Academic literature on the topic 'P^2q'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'P^2q.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "P^2q"

1

Hernández Iglesias, Mauro Fernando. "Singularidad de la polar de una curva plana irreducible en K(2p,2q,2pq+d)." Pesquimat 22, no. 1 (May 3, 2019): 1–8. http://dx.doi.org/10.15381/pes.v22i1.15758.

Full text
Abstract:
Veremos que existe un abierto de Zariski en el conjunto de curvas planas irreducibles con exponentes característicos 2p; 2q y 2q+d, dado por K(2p; 2q; 2q+d) con mcd{p,q} = 1 y d impar, donde la polar es no degenerada, su topología es constante y determinada apenas por p y q.
APA, Harvard, Vancouver, ISO, and other styles
2

Asbullah, Muhammad Asyraf, Normahirah Nek Abd Rahman, uhammad Rezal Kamel Ariffin, Siti Hasana Sapar, and Faridah Yunos. "CRYPTANALYSIS OF RSA KEY EQUATION OF N=p^2q FOR SMALL |2q – p| USING CONTINUED FRACTION." Malaysian Journal of Science 39, no. 1 (February 29, 2020): 72–80. http://dx.doi.org/10.22452/mjs.vol39no1.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yaying, Taja, Bipan Hazarika, and S. A. Mohiuddine. "Domain of Padovan q-difference matrix in sequence spaces lp and l∞." Filomat 36, no. 3 (2022): 905–19. http://dx.doi.org/10.2298/fil2203905y.

Full text
Abstract:
In this study, we construct the difference sequence spaces lp (P?2q) = (lp)P?2q, 1 ? p ? ?, where P = (?rs) is an infinite matrix of Padovan numbers %s defined by ?rs = {?s/?r+5-2 0 ? s ? r, 0 s > r. and ?2q is a q-difference operator of second order. We obtain some inclusion relations, topological properties, Schauder basis and ?-, ?- and ?-duals of the newly defined space. We characterize certain matrix classes from the space lp (P?2q) to any one of the space l1, c0, c or l?. We examine some geometric properties and give certain estimation for von-Neumann Jordan constant and James constant of the space lp(P). Finally, we estimate upper bound for Hausdorff matrix as a mapping from lp to lp(P).
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Xin, and Wenming Zou. "On a class of critical elliptic systems in ℝ4." Advances in Nonlinear Analysis 10, no. 1 (September 13, 2020): 548–68. http://dx.doi.org/10.1515/anona-2020-0136.

Full text
Abstract:
Abstract In the present paper, we consider the following classes of elliptic systems with Sobolev critical growth: $$\begin{array}{} \displaystyle \begin{cases} -{\it\Delta} u+\lambda_1u=\mu_1 u^3+\beta uv^2+\frac{2q}{p} y u^{\frac{2q}{p}-1}v^2\quad &\hbox{in}\;{\it\Omega}, \\ -{\it\Delta} v+\lambda_2v=\mu_2 v^3+\beta u^2v+2 y u^{\frac{2q}{p}}v\quad&\hbox{in}\;{\it\Omega}, \\ u,v \gt 0&\hbox{in}\;{\it\Omega}, \\ u,v=0&\hbox{on}\;\partial{\it\Omega}, \end{cases} \end{array}$$ where Ω ⊂ ℝ4 is a smooth bounded domain with smooth boundary ∂Ω; p, q are positive coprime integers with 1 < $\begin{array}{} \displaystyle \frac{2q}{p} \end{array}$ < 2; μi > 0 and λi ∈ ℝ are fixed constants, i = 1, 2; β > 0, y > 0 are two parameters. We prove a nonexistence result and the existence of the ground state solution to the above system under proper assumptions on the parameters. It seems that this system has not been explored directly before.
APA, Harvard, Vancouver, ISO, and other styles
5

ALZER, HORST. "ON AN INTEGRAL INEQUALITY OF R. BELLMAN." Tamkang Journal of Mathematics 22, no. 2 (June 1, 1991): 187–91. http://dx.doi.org/10.5556/j.tkjm.22.1991.4597.

Full text
Abstract:
We prove: if $u$ and $v$ are non-negative, concave functions defined on $[0, 1]$ satisfying \[\int_0^1 (u(x))^{2p} dx =\int_0^1 (v(x))^{2q} dx=1, \quad p>0, \quad q>0,\] then \[\int_0^1(u(x))^p (v(x))^q dx\ge\frac{2\sqrt{(2p+1)(2q+1)}}{(p+1)(q+1)}-1.\]
APA, Harvard, Vancouver, ISO, and other styles
6

Kamaraj, T., and J. Thangakani. "Edge even and edge odd graceful labelings of Paley Graphs." Journal of Physics: Conference Series 1770, no. 1 (March 1, 2021): 012068. http://dx.doi.org/10.1088/1742-6596/1770/1/012068.

