Academic literature on the topic 'P-group'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'P-group.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "P-group"
Martin, Ursula. "Almost all $p$-groups have automorphism group a $p$-group." Bulletin of the American Mathematical Society 15, no. 1 (July 1, 1986): 78–83. http://dx.doi.org/10.1090/s0273-0979-1986-15441-8.
Full textDirik, Deniz, and Ahmet Ufuk Komuroglu. "The effect of different doeses of aspirin application on oxidative stress in ovarian tissue." Medical Science and Discovery 8, no. 8 (August 16, 2021): 475–79. http://dx.doi.org/10.36472/msd.v8i8.585.
Full textGuerboussa, Yassine, and Bounabi Daoud. "Adjoint groups of $p$-nil rings and $p$-group automorphisms." Bulletin of the Belgian Mathematical Society - Simon Stevin 21, no. 2 (May 2014): 339–49. http://dx.doi.org/10.36045/bbms/1400592629.
Full textPark, Hong Goo. "p-groups in the Betti-Mathieu group." Linear Algebra and its Applications 234 (February 1996): 125–35. http://dx.doi.org/10.1016/0024-3795(94)00091-3.
Full textOort, Frans. "Finite Group Schemes and $p$-Divisible Groups." Notices of the International Congress of Chinese Mathematicians 8, no. 1 (2020): 55–78. http://dx.doi.org/10.4310/iccm.2020.v8.n1.a5.
Full text.A. AWAD, ALAA. "On unit P-Groups in Group Algebra." Journal of University of Anbar for Pure Science 3, no. 1 (April 1, 2009): 135–39. http://dx.doi.org/10.37652/juaps.2009.15512.
Full textKhukhro, E. I., and N. Yu Makarenko. "Finite $p$-groups with a Frobenius group of automorphisms whose kernel is a cyclic $p$-group." Proceedings of the American Mathematical Society 143, no. 5 (January 22, 2015): 1837–48. http://dx.doi.org/10.1090/s0002-9939-2015-12287-3.
Full textTakegahara, Yugen. "Zeta functions of integral group rings of abelian (p,p)-groups." Communications in Algebra 15, no. 12 (January 1987): 2565–615. http://dx.doi.org/10.1080/00927878708823553.
Full textJAIN, VIVEK K., PRADEEP K. RAI, and MANOJ K. YADAV. "ON FINITE p-GROUPS WITH ABELIAN AUTOMORPHISM GROUP." International Journal of Algebra and Computation 23, no. 05 (August 2013): 1063–77. http://dx.doi.org/10.1142/s0218196713500161.
Full textKukharev, A. V., and G. E. Puninski. "Serial Group Rings of Finite Groups. p-nilpotency." Journal of Mathematical Sciences 202, no. 3 (September 18, 2014): 422–33. http://dx.doi.org/10.1007/s10958-014-2052-3.
Full textDissertations / Theses on the topic "P-group"
Weber, Harald. "Group rings and twisted group rings for a series of p-groups." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10761310.
Full textWilson, James B. "Group decompositions, Jordan algebras, and algorithms for p-groups /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8302.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 121-125). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Wilson, James B. 1980. "Group decompositions, Jordan algebras, and algorithms for p-groups." Thesis, University of Oregon, 2008. http://hdl.handle.net/1794/8302.
Full textFinite p -groups are studied using bilinear methods which lead to using nonassociative rings. There are three main results, two which apply only to p -groups and the third which applies to all groups. First, for finite p -groups P of class 2 and exponent p the following are invariants of fully refined central decompositions of P : the number of members in the decomposition, the multiset of orders of the members, and the multiset of orders of their centers. Unlike for direct product decompositions, Aut P is not always transitive on the set of fully refined central decompositions, and the number of orbits can in fact be any positive integer. The proofs use the standard semi-simple and radical structure of Jordan algebras. These algebras also produce useful criteria for a p -group to be centrally indecomposable. In the second result, an algorithm is given to find a fully refined central decomposition of a finite p -group of class 2. The number of algebraic operations used by the algorithm is bounded by a polynomial in the log of the size of the group. The algorithm uses a Las Vegas probabilistic algorithm to compute the structure of a finite ring and the Las Vegas MeatAxe is also used. However, when p is small, the probabilistic methods can be replaced by deterministic polynomial-time algorithms. The final result is a polynomial time algorithm which, given a group of permutations, matrices, or a polycyclic presentation; returns a Remak decomposition of the group: a fully refined direct decomposition. The method uses group varieties to reduce to the case of p -groups of class 2. Bilinear and ring theory methods are employed there to complete the process.
