Y receptors. The P2X family of ATP-gated ion channels is composed of seven subunits that assemble as trimers to form receptors with various functional and pharmacological profiles. Like all ion channels, the activity of P2X receptor channels is tightly regulated by orthosteric and allosteric regulation mechanisms. This thesis provides evidence of a novel type of post-translational regulation mechanism where the levels of intracellular phosphoinositides (PIPn) modulate the channel activity of P2X receptors. The first article included in my thesis focuses on the P2X1 subtype, which is mainly involved in smooth muscle constriction in blood vessels and vas deferens, as well as in the control of platelet aggregation and blood clotting. We demonstrate that the activity of the P2X1 receptor channel is positively regulated by membrane PI(4,5)P2 (PIP2). Depleting the intracellular levels of PIP2 decreased the ATP-activated current carried through the P2X1 channel and had an inhibitory effect on ATP-mediated mesenteric artery constriction, a P2X1-dependent process. Direct binding between the P2X1 cytosolic tail and PIP2 is shown to be necessary for the full expression of P2X1 activity.The next article in this thesis describes the PIPn-dependent regulation of the P2X4 receptor channel, which is highly involved in the generation of neuropathic and inflammatory pain through its expression in spinal cord microglia. Results obtained show that complete P2X4 function is dependent on the levels of PIP2 and PI(3,4,5)P3 (PIP3). Both species of phospholipids potentiate the P2X4-mediated ionic current and calcium entry by directly binding to the C-terminal domain of P2X4 subunits. Activation of co-expressed microglial metabotropic receptors can trigger changes in PIP2 or PIP3 levels, which could affect the contribution of P2X4 in pain-inducing mechanisms.In the third report, we investigate the molecular characteristics of the interaction between membrane PIPn and the various P2X receptors that were shown to be directly modulated by the phospholipids. By analyzing the functional and PIPn-binding effects of various mutations performed on the C-terminal domain of the PIPn-sensitive P2X1, P2X4 and P2X7 subtypes as well as on the PIPn-insensitive P2X5 subtype, we identify the PIPn-binding regulatory motif of P2X receptors. The last article included in this thesis examines the dynamic changes in channel permeability brought by sustained activation of the microglial P2X4 receptor. We show that upon sustained ATP application, P2X4 channels form large conductance pores allowing the flux of large organic molecules. The large pore formation of co-expressed microglial P2X7 receptors has been extensively studied; we show here that P2X4-mediated permeation is mechanistically distinct and, in contrast with P2X7, does not induce membrane blebbing or cell death. Furthermore, we demonstrate that membrane PIPn potentiate the formation of this high-conductance P2X4 pore, suggesting that this property can be regulated by metabotropic changes in PIPn levels.
Longtemps après la découverte de sa présence dans l'ADN et de son rôle en tant que principale source d'énergie chimique dans la cellule, le nucléotide adenosine-5'-triphosphate (ATP) est maintenant considéré comme une importante molécule de signalisation extracellulaire. La transmission purinergique est activement impliquée dans plusieurs processus physiologiques, notamment dans la neuro- et glio-transmission, la modulation de la réponse immunitaire innée et adaptative, la constriction vasculaire et la coagulation sanguine. Elle participe aussi à la génération et au maintien de divers états pathologiques, tels la douleur chronique neuropathique et inflammatoire.La signalisation purinergique est impliquée dans des processus aussi diversifiés par l'entremise d'une seule molécule de signalisation grâce à une grande variété de récepteurs activés par l'ATP. Les deux principaux types de récepteurs sensibles à l'ATP sont les récepteurs ionotropiques P2X et les récepteurs métabotropiques P2Y. La famille P2X de canaux ioniques activés par l'ATP est composée de sept sous-unités qui s'assemblent comme trimères pour former des récepteurs possédant divers profils fonctionnels et pharmacologiques. Comme tous les canaux ioniques, l'activité des P2X est étroitement régulée par des mécanismes de régulation orthostériques et allostériques. Cette thèse démontre l'existence d'un nouveau type de mécanisme de régulation post-traductionnel, où les niveaux de phosphoinositides (PIPn) intracellulaires modulent l'activité de canal ionique des récepteurs P2X.Le premier article porte sur le sous-type P2X1, qui contribue à la contraction des muscles lisses dans les vaisseaux sanguins et le canal déférent, ainsi qu'à l'agrégation plaquettaire. Nous démontrons que l'activité du récepteur canal P2X1 est positivement régulée par les PI(4,5)P2 (PIP2) membranaires. La déplétion des niveaux intracellulaires de PIP2 diminue l'amplitude du courant ionique induit par P2X1. Nous montrons que le couplage direct entre le domaine C-terminal cytosolique de P2X1 et PIP2 est nécéssaire pour l'expression complète de l'activité de P2X1.Le second article de cette thèse décrit la régulation PIPn-dépendante du récepteur canal P2X4, qui joue un rôle majeur dans la génération et le maintien de la douleur neuropathique et inflammatoire par son expression dans les microglies de la moelle épinière. Nous démontrons que le fonctionnement de P2X4 dépend des niveaux de PIP2 et de PI(3,4,5)P3 (PIP3). Les deux types de phospholipides potentialisent le courant ionique ainsi que l'entrée de calcium par le canal P2X4 en se liant directement au domaine C-terminal des sous-unités P2X4. Dans le troisième rapport, nous étudions les caractéristiques moléculaires de l'interaction entre les PIPn membranaires et les récepteurs P2X directement modulés par ces phospholipides. En analysant les effets fonctionnels de diverses mutations effectuées sur le domaine C-terminal des sous-types PIPn-dépendant P2X1, P2X4 et P2X7 et sur le sous-type PIPn-indépendant P2X5, nous identifions le motif nécessaire à la liaison P2X-PIPn et à la régulation fonctionnelle du canal par les PIPn.Le dernier article de cette thèse examine les changements dynamiques de la perméabilité du canal ionique apportés par une activation soutenue des récepteurs microgliaux P2X4. Nous montrons que, lors d'une application soutenue d'ATP, les canaux P2X4 forment des pores à haute conductance permettant le flux de molécules organiques à haut poids moléculaire. La formation de larges pores par les récepteurs P2X7 a été étudiée intensivement; nous démontrons ici que la perméation induite par P2X4 est mécanistiquement distincte et, à l'opposé de P2X7, ne mène à aucun réarrangement de la structure membranaire ni à la mort cellulaire. Les PIPn membranaires potentialisent la formation de ces pores à haute conductance par P2X4, suggérant que cette propriété peut être régulée par des changements intracellulaires des niveaux de PIPn.
APA, Harvard, Vancouver, ISO, and other styles
40

