Academic literature on the topic 'P(VDF-TrFE) Polymère piézoélectrique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'P(VDF-TrFE) Polymère piézoélectrique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "P(VDF-TrFE) Polymère piézoélectrique":

1

Thevenot, Camille. "Élaboration de membranes polymères piézoélectriques souples en vue d’applications biomédicales." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0197/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le travail présenté ici porte sur la réalisation d’un matériau polymère piézoélectrique destiné à être l’élément sensible d’un capteur de déformation de tissus biologiques. Cela comprend notamment l’étude de l’assouplissement du copolymère P(VDF-TrFE) nécessaire pour se rapprocher des propriétés mécaniques d’une artère, sans dégrader son coefficient piézoélectrique. Des films de P(VDF-TrFE) plastifiés avec du phtalate de diéthyle (DEP) ont été réalisés selon différents protocoles incluant enduction ou spin-coating et polarisation sous haute tension pour activer les propriétés ferroélectriques. Selon les conditions d’élaboration, deux structures distinctes de films ont été obtenues avec des propriétés physiques propres à chacune. Dans le premier type de film, l’étude de la morphologie et des courbes d’hystérésis polarisation-champ électrique a permis de mettre en évidence une nouvelle structuration du matériau, avec la démixtion du plastifiant dans la matrice. Le champ coercitif est dans ce cas fortement abaissé ce qui permet une réduction de la haute tension de polarisation nécessaire allant jusqu’à 40%, même lorsque que le film ne contient plus que 50wt% de P(VDF-TrFE). Le second type de film, obtenu après recuit à plus basse température, présente au contraire une structure quasi homogène et des propriétés proches d’une loi de mélange. Le champ coercitif reste comparable à celui du P(VDF-TrFE) pur mais la flexibilité du matériau est fortement accrue. L’étude des propriétés mécaniques a montré que le plastifiant peut réduire le module de Young du copolymère à 40MPa avec 30wt% de DEP dans le film. De surcroit la polarisation rémanente et le coefficient piézoélectrique sont également renforcés. Des tests in vitro et in vivo, réalisés sur des artères, de capteurs basés sur ces derniers films ont démontré le haut potentiel du matériau à détecter des déformations de tissus mous et à fonctionner aux fréquences biologiques humaines
The work presented here focuses on the preparation of a piezoelectric polymer material aimed to be the sensitive element of a strain sensor of biological tissues. This includes the study of the softening of the copolymer P(VDF-TrFE) necessary to be close of the mechanical properties of an artery, without reducing the piezoelectric coefficient. Plasticized P(VDF-TrFE) films with diethyl phthalate (DEP) were made according to different protocols including doctor blade technique or spin-coating and polarization under high voltage to activate the ferroelectric properties. Depending on the preparation conditions, two distinct structures were obtained with physical properties specific to each of them. For the first type of film, the study of the morphology and the hysteresis loops polarization-electric field showed a new structure of the material, with a demixing of the plasticizer in the matrix. In this case, the coercive field is strongly reduced which allows a decrease of the required high polarization voltage up to 40%, even if the film only contains 50wt% of P(VDF-TrFE). The second type of film, obtained after an annealing at lower temperature, has an almost homogeneous structure and properties close to a mixing law. The coercive field remains comparable to that of the pure P(VDF-TrFE) but the flexibility of the material is greatly increased. The study of the mechanical properties showed that the plasticizer can reduce the Young modulus to 40MPa for 30wt% of DEP in the film. In addition, the remanent polarization and the piezoelectric coefficient are also reinforced. In vitro and in vivo experiments, performed on arteries, of sensors based on these films demonstrated the high potential of the material to detect the strain of soft tissues and to function at biologic human frequencies
2

