Journal articles on the topic 'P-adic logarithmic forms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 journal articles for your research on the topic 'P-adic logarithmic forms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yu, Kunrui. "p-adic logarithmic forms and group varieties II." Acta Arithmetica 89, no. 4 (1999): 337–78. http://dx.doi.org/10.4064/aa-89-4-337-378.
Full textYU, KUNRUI. "P-adic logarithmic forms and group varieties I." Journal für die reine und angewandte Mathematik (Crelles Journal) 1998, no. 502 (September 15, 1998): 29–92. http://dx.doi.org/10.1515/crll.1998.090.
Full textGROSSEKLONNE, E. "Sheaves of bounded p-adic logarithmic differential forms." Annales Scientifiques de l’École Normale Supérieure 40, no. 3 (May 2007): 351–86. http://dx.doi.org/10.1016/j.ansens.2007.04.001.
Full textIovita, Adrian, and Michael Spiess. "Logarithmic differential forms on p -adic symmetric spaces." Duke Mathematical Journal 110, no. 2 (November 2001): 253–78. http://dx.doi.org/10.1215/s0012-7094-01-11023-5.
Full textYu, Kunrui. "p-adic logarithmic forms and a problem of Erdős." Acta Mathematica 211, no. 2 (2013): 315–82. http://dx.doi.org/10.1007/s11511-013-0106-x.
Full textLE, DANIEL, SHELLY MANBER, and SHRENIK SHAH. "ON p-ADIC PROPERTIES OF TWISTED TRACES OF SINGULAR MODULI." International Journal of Number Theory 06, no. 03 (May 2010): 625–53. http://dx.doi.org/10.1142/s1793042110003101.
Full textYu, Kunrui. "Linear forms in p-adic logarithms." Acta Arithmetica 53, no. 2 (1989): 107–86. http://dx.doi.org/10.4064/aa-53-2-107-186.
Full textLauder, Alan G. B. "Computations with classical and p-adic modular forms." LMS Journal of Computation and Mathematics 14 (August 1, 2011): 214–31. http://dx.doi.org/10.1112/s1461157011000155.
Full textBUGEAUD, YANN. "Linear forms in p-adic logarithms and the Diophantine equation formula here." Mathematical Proceedings of the Cambridge Philosophical Society 127, no. 3 (November 1999): 373–81. http://dx.doi.org/10.1017/s0305004199003692.
Full textHIRATA-KOHNO, Noriko, and Rina TAKADA. "LINEAR FORMS IN TWO ELLIPTIC LOGARITHMS IN THE p-ADIC CASE." Kyushu Journal of Mathematics 64, no. 2 (2010): 239–60. http://dx.doi.org/10.2206/kyushujm.64.239.
Full textBUGEAUD, YANN. "Effective irrationality measures for real and p-adic roots of rational numbers close to 1, with an application to parametric families of Thue–Mahler equations." Mathematical Proceedings of the Cambridge Philosophical Society 164, no. 1 (September 27, 2016): 99–108. http://dx.doi.org/10.1017/s0305004116000864.
Full textÇokoksen, Tuba, and Murat Alan. "On the Diophantine Equation $\left(9d^2 + 1\right)^x + \left(16d^2 - 1\right)^y = (5d)^z$ Regarding Terai's Conjecture." Journal of New Theory, no. 47 (June 30, 2024): 72–84. http://dx.doi.org/10.53570/jnt.1479551.
Full textYu, Kunrui. "P-adic logarithmic forms and group varieties III." Forum Mathematicum 19, no. 2 (January 20, 2007). http://dx.doi.org/10.1515/forum.2007.009.
Full textPHAM, DUC HIEP. "WEIERSTRASS ZETA FUNCTIONS AND p-ADIC LINEAR RELATIONS." Bulletin of the Australian Mathematical Society, March 11, 2024, 1–10. http://dx.doi.org/10.1017/s0004972724000091.
Full textChim, Kwok Chi. "Lower bounds for linear forms in two p-adic logarithms." Journal of Number Theory, August 2024. http://dx.doi.org/10.1016/j.jnt.2024.07.012.
Full textHeuer, Ben. "Line bundles on rigid spaces in the v-topology." Forum of Mathematics, Sigma 10 (2022). http://dx.doi.org/10.1017/fms.2022.72.
Full textDARMON, HENRI, ALAN LAUDER, and VICTOR ROTGER. "STARK POINTS AND -ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE." Forum of Mathematics, Pi 3 (2015). http://dx.doi.org/10.1017/fmp.2015.7.
Full text