Francis, Joanna. "Interactions of PDZ proteins with kainate receptor subunits." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Goodey, G. C. "P2X receptor function in an extreme ionic environment." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1399846/.

Full text
Abstract:
ATP activates P2X receptors in the apical surface of kidney epithelial cells. However, tubular fluid is unusual - with low sodium levels, high calcium levels and acidic in nature. This study investigated how P2X receptors operate in extreme ionic environments. Xenopus oocytes easily tolerated extreme ionic environments. Their membrane properties and pharmacological profile were examined under normal and extreme ionic conditions. It was confirmed that oocytes lack endogenous P2X receptors, and were unaffected by P2X receptor antagonists and allosteric modulators. Also, oocytes lacked muscarinic receptors. The pharmacological profile of P2X2 and P2X4 receptors expressed in oocytes were examined under normal and extreme ionic conditions. Each P2X subtype was activated by ATP and CTP and this activity was affected by extracellular ions. At rat P2X2, reduced extracellular sodium had an inhibitory effect on ATP signalling, which was reversed by acidifying of the medium or intensified by adding calcium to the medium. At rat P2X4, reduced extracellular sodium had a biphasic action (potentiation, then inhibition) on ATP signalling, which was insensitive to acidification but was intensified by adding calcium. A unique electrophysiological property of P2X2-expressing oocytes was used to investigate an ATP-releasing mechanism. An inward current (Ix) was identified and this current was blocked by the P2 receptor antagonist, suramin, and inhibited by the ATP-degrading enzyme, apyrase. The amplitude of IX was affected by the flow rate of the superfusate, confirming that ATP was released by a mechanosensory process. The present results show that ATP may activate P2X receptors present in the kidney, even in the extreme ionic environment of the distal nephron. Salt and water reclamation in the kidney may depend on flow rate, since a common mechanosensory mechanism can release enough ATP to activate those P2X receptors regulating ENaC and AQP2 channel function in the distal nephron.
APA, Harvard, Vancouver, ISO, and other styles
42