Sukumaran, Sunija. "Design and preparation of a micro-harvesting device made of hybrid SMA/Piezoelectric polymer composite." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La récupération d'énergie à petite échelle pour alimenter les appareils électroniques autoalimentés se développe considérablement. À cet égard, la possibilité de combiner la récolte thermique et mécanique à l'aide de matériaux intelligents fait l'objet d'une plus grande attention. Nous avons présenté la faisabilité de l'utilisation d'un polymère piézoélectrique P(VDF-TrFE) couplé à un alliage à mémoire de forme (AMF) NiTi pour récolter à la fois l'énergie mécanique et thermique dans des dispositifs évolutifs simples. Un composite multicouche AMF-P(VDF-TrFE) a été élaboré et a démontré ses performances électro-thermo-mécaniques. Nous avons conçu un banc expérimental pour effectuer la caractérisation électro-thermomécanique du composite, permettant de mesurer la réponse piézoélectrique lorsqu'il est soumis à un chauffage et un refroidissement périodique. De plus, nous avons réalisé l'analyse par éléments finis du composite AMF/Piézoélectrique et simulé les principales propriétés du SMA telles que le comportement super-élastique, l'effet de mémoire de forme unidirectionnel et l'effet de mémoire de forme bidirectionnel, pour finalement identifier le comportement électro-thermomécanique effectif global du composite AMF-polymère piézoélectrique. Enfin, afin de récolter efficacement la charge électrique générée à partir du film P(VDF-TrFE), nous avons étudié et comparé deux types de convertisseurs élévateurs intégrés, et déterminé les conditions pour une collecte d’énergie effective. Ces résultats sont prometteurs et montrent la faisabilité de ce composite multicouche pour alimenter de manière autonome de petits appareils électroniques tels que des capteurs sans fil, des MEMS et des dispositifs biomédicaux
Small-scale energy harvesting to power self-powered electronic devices is tremendously increasing. In this regard, the ability to combine thermal and mechanical harvesting using smart materials pays more attention. We have presented the feasibility of using P(VDF-TrFE) piezoelectric polymer coupled with NiTi shape memory alloy (SMA) to harvest both mechanical and thermal energy in simple scalable devices. A novel multi-layered SMA-P(VDF-TrFE) composite was fabricated and carried out their electro-thermo-mechanical performance. We have designed and developed an experimental bench to perform the electro-thermomechanical characterization of the composite, allowing us to measure the piezoelectric response when it is subjected to periodic heating and cooling. Furthermore, we performed the finite element analysis of the SMA-Piezoelectric composite and simulated the main properties of SMA such as superelastic behavior, one-way shape memory effect, and two-way shape memory effect, to finally identify the overall effective electro-thermomechanical behavior of the SMA-piezoelectric polymer composite. Finally, in order to efficiently harvest the electric charge generated from the P(VDF-TrFE) film, we have studied and compared two types of integrated converters and determined the conditions for effective energy harvesting. These results are promising, which showing the feasibility of this multilayered composite to power small electronics such as wireless sensors, MEMS and biomedical devices in an autonomous way
3

Gusarova, Elena. "Dispositifs souples pour la récupération d’énergie à base de matériaux organiques piezoélectriques P(VDF-TrFE) imprimés." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT139/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le but de cette thèse était d’étudier des solutions innovantes pour la récupération d’énergie pour pouvoir alimenter de manière autonome les futurs capteurs et nœuds communicants sans fil de l’Internet des Objets (IoT pour Internet of Things). Le travail s’est focalisé sur des matériaux piézoélectriques souples et sur une approche composite et multiphysique. L’objectif est de récupérer de l’énergie à partir de déformations directes ou induites provenant de sources à la fois mécaniques et thermiques et en particulier de sources négligées jusqu’alors (lentes et de faibles intensités). L’idée maitresse est l’hybridation de plusieurs matériaux fonctionnels avec un cœur du système constitué par des microgénérateurs piézoélectriques (et pyroélectriques) imprimés nécessaires à la génération de charges électriques. L’originalité de ce travail est d’avoir réalisé un système de récupération d’énergie entièrement flexible, au format d’une carte de crédit et compatible avec de plus grandes dimensions, en utilisant des copolymères piézoélectriques de P(VDF-TrFE) sous forme d’encres. Ce matériau est flexible et particulièrement résistant, ce qui le rend attractif pour desapplications mettant en jeu formes complexes, notamment, courbes. Un autre avantage du copolymère de P(VDF-TrFE) est qu’il ne nécessite pas de pré-déformation mécanique comme pour le polymère PVDF et il commence à être aujourd’hui disponible sous forme d’encres pour l’électronique imprimée, ce qui simplifiera et réduira les coûts de fabrication à termes.En premier, nous décrivons le procédé de fabrication par sérigraphie des microgénérateurs en P(VDF-TrFE), suivi par les caractérisations ferroélectriques puis piézoélectriques des dispositifs. A cet effet, nous avons développé des techniques de mesures originales en circuit ouvert qui ont été testées et validées au préalable avec des échantillons dePVDF commercial. La dernière étape a été de réaliser un prototype de récupération d’énergie thermique flexible de faible encombrement (sans radiateur). Cela a été réalisé en hybridant les microgénérateurs précédemment fabriqués avec des feuilles d’alliages à mémoire de forme thermique à base de NiTi, qui est un matériau sensible à un seuil de température donnée.Les résultats phares de cette étude sont : 1) le dépôt multicouches de P(VDF-TrFE)combiné au dépôt d’une électrode souple en PEDOT:PSS, β) l’établissement des caractéristiques ferroélectriques et piézoélectriques en fonction de l’épaisseur de P(VDFTrFE) et enfin γ) la détermination d’un coefficient g31 supérieur à la normale avec0.15 V·m/N. Aussi, nous avons démontré la capacité de ces microgénérateurs à délivrer des tensions utiles de l’ordre de 10 V avec ici une densité d’énergie de proche de 500 μJ/cm3, ces valeurs étant limitées aux conditions de test utilisées.Nous concluons ce travail sur une preuve de concept fonctionnelle de récupérateur d’énergie thermique flexible apte à détecter ou utiliser des variations lentes et faibles de température à partir de sources élémentaires, produisant pour l’instant γ7 V (correspondant à95 μJ) à 65 ºC, et qui à termes pourront être l’air ambiant (chaud ou froid) ou la chaleur de la peau
This work aims to study innovative solutions for energy harvesting applicable toautonomous wireless sensors for IoT (Internet of Things). It is focused on flexiblepiezoelectric composite materials and a multi-physical approach. The objective is to harvestenergy via strain-induced phenomena from both mechanical and thermal sources, andparticularly sources neglected so far (slow and low). The main idea is the hybridization ofdifferent functional materials with the core of the system being screen printed piezo/pyroelectricmicrogenerators, mandatory to generate electrical charges. The originality of thiswork is to realize large area flexible energy harvesting systems by using ink-basedpiezoelectric copolymers of polyvinylidene fluoride P(VDF-TrFE). This material is veryflexible and durable which makes it attractive for applications in systems with complexshapes. Another benefit of P(VDF-TrFE) is that it does not need to be pre-stretched as PVDFand it is now available in inks for printable electronics which can simplify and reduce theprice of the fabrication process.We first describe the fabrication process of the screen printed P(VDF-TrFE)microgenerators, followed by ferroelectric and piezoelectric characterizations. For thispurpose we have developed optimized methods in open-circuit conditions adapted for flexiblesystems tested and validated on commercial bulk PVDF. The last step was to realize a lowprofile thermal flexible energy harvester prototype (no radiator). It was done by hybridizationof the fabricated microgenerators and foils of shape memory NiTi-based alloy, which is afunctional material sensitive to a given temperature threshold.The key outcomes of this work are: 1) the successful deposition of multilayers ofP(VDF-TrFE) and organic PEDOT:PSS electrode, 2) dielectric, ferroelectric and directpiezoelectric constants reported as a function of film thickness, and 3) the g31 direct voltagecoefficient, measured for the first time, and showing the record value of 0.15 V·m/N. Also,we have demonstrated that in open-circuit conditions, the microgenerators can produce auseful strain-induced voltage of 10 V with an energy density close to 500 μJ/cm3, these valuesbeing limited by the experimental set-up.The concept of thermal energy harvesting composite based on thin film screen printedP(VDF-TrFE) microgenerators was realized and demonstrated to be effective. We concludewith a functional prototype of flexible energy harvester, able to detect non-continuous slowthermal events and producing 37 V (corresponding to 95 μJ) at 65 ºC
4