Adviser: William M. Kantor
Blackburn, Simon R. "Group enumeration." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:caac5ed0-44e3-4bec-a97e-59e11ea268af.
Full textp2andfrasl;27m3+O(m2). (1) We show that the number of groups of nilpotency class at most 3 and order pm satisfies (1). We prove a similar result concerning the number of graded Lie rings of order pm generated by their first grading.
Welch, Amanda Renee. "Characterizing Zero Divisors of Group Rings." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52949.
Full textMaster of Science
Johansson, Isak. "Themod p Cohomology of the ProjectiveUnitary Group." Thesis, KTH, Matematik (Avd.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229678.
Full textDenna uppsats inleds med en introduktion till spektralsekvenser. Vi visar hur spektrala sekvenser uppkommer från exakta par. Vidare presenteras Serres spektralsekvens, egenskaper hos mod p kohomologin och den duala versionen av Eilenberg-Moores spektralsekvens. Fiberknippen, huvudknippen, klassificerande rum och Cherns klasser diskuteras även och ligger till grund för våra resultat. Vi beräknar mod p kohomologin av den projektiva unitära gruppen. Slutligen beräknar vi mod 3 kohomologin av det klassificerande rummet av den projektiva unitära gruppen av ordning 3.
Schoemann, Claudia. "Représentations unitaires de U(5) p-adique." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20101.
Full textWe study the parabolically induced complex representations of the unitary group in 5 variables - U(5)- defined over a non-archimedean local field of characteristic 0. This is Qp or a finite extension of Qp ,where p is a prime number. We speak of a 'p-adic field'.Let F be a p-adic field. Let E : F be a field extension of degree two. Let Gal(E : F ) = {id, σ}. We write σ(x) = overline{x} forall x ∈ E. Let | |p denote the p-adic norm on E. Let E* := E {0} and let E 1 := {x ∈ E | x overline{x} = 1} .U(5) has three proper parabolic subgroups. Let P0 denote the minimal parabolic subgroup and P1 andP2 the two maximal parabolic subgroups. Let M0 , M1 and M2 denote the standard Levi subgroups and let N0 , N1and N2 denote unipotent subgroups of U(5). One has the Levi decomposition Pi = Mi Ni , i ∈ {0, 1, 2} .M0 = E* × E* × E 1 is the minimal Levi subgroup, M1 = GL(2, E) × E 1 and M2 = E* × U (3) are the two maximal parabolic subgroups.We consider representations of the Levi subgroups and extend them trivially to the unipotent subgroups toobtain representations of the parabolic groups. One now performs a procedure called 'parabolic induction'to obtain representations of U (5).We consider representations of M0 , further we consider non-cuspidal, not fully-induced representationsof M1 and M2 . For M1 this means that the representation of the GL(2, E)− part is a proper subquotientof a representation induced from E* × E* to GL(2, E). For M2 this means that the representation of theU (3)− part of M2 is a proper subquotient of a representation induced from E* × E 1 to U (3).As an example for M1 , take | det |α χ(det) StGL2 * λ' , where α ∈ R, χ is a unitary character of E* , StGL2 is the Steinberg representation of GL(2, E) and λ' is a character of E 1 . As an example forM2 , take | |α χ λ' (det) StU (3) , where α ∈ R, χ is a unitary character of E* , λ' is a character of E 1 andStU (3) is the Steinberg representation of U (3). Note that λ' is unitary.Further we consider the cuspidal representations of M1 .We determine the points and lines of reducibility of the representations of U(5), and we determinethe irreducible subquotients. Further, except several particular cases, we determine the unitary dual ofU(5) in terms of Langlands-quotients.The parabolically induced complex representations of U(3) over a p-adic field have been classied byCharles David Keys in [Key84], the parabolically induced complex representations of U(4) over a p-adicfield have been classied by Kazuko Konno in [Kon01].An aim of further study is the classication of the induced complex representations of unitary groupsof higher rank, like U (6) or U (7). The structure of the Levi subgroups of U (6) resembles the structureof the Levi subgroups of U (4), the structure of the Levi groups of U (7) resembles those of U (3) and ofU (5).Another aim is the classication of the parabolically induced complex representatioins of U (n) over ap-adic field for arbitrary n. Especially one would like to determine the irreducible unitary representations
Smith, Duncan Alexander Mathematics UNSW. "The Families with Period 1 of 2-groups of Coclass 3." Awarded by:University of New South Wales. Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17792.