White, Pamela J. "The role of P2Y receptors in human vascular smooth muscle." Thesis, De Montfort University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Moore, Samantha. "The role of fast ATP-Gated P2X receptors in inflammation." Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Jiang, Ruotian. "Molecular modus operandi of ligand-gated ion channels : Studies of trimeric P2X receptors and pentameric GABA A receptors." Strasbourg, 2011. http://www.theses.fr/2011STRA6086.

Full text
Abstract:
Le principal objectif de cette thèse a été d’utiliser divers outils chimiques et biologiques afin de mieux décortiquer le mécanisme d’action au niveau moléculaire de deux membres des récepteurs appartenant à deux superfamilles différentes des récepteur canaux activés par les ligands: les récepteurs P2XRs et GABAARs. Le récepteur P2XR est un canal ionique sélectif aux cations activé par fixation de l'ATP extracellulaire. Mon objectif a été d’étudier les mécanismes moléculaires pour la liaison de l’ATP et l'ouverture rapide d’un canal ionique suite à la fixation de l’ATP. En utilisant l’approche d’ingénierie de marquage d’affinité combinés à patch-clamp eletrophysiologie, nous avons défini un site interfacial très large et dynamique. Dans une autre étude, nous avons identifié un pont salin dans une région inexplorée du récepteur impliqué dans la régulation du mouvement d’ouverture du canal. Les récepteurs GABAARs sont impliqués dans la transmission synaptique inhibitrice au niveau du système nerveux central. En utilisant l’électrophysiologie patch-clamp, nous avons décrit sur ces récepteurs la modulation allostérique d’une série de composés synthétiques qui sont les trans-retrochalcones et qui appartiennent à la famille des flavonoïdes. Nous avons mis en évidence que le site d'action de ces nouveaux composés est distinct non seulement du site de liaison des benzodiazépines classiques, mais aussi d'autres sites de modulation connus. Nos données révèlent un mode d'action original et fournissent une base rationnelle pour la découverte de nouveaux médicaments afin de traiter les désordres physiologiques liés aux dysfonctionnements des récepteurs GABAA
This thesis, by using various chemical and biological tools, focuses on the molecular modus operandi of two different superfamilies of ligand-gated ion channels: P2XRs and GABAARs. P2XR is a cation-selective ion channel gated by extracellular ATP (and is implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Here I studied the molecular mechanism underlying ATP binding and channel opening of the P2X receptors. In the ATP-binding site study, we definitely localized the ATP-binding sites in P2X2 receptor through affnity labeling. Our results thus define a large and dynamic inter-subunit ATP-binding pocket. In the “gating”†part, an inter-subunit salt bridge located at the “body” domain that regulates channel gating movement was identified by using charge reversal and charge swapping combined with double mutant cycle analysisPentameric GABAARs form chloride permeable ion channels and mediate inhibitory synaptic transmission in the central nervous system. The modulation of their action is critical for brain normal function and for various pathophysiological conditions. In the GABAARs part, using patch-clamp electrophysiology, we described the allosteric modulation of GABAARs by a series of synthetic compounds that are trans-retrochalcones belonging to the flavonoids family. We characterized their subunit-dependent positive modulations at both synaptic and extrasynaptic GABAARs. Our data reveal an original mode of action and provide a rational basis for hypothesis-driven drug discovery efforts with emphasis on the retrochalcone scaffold for treating GABAA-related central nervous system disorders
APA, Harvard, Vancouver, ISO, and other styles
45

Webb, Rachel J. "Characterisation of P2-receptors on human platelets." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lindner, Anna. "Untersuchung der Interaktion der Untereinheiten im humanen P2X2- und P2X2/3-Rezeptor durch Cystein-substituierte Aminosäuren." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189913.