Della, Schiava Nellie. "Development of electrostrictive P(VDF-TrFE-CTFE) terpolymer for medical applications." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Au XXIe siècle, les maladies cardiovasculaires sont devenues une cause majeure de mortalité, la première au monde, la deuxième en France après les cancers. En effet, les facteurs de risque cardiovasculaires ont augmenté de façon significative au cours des dernières décennies et ce phénomène se poursuit aujourd'hui. Ces facteurs sont responsables du développement de l’athérosclérose et mènent à des syndromes coronariens aigus, des crises cardiaques, des accidents cérébrovasculaires, des insuffisances rénales mais également à des maladies artérielles périphériques et à des anévrysmes artériels. Le traitement de première ligne de l'athérosclérose, indépendamment du territoire artériel concerné, est le traitement médical. Mais, si malgré le meilleur traitement médical, les symptômes sont importants pour les patients, le traitement interventionnel peut être considéré. Pour les anévrismes et pour la maladie artérielle périphérique, la chirurgie vasculaire est possible. La chirurgie vasculaire peut être divisée en deux catégories : la chirurgie ouverte conventionnelle et les techniques endovasculaires. Au cours des dix dernières années, les techniques endovasculaires sont devenues le traitement de première ligne pour la plupart de ces lésions artérielles. Elles sont devenues le traitement de première ligne, car elles permettent une réduction considérable de la morbi-mortalité chirurgicale et une grande réduction des coûts de santé
In the 21st century, cardiovascular diseases became a major cause of mortality, the first in the entire world, the second in France after cancers. Indeed, cardiovascular risk factors have been increasing significantly over the past decades and this phenomenon is ongoing today. These factors cause atherosclerosis and lead to coronary acute syndrome, heart attacks, cerebrovascular accident, renal insufficiency but also to peripheral arterial disease (PAOD) and arterial aneurysms. First line treatment of atherosclerosis, regardless of arterial territory concerned, is medical treatment. But, if despite best medical treatment, symptoms are important for patients, interventional treatment may be considered. For aneurysms and for PAOD, vascular surgery is possible. Vascular surgery can be divided into two categories: conventional open repair (COR) and endovascular techniques (ET). During the last ten years, ET became the first line treatment for most arterial injuries. ET has become the first line treatment because it allows a considerable reduction in surgical morbi-mortality and a great reduction in health costs
5

Vacher, Claire. "Intégration du copolymères P(VDF-TrFE) à une nouvelle technologie de capteurs pyroélectriques : application à la détection d'empreintes digitales." Montpellier 2, 2007. http://www.theses.fr/2007MON20122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Depuis les années 2000, ATMEL fabrique des capteurs pyroélectriques pour la détection d'empreintes digitales. Le but de cette thèse est de faire évoluer la technologie actuelle vers une autre plus simple, moins coûteuse et plus robuste, et d'acquérir une maîtrise du matériau pyroélectrique et de ces performances. Notre travail a consisté, dans un premier temps, à comprendre en détail le comportement du P(VDF-TrFE) pyroélectrique, utilisé dans le capteur, à travers l'influence des traitements thermiques sur la morphologie des structures cristallines et sur le coefficient pyroélectrique. Les traitements thermique au-delà de la température de fusion se sont avérés les plus adaptés à l'obtention d'une phase cristalline ferroélectrique bêta stable et suffisamment cristallisée. Parallèlement, notre étude a démontré la possibilité d'améliorer légèrement l'activité pyroélectrique (d'environ 4 ou 5µC/m²/K) uniquement en modifiant certains paramètres lors de l'application du champ électrique. Une étude sur la relation entre les paramètres de fabrication du copolymère, ces caractéristiques de mise en œuvre et ces performances pyroélectriques a permit de définir le matériau cible à approvisionner. Puis, nous nous sommes attachés à l'amélioration de l'adhérence du copolymère au sein de l'empilement technologique du capteur d'empreintes. Cette étape étant indispensable pour aboutir à l'élaboration d'une nouvelle structure. Deux solutions ont été retenues : l'une basée sur l'introduction d'un promoteur d'adhérence sous le copolymère et l'autre en substituant le copolymère lui-même par un mélange P(VDF-TrFE) /PMMA2%. Ce qui a permit de créer une nouvelle structure dont le nombre d'étape du procédé a été réduit de 5 à 3 briques technologiques