Full textCrestani, Eleonora. "Monotone 2-Groups." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426499.
Full textI problemi di generazione sono problemi estremamente interessanti nella teoria dei gruppi finiti. Tali problemi spesso si riducono a problemi sui generatori di p-gruppi. Questo ha portato ad un sempre maggiore interesse per i problemi di generazione nei p-gruppi e allo studio di classi di p-gruppi finiti in cui i generatori del gruppo e dei sottogruppi soddisfano alcune precise condizioni. Di particolare interesse é la classe dei p-gruppi finiti G tali che il numero di generatori di ogni sottogruppo H di G è minore o uguale del numero di generatori di G. Esempi di p-gruppi appartenenti a questa classe sono i p-gruppi abeliani, i p-gruppi modulari e i p-gruppi powerful. Soddisfano tale proprietà anche i p-gruppi monotoni. Per questi ultimi ricordiamo la definizione. Definizione. Dato G un gruppo, sia d(G) il numero di generatori di G. Un p-gruppo G si dice monotono se per ogni H e K sottogruppi di G con H contenuto in K, si ha che d(H) è minore o uguale a d(K). I p-gruppi monotoni sono stati introdotti da A. Mann durante una conferenza tenutasi a Saint Andrews nel 1985. Lo stesso autore, in "The number of generators of finite p-groups", lavoro pubblicato nel 2005, studia i p-gruppi monotoni e li classifica per p dispari. Del caso p=2, non viene data alcuna classificazione ma vengono date alcune proprietà interessanti. Ad esempio, Mann dimostra che un 2-gruppo G è monotono se e solo se i sottogruppi 2-generati di G sono metaciclici. In questa tesi vengono studiati e classificati completamente i 2-gruppi monotoni.
Schwingel, Ruth. "Two matrix group algorithms with applications to computing the automorphism group of a finite p-group." Thesis, Queen Mary, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313397.
Full textBooks on the topic "P-group"
Eng-chye, Tan, and Zhu Chen-bo, eds. Representations of real and p-adic groups. Singapore: Singapore University Press, 2004.
Find full textRapoport, M. Period spaces for p-divisible groups. Princeton, N.J: Princeton University Press, 1996.
Find full text1976-, Berger Laurent, Breuil Christophe, and Colmez Pierre, eds. Représentations p-adiques de groupes p-adiques I: Représentations galoisiennes et ([phi, gamma])-modules. Paris, France: Société mathématique de France, 2008.
Find full textMarcus, Du Sautoy, Segal Daniel Ph D, and Shalev Aner 1958-, eds. New horizons in pro-p groups. Boston: Birkhäuser, 2000.
Find full textRicciotti, Diego. p-Laplace Equation in the Heisenberg Group. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23790-9.
Full textKlaas, G. Linear pro-p-groups of finite width. Berlin: Springer, 1997.
Find full textPalmer & Turner Group. P & T Group: 130 Years of Architecture in Asia. Hong Kong: Pace Publishing LTD., 1998.