Full text
Abstract:
P2X-Rezeptoren treten aufgrund ihrer Präsenz in verschiedensten Organsystemen des menschlichen Körpers zunehmend in den Mittelpunkt zahlreicher Forschungsansätze. Besonderes Interesse gilt dabei u.a. den P2X2/3-Rezeptoren, da in ihnen ein neuer Angriffspunkt für die Entwicklung von Schmerztherapeutika gesehen wird. Trotz enormer Fortschritte in diesem Bereich, bleiben die Vorgänge und strukturellen Gegebenheiten, die zur Öffnung der Ionenkanäle führen, weiterhin spekulativ. In der vorliegenden Arbeit wurden mithilfe einer Mutagenese einzelne Aminosäuren des hP2X2-Rezeptors, welche sich in geringer Entfernung zueinander zwischen zwei Untereinheiten befanden, durch Cysteine substituiert. Die Auswahl der Aminosäuren erfolgte dabei anhand eines Homologiemodells des hP2X2-Rezeptors und des Aminosäureabgleichs zwischen den hP2X2- und hP2X3-Rezeptoren. Auf diese Weise sollte deren Interaktion über eine mögliche Ausbildung von Disulfidbrücken zwischen zwei Untereinheiten untersucht werden. Die Rezeptorfunktion wurde anschließend mittels der whole-cell patch-clamp-Technik charakterisiert. Der Rezeptor reagierte bei allen untersuchten Varianten mit einem Funktionsverlust, ein spontan öffnender Kanal konnte somit nicht generiert werden. Durch die Kombination der verschiedenen hP2X2-Rezeptor-Cysteinmutanten mit einer hP2X3-Rezeptor-Cysteindoppelmutante, konnte gezeigt werden, dass sich die verschiedenen Untereinheiten im heterotrimeren hP2X2/3-Rezeptor nicht soweit annähern, dass eine Disulfidbrücken-Bildung zwischen den Untereinheiten möglich wird. Es konnte allerdings verdeutlicht werden, dass für die Aktivierung des heterotrimeren hP2X2/3-Rezeptors zwei funktionelle Bindungsstellen zur Kanalaktivierung ausreichen.
APA, Harvard, Vancouver, ISO, and other styles
47

Tengah, Ampuan Haji Mohamad Asrin Ampuan Haji. "P2Y receptor-mediated excitation-contraction coupling in pulmonary arteries." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=14353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Andrew-Adiamah, Jemma. "The P2X receptor mediated regulation of inhibitory synaptic transmission." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/59614/.

Full text
Abstract:
In the central nervous system ATP can be released by neurons and glial cells through similar pathways as other neurotransmitters. Extracellular ATP targets P2X purinoreceptors, causing an influx of Ca2+ ions which transmit very important messages for neurons and glial cells. Ionic signals modulated by P2X receptors can be transformed into the modulation of GABAA receptors. This work describes the universal interaction of P2X receptors downregulating GABAA mediated currents via a Ca2+-dependent mechanism. I have shown that the postsynaptic modulation of GABA currents by P2X receptors is present in both the peripheral (DRG neurons) and central nervous system (cortical neurons). This effect is strongly regulated by an intracellular signalling cascade involving Protein Kinase C. Furthermore, tonically-activated GABAA receptors expressed on central neurons, containing alpha5 and delta subunits are also affected by this P2X and GABAA receptor interaction. The purinergic modulation of GABAA receptors has significant implications for synaptic plasticity, an important mechanism of learning and memory in the central nervous system. The down-regulation of GABAA receptors on the postsynaptic membrane enhances the activity of NMDA receptors and thus increases synaptic efficacy. The study of the purinergic involvement in the induction of Long Term Potention is far from being understood. Ionotrophic purinoceptors represent a novel pathway of GABAA receptor modulation: release of ATP from neurons and astrocytes activates Ca2+- signalling via purinergic P2X receptors, which can regulate GABAA receptors activity in both peripheral and central nervous system compartments. The physiological implications of this regulatory pathway are yet to be investigated.
APA, Harvard, Vancouver, ISO, and other styles
49

Dayl, Sudad Amer. "Molecular modelling of ATP-gated P2X receptor ion channels." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/42761.