Since the 2000s, ATMEL manufactures pyroelectric sensor for the detection of fingerprints. The aim of this PhD is to change the current technology to another easier, less expensive and more robust, and to acquire a pyroelectric material and performance. Our work consisted, as a first step, to understand in detail the behavior of P (VDF-TrFE) pyroelectric used in the sensor, through the influence of heat treatment on the morphology of crystalline structures and the pyroelectric coefficient. Beyond the melting temperature, the thermal treatments was shown to be the most suitable to develop a bêta ferroelectric stable phase and sufficiently crystallized. Meanwhile, our study has demonstrated the ability to improve slightly the pyroelectric activity (about 4 or 5 µ C / m / K) only by modifying certain parameters when applying electric field. A study on the relationship between the production parameters of the copolymer and the pyroelectric performances helped us to define the target material. Then, we have improved the adhesion of the copolymer on the different substrates in the fingerprint sensor. This step is crucial for achieving the development of a new structure. Two solutions have been identified: one based on the introduction of an adhesion promoter under the copolymer and the other copolymer by substituting itself as a blend P(VDF-TrFE) / PMMA2%. As a consequence, we created a new structure in which the number of step of the process was reduced from five to three technological steps
6

Glasser, Alizée. "Polymer Electronic Inks : Synthesis, Formulation and Processing." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dans ce travail, deux encres fonctionnelles pour l’électronique imprimée ont été étudiées. La première est composée d’un polymère semi-conducteur, le poly(3,4-éthylène dioxythiophène) (PEDOT), qui forme un complexe avec un polyanion isolant, le poly(4-styrène trifluorométhyl (bissulfonylimide)) (PSTFSI). Celui-ci stabilise le PEDOT dans l’eau. La deuxième encre contient un polymère piézoélectrique, le poly(fluorure de vinylidène-co-trifluoroéthylène) (P(VDF­TrFE)), dans des solvants organiques. Les propriétés rhéologiques, capillaires et de mouillage de ces encres doivent être ajustées par formulation pour les rendre imprimables par divers procédés d’impression. Les encres PEDOT ont été formulées pour l’impression jet d’encre, la sérigraphie, le dépôt avec une racle rigide (doctor blade) ou le dépôt de lignes avec une lame souple. Il a été montré qu’aucun additif n’est nécessaire pour modifier les propriétés rhéologiques de ces encres : un simple ajustement de la concentration en polymère leur permet de passer d’un comportement Newtonien à rhéofluidifiant avec des propriétés de gel. En revanche, divers additifs ont été ajoutés pour améliorer les propriétés de mouillage, d’élasticité des encres, et de conductivité des films une fois ceux-ci séchés. Les encres P(VDF­TrFE) ont été formulées pour la sérigraphie. Leur comportement newtonien a été rendu rhéofluidifiant en utilisant soit un agent gélifiant, qui modifie l’agencement du polymère en solution, soit un mélange d’un bon et d’un mauvais solvant du polymère, qui résulte en une micro­émulsion. Une fois les propriétés des films séchés étudiées, les deux types d’encres ont été employées pour créer des capteurs de pression fonctionnels
In this work, two organic functional inks for printed electronic were studied. The first is composed of a semi-conducting polymer, poly(3,4-ethylene dioxythiophene) (PEDOT), in complex with an insulating polyanion, poly(4-styrene trifluoromethyl (bissulfonylimide)) (PSTFSI), which stabilizes PEDOT in water. The second ink contains the piezoelectric polymer poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF­TrFE)) in organic solvents. To be processable using a wide range of deposition processes, the rheological behaviors, wettability and capillary properties of these inks have to be adjusted. For that purpose, both types of inks were formulated. PEDOT inks were formulated for inkjet printing, screen-printing, doctor blading, and for a deposition of lines using a soft blade. No additive is necessary to modify the rheological properties of these inks: by simply tuning the concentration in polymer, their behavior go from Newtonian to shear­thinning with gel properties. Further formulations to improve the wettability, the elasticity of the inks, and the conductivity of dried films were performed. P(VDF­TrFE) inks were formulated for screen-printing using a gelifying agent, which modify the organization of the polymer in solution, or a mixture of a good and a poor solvent, which gives rise to a micro-emulsion. The Newtonian inks thereby become shear-thinning. Once the properties of the dried films were studied, both types of polymeric inks were used to create functional pressure sensors

To the bibliography