Find full textRadha, Kessar, and Oliver Robert 1949-, eds. Fusion systems in algebra and topology. Cambridge: Cambridge University Press, 2011.
Find full text1973-, Friedl Stefan, ed. 3-manifold groups are virtually residually p. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textAn escort of P-38s: The 1st Fighter Group in WW II. St. Paul, MN: Phalanx Pub. Co., 1995.
Find full textBook chapters on the topic "P-group"
Călugăreanu, Grigore, Simion Breaz, Ciprian Modoi, Cosmin Pelea, and Dumitru Vălcan. "p-groups." In Exercises in Abelian Group Theory, 239–60. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0339-0_17.
Full textCălugăreanu, Grigore, Simion Breaz, Ciprian Modoi, Cosmin Pelea, and Dumitru Vălcan. "p-groups." In Exercises in Abelian Group Theory, 71–83. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0339-0_7.
Full textKoch, Helmut. "Group Algebras of pro-p Groups." In Springer Monographs in Mathematics, 59–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04967-9_8.
Full textRoman, Steven. "Group Actions; The Structure of P-Groups." In Fundamentals of Group Theory, 207–33. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8301-6_7.
Full textShatz, Stephen S. "Group Schemes, Formal Groups, and p-Divisible Groups." In Arithmetic Geometry, 29–78. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_3.
Full textSchneider, Peter. "Completed Group Rings of p-Valued Groups." In Grundlehren der mathematischen Wissenschaften, 195–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21147-8_6.
Full textCampbell, H. E. A. Eddy, and David L. Wehlau. "The Cyclic Group C p." In Modular Invariant Theory, 105–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17404-9_7.
Full textWong, Denis C. K. "Group Algebra Codes Define Over Extra-Special p-Group." In International Conference on Mathematical Sciences and Statistics 2013, 119–27. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4585-33-0_13.
Full textBailly, Pascal, and Jean-François Bouhours. "P Blood Group and Related Antigens." In Molecular Basis of Human Blood Group Antigens, 299–329. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9537-0_11.
Full textJaafar, Mastura, Azlan Raofuddin Nuruddin, and Syed Putra Syed Abu Bakar. "I&P Group Sdn Berhad." In Business Sustainability Model for Malaysian Housing Developers, 135–44. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5266-8_13.
Full textConference papers on the topic "P-group"
Harvey, Dawn. "P-44 Horticultural therapy group." In People, Partnerships and Potential, 16 – 18 November 2016, Liverpool. British Medical Journal Publishing Group, 2016. http://dx.doi.org/10.1136/bmjspcare-2016-001245.68.
Full textYagita, Nobuaki. "Stable splitting and cohomology of p–local finite groups over the extraspecial p–group of order p³ and exponent p." In School and Conference in Algebraic Topology. Mathematical Sciences Publishers, 2007. http://dx.doi.org/10.2140/gtm.2007.11.399.
Full textGrodal, Jesper. "The Classification of p-compact Groups and Homotopical Group Theory." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0083.
Full textTalbot-Vaux, Kathryn, Emily Stowe, and Sarah Thompson. "P-184 Creative group legacy project." In Transforming Palliative Care, Hospice UK 2018 National Conference, 27–28 November 2018, Telford. British Medical Journal Publishing Group, 2018. http://dx.doi.org/10.1136/bmjspcare-2018-hospiceabs.209.
Full textJackson, Matt, and Kevin Ratcliffe. "P-2 Cookery group for bereaved adults." In Transforming Palliative Care, Hospice UK 2018 National Conference, 27–28 November 2018, Telford. British Medical Journal Publishing Group, 2018. http://dx.doi.org/10.1136/bmjspcare-2018-hospiceabs.27.
Full textMoradipour, Kayvan, Sheila Ilangovan, and Roudin Teymourian. "Non-commuting graphs of a finite p-group." In THE 4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES: Mathematical Sciences: Championing the Way in a Problem Based and Data Driven Society. Author(s), 2017. http://dx.doi.org/10.1063/1.4980959.
Full textAlderton, M., and K. Pryde. "G20(P) Child death and deterioration review group." In Royal College of Paediatrics and Child Health, Abstracts of the Annual Conference, 24–26 May 2017, ICC, Birmingham. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2017. http://dx.doi.org/10.1136/archdischild-2017-313087.20.
Full textNichols, Rob, and Gemma Purnell. "P-243 Dragonfly – group work with grieving families." In Dying for change: evolution and revolution in palliative care, Hospice UK 2019 National Conference, 20–22 November 2019, Liverpool. British Medical Journal Publishing Group, 2019. http://dx.doi.org/10.1136/bmjspcare-2019-huknc.265.
Full textAustin, Gill, and Pippa Wilding. "P-105 Developing a dementia positive living group." In Leading, Learning and Innovating, Hospice UK 2017 National Conference, 22–24 November 2017, Liverpool. British Medical Journal Publishing Group, 2017. http://dx.doi.org/10.1136/bmjspcare-2017-hospice.131.
Full textCato, Jane, and Katie Dennis. "P-3 Earthworks – bereavement allotment group for men." In Transforming Palliative Care, Hospice UK 2018 National Conference, 27–28 November 2018, Telford. British Medical Journal Publishing Group, 2018. http://dx.doi.org/10.1136/bmjspcare-2018-hospiceabs.28.
Full textReports on the topic "P-group"
Verkade, J. G. Functional group analysis in coal by sup 31 P NMR spectroscopy. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6778617.
Full textVerkade, J. Functional group analysis in coal by sup 31 P nmr spectroscopy. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6912606.
Full textWang, Yao, Jeehee Lim, Rodrigo Salgado, Monica Prezzi, and Jeremy Hunter. Pile Stability Analysis in Soft or Loose Soils: Guidance on Foundation Design Assumptions with Respect to Loose or Soft Soil Effects on Pile Lateral Capacity and Stability. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317387.
Full textShenker, Moshe, Paul R. Bloom, Abraham Shaviv, Adina Paytan, Barbara J. Cade-Menun, Yona Chen, and Jorge Tarchitzky. Fate of Phosphorus Originated from Treated Wastewater and Biosolids in Soils: Speciation, Transport, and Accumulation. United States Department of Agriculture, June 2011. http://dx.doi.org/10.32747/2011.7697103.bard.
Full textTummala, Rohan, Andrew de Jesus, Natasha Tillett, Jeffrey Nelson, and Christine Lamey. Clinical and Socioeconomic Predictors of Palliative Care Utilization. University of Tennessee Health Science Center, January 2021. http://dx.doi.org/10.21007/com.lsp.2020.0006.
Full textSistac, Sistac, Lliteras M, and Sistac Palacín JM. Study in a Simulated Scenario of the Influence of Training and Personality in the Resolution of Critical Situations in Anaesthesiology Residents. Science Repository, January 2023. http://dx.doi.org/10.31487/j.acr.2022.04.01.sup.
Full textKumban, Wannisa, Anoma Santiworakul, and Salila Cetthakrikul. The effect of Animal Assisted Therapy on physical activity in elderly. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2022. http://dx.doi.org/10.37766/inplasy2022.9.0049.
Full textGhosal, Samit, and Binayak Sinha. The cardiovascular benefits of GLP1-RA are directly related to their positive effect on glycaemic control: A meta-regression analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2022. http://dx.doi.org/10.37766/inplasy2022.1.0071.
Full textZhang, Linlin, Xiaoming Xi, Xihua Liu, Xinjie Qu, Qing Wang, Haihao Cao, Limin Wang, et al. Should aerobic and resistance training interventions for Multiple sclerosis be performed on the same day: A protocol for systematic review and network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2021. http://dx.doi.org/10.37766/inplasy2021.12.0126.
Full textDohaney, J., J. M. R. Joseph, and G. D. M. Andrews. Interactive bibliography and database for the Chilcotin Group basalts (NTS 82E, L, M; 83D; 92H, I, J, O, P; 93A, B, C, F, G, J, K, L), south-central British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2010. http://dx.doi.org/10.4095/261828.
Full text