Full text
Abstract:
P2X receptors (P2XRs) are trimeric cation channels activated by extracellular ATP. Human P2XRs (P2X1-7) are expressed in nearly all mammalian tissues, and they are an important drug target because of their involvement in inflammation and neuropathic pain. The aim of this thesis is to address the following questions. P2XR crystal structures have revealed an unusual U-shape conformation for bound ATP; how does the U-shape conformation of ATP and its derivatives affect channel activation? Where and how do the selective, non-competitive inhibitors AZ10606120 and A438079 bind to P2X7R? What is the structure of the hP2X1R intracellular domain in the closed state? Molecular modelling and bioinformatics were used to answer these questions, hypotheses resulting from this work were tested in collaboration with Prof. Evans. Investigating the binding modes of ATP and its deoxy forms in hP2X1R showed that the ribose 2′-hydroxyl group is stabilising the U-shape conformation by a hydrogen bond to the γ-phosphate. The reduced ability of 2′-deoxy ATP to adopt the U-shape conformation could explain its weak agonist action in contrast to full agonists ATP and 3′-deoxy ATP. Ligand docking of AZ10606120 and A438079 into the hP2X7R predicted an allosteric binding site, this site has meanwhile been confirmed by P2X7R/antagonist X-ray structures. MD simulations suggested that unique P2X7R regions (residues 73-79 and T90/T94) contribute to an increase of the allosteric pocket volume compared to the hP2X1R. This difference in size might be the key for selectivity. The hP2X1R intracellular domain in the closed state was modelled ab initio, and interpreted in context of chemical cross-links (collaboration with Prof. Evans). This suggests a symmetrical arrangement of two short b-antiparallel strands within the Nterminal region and short a-helix in the C-terminal region and additional asymmetrical states.
APA, Harvard, Vancouver, ISO, and other styles
50

Pappas, Beverly. "Mechanistic Study of p23-Mediated Aryl Hydrocarbon Receptor Expression." Scholarly Commons, 2018. https://scholarlycommons.pacific.edu/uop_etds/3131.

Full text
Abstract:
The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule which is involved in diverse biological functions ranging from cancer metastasis to immune regulation. This receptor forms a cytoplasmic complex with Hsp90, p23, and XAP2. We have previously reported that down-regulation of p23 triggers degradation of the AHR protein, uncovering a potentially dynamic event which controls the cellular AHR levels without ligand treatment. Here we investigate the underlying mechanisms for this p23 effect using wild-type HeLa and the p23 knockdown HeLa cells. Reduction of the Hsp90 and XAP2 contents, however, did not affect the AHR protein levels, implying that this p23 effect on AHR is more than just alteration of the cytoplasmic complex dynamics. Association of p23 with Hsp90 is not important for the modulation of the AHR levels since exogenous expression of p23 mutants with modest Hsp90-binding affinity effectively restored the AHR message and protein levels. The protein folding property of p23 which resides at the terminal 50-amino acid region is not involved for this p23 effect. Results from our interaction study using the affinity purified thioredoxin fusion proteins and GST fusion proteins and isothermal titration calorimetry showed that p23 directly interacts with AHR and the interaction surface lies within AHR amino acid 1–216 and p23 amino acid 1–110. Down-regulation of the p23 protein content promotes the ubiquitination of AHR, indicating that p23 protects AHR from the ubiquitin-meditated protein degradation. However, the increased ubiquitination is not through the small ubiquitin-like modifier (SUMO) signaling pathway. Troubleshooting and optimization were paramount for understanding and evaluating the p23 and AHR interaction. Specifically, the p23 mutant purification, p23: Hsp90 interaction, transient transfection, p23: AHR assay, and ITC study were phases of this research that required extensive time and critical thinking. These topics were further detailed to outline the specific problems encountered and the various steps taken to alleviate or optimize these issues.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography