Academic literature on the topic '(p,q)-Laplacian'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '(p,q)-Laplacian.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "(p,q)-Laplacian"
Hsu, Tsing-San, and Huei-Li Lin. "Multiplicity of Positive Solutions for ap-q-Laplacian Type Equation with Critical Nonlinearities." Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/829069.
Full textMotreanu, Dumitru. "Quasilinear Dirichlet problems with competing operators and convection." Open Mathematics 18, no. 1 (January 1, 2020): 1510–17. http://dx.doi.org/10.1515/math-2020-0112.
Full textMotreanu, Dumitru. "Quasilinear Dirichlet problems with competing operators and convection." Open Mathematics 18, no. 1 (December 22, 2020): 1510–17. http://dx.doi.org/10.1515/math-2020-0112.
Full textAbolarinwa, Abimbola, and Shahroud Azami. "Comparison estimates on the first eigenvalue of a quasilinear elliptic system." Journal of Applied Analysis 26, no. 2 (December 1, 2020): 273–85. http://dx.doi.org/10.1515/jaa-2020-2024.
Full textGasiński, Leszek, and Nikolaos S. Papageorgiou. "Resonant Anisotropic (p,q)-Equations." Mathematics 8, no. 8 (August 10, 2020): 1332. http://dx.doi.org/10.3390/math8081332.
Full text李, 燕茹. "On a Class of (p(u),q(u))-Laplacian Problem." Pure Mathematics 11, no. 04 (2021): 586–98. http://dx.doi.org/10.12677/pm.2021.114072.
Full textPapageorgiou, Nikolaos S., Dongdong Qin, and Vicenţiu D. Rădulescu. "Nonlinear eigenvalue problems for the (p,q)–Laplacian." Bulletin des Sciences Mathématiques 172 (November 2021): 103039. http://dx.doi.org/10.1016/j.bulsci.2021.103039.
Full textHaghaiegh, Somayeh, and Ghasem Afrouzi. "Sub-super solutions for (p-q) Laplacian systems." Boundary Value Problems 2011, no. 1 (2011): 52. http://dx.doi.org/10.1186/1687-2770-2011-52.
Full textManouni, Said El, Kanishka Perera, and Ratnasingham Shivaji. "On singular quasi-monotone (p, q)-Laplacian systems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 142, no. 3 (June 2012): 585–94. http://dx.doi.org/10.1017/s0308210510001356.
Full textHumphries, Peter. "Spectral Multiplicity for Maaß Newforms of Non-Squarefree Level." International Mathematics Research Notices 2019, no. 18 (December 8, 2017): 5703–43. http://dx.doi.org/10.1093/imrn/rnx283.
Full textDissertations / Theses on the topic "(p,q)-Laplacian"
SILVA, José de Brito. "O método das sub e supersoluções para um sistema do tipo (p,q)-Laplaciano." Universidade Federal de Campina Grande, 2013. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1388.
Full textMade available in DSpace on 2018-08-08T20:06:07Z (GMT). No. of bitstreams: 1 JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) Previous issue date: 2013-10
Capes
Neste trabalho discutiremos a existência de soluções fracas positivas para um sistema do (p, q)-Laplaciano com mudança de sinal nas funções de peso, com domínio limitado e fronteira suave. Para garantir a existência de soluções fracas positivas primeiramente asseguraremos a solução positiva de um problema calásico que é o problema de autovalor do p-laplaciano, e do problema "linear"do p-laplaciano com condição zero de Dirichlet. Feito isto usaremos a existência destas soluções para assegurar que o problema em questão admite solução fraca positiva, via o método das sub-super-soluções
In this work we discuss the existence of weak positive solutions for a system (p, q)- Laplacian with change of sign in the weight functions with bounded domain and smooth boundary. To ensure the existence of weak positive solutions first will ensure a positive solution to a classic problem that is the problem eigenvalue p-Laplacian value, and the "linear"problem with zero condition p-Laplacian Dirichelt. Having done this we use the existence of these solutions to ensure that the problem in question admits a weak positive solution via the method of sub-super-solutions.
Baldelli, Laura. "Existence and multiplicity results for nonlinear elliptic problems." Doctoral thesis, 2022. http://hdl.handle.net/2158/1261959.
Full textBook chapters on the topic "(p,q)-Laplacian"
Motreanu, Dumitru, and Viorica Venera Motreanu. "(p, q)–Laplacian Equations with Convection Term and an Intrinsic Operator." In Differential and Integral Inequalities, 589–601. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27407-8_22.
Full textAzroul, Elhoussine, and Athmane Boumazourh. "A Sub-supersolutions Method for a Class of Weighted (p(.), q(.))-Laplacian Systems." In Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications, 21–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26149-8_3.
Full textJiang, Congying, and Chengmin Hou. "The Existence of Multiple Positive Solutions of a Riemann-Liouville Fractional q-Difference Equation Under Four-Point Boundary Value Condition with p-Laplacian Operator." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220008.
Full textConference papers on the topic "(p,q)-Laplacian"
Rasouli, S. H., and G. A. Afrouzi. "On the nonexistence and uniqueness of positive weak solutions for nonlinear multiparameter elliptic systems involving the (p, q)‐Laplacian." In ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525205.
Full text