Full text
Abstract:
Abstract Edge even graceful labeling is a novel graceful labelling, introduced in 2017 by Elsonbaty and Daoud. A graph G with p vertices and q edges is called an edge even graceful if there is a bijection f: E(G) → {2, 4,. . ., 2q} such that, when each vertex is assigned the sum of the labels of all edges incident to it mod 2k, where k = max (p, q), the resulting vertex labels are distinct. A labeling of G is called edge odd graceful labeling, if there exists a bijection f from the set of edges E(G) to the set {1,3,5,…,2q-1} such that the induced the map f* from the set of vertices V(G) to {0,1,2,.,.,2q-1} given by f*(u) = Σ uv∈E(G) f(uv) (mod 2q) is an injection. A graph which admits edge even (odd) graceful labeling is called an edge even (odd) graceful graph. Paley graphs are dense undirected graphs raised from the vertices as elements of an appropriate finite field by joining pairs of vertices that differ by a quadratic residue. In this paper, we study the construction of edge even (odd) graceful labeling for Paley graphs and prove that Paley graphs of prime order are edge even (odd) graceful.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Hailin, Bengong Lou, and Bo Ling. "Tetravalent half-arc-transitive graphs of order $p^2q^2$." Czechoslovak Mathematical Journal 69, no. 2 (February 4, 2019): 391–401. http://dx.doi.org/10.21136/cmj.2019.0335-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aguirre, J., and M. Escobedo. "On the blow-up of solutions of a convective reaction diffusion equation." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 123, no. 3 (1993): 433–60. http://dx.doi.org/10.1017/s0308210500025828.

Full text
Abstract:
SynopsisWe study the blow-up of positive solutions of the Cauchy problem for the semilinear parabolic equationwhere u is a scalar function of the spatial variable x ∈ ℝN and time t > 0, a ∈ ℝV, a ≠ 0, 1 < p and 1 ≦ q. We show that: (a) if p > 1 and 1 ≦ q ≦ p, there always exist solutions which blow up in finite time; (b) if 1 < q ≦ p ≦ min {1 + 2/N, 1 + 2q/(N + 1)} or if q = 1 and 1 < p ≦ l + 2/N, then all positive solutions blow up in finite time; (c) if q > 1 and p > min {1 + 2/N, 1 + 2q/N + 1)}, then global solutions exist; (d) if q = 1 and p > 1 + 2/N, then global solutions exist.
APA, Harvard, Vancouver, ISO, and other styles
9

Abd Ghafar, Amir Hamzah, and Muhammad Rezal Kamel Ariffin. "SPA on Rabin variant with public key $$N=p^2q$$ N = p 2 q." Journal of Cryptographic Engineering 6, no. 4 (February 10, 2016): 339–46. http://dx.doi.org/10.1007/s13389-016-0118-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Firmansah, Fery, and Muhammad Ridlo Yuwono. "Odd Harmonious Labeling on Pleated of the Dutch Windmill Graphs." CAUCHY 4, no. 4 (May 30, 2017): 161. http://dx.doi.org/10.18860/ca.v4i4.4043.

Full text
Abstract:
A graph G(p,q) with p=|V(G)| vertices and q=|E(G)| edges. The graph G(p,q) is said to be odd harmonious if there exist an injection f: V(G)-&gt;{0,1,2,...,2q-1} such that the induced function f*: E(G)-&gt;{1,2,3,...,2q-1} defined by f*(uv)=f(u)+f(v) which is a bijection and f is said to be odd harmonious labeling of G(p,q). In this paper we prove that pleated of the Dutch windmill graphs C_4^(k)(r) with k&gt;=1 and r&gt;=1 are odd harmonious graph. Moreover, we also give odd harmonious labeling construction for the union pleated of the Dutch windmill graph C_4^(k)(r) union C_4^(k)(r) with k&gt;=1 and r&gt;=1.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "P^2q"

1

CAMPEDEL, ELENA. "Hopf-Galois Structures and Skew Braces of order p^2q." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/378739.

Full text
Abstract:
Nella mia tesi enumero le strutture Hopf-Galois su estensioni di Galois di ordine p^2q. Questo sarà fatto, mediante l'uso delle funzioni gamma, contando i sottogruppi regolari dell'olomorfo di gruppi di ordine p^2q. Questi ultimi oggetti sono anche connessi con le skew braces, e fornisco anche il numero di classi di isomorfismo di skew braces di ordine p^2q.
In my thesis I enumerate the Hopf-Galois structures on Galois extensions of order p^2q. This will be done, using the gamma functions, by enumerating the regular subgroups of the holomorph of groups G of order p^2q. The last objects are also connected to skew braces, and I also provide the number of isomorphism classes of skew braces of size p^2q.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "P^2q"

1

Sousa, A. D. R. de, J. C. Carneiro, L. Faria, and M. V. Pabon. "Sobre o número de cruzamentos do grafo de Kneser K(n,2)." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/etc.2022.222905.

Full text
Abstract:
O número de cruzamentos $\nu(G)$ de um grafo $G=(V,E)$ é o menor número de cruzamentos em um desenho $D(G)$ no plano de $G$. Dada uma reta $r$, chamada espinha, $p\geq 1$, e $S_1,\ldots,S_p$ serem $p$ semiplanos distintos limitados por $r$, um desenho de $G=(V,E)$ em $p$-páginas tem os vértices de $V$ desenhados em $r$ e cada aresta de $G$ é desenhada em um $S_1,\ldots,S_p$. O número de cruzamentos em $p$-páginas $\nu_p(G)$ de $G$ é o menor número de cruzamentos em um desenho de $G$ em $p$ páginas. Nós provamos que se $n=2q\geq 6$, então $\frac{n^8} {2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} - \frac{n^4} {2^{7}} - \frac{n^3}{2^{9}} \leq \nu(K(n,2))\leq \nu_2(K(n,2))\ leq \frac{n^8}{2^{10}} - \frac{3n^7}{2^8} + \frac{31n^6}{2^83} + \ frac{7n^5}{2^6} - \frac{563n^4}{2^73} + \frac{517n^3}{2^53} - \ frac{267n^2}{2^5} + \frac{107n}{2^33}$. Como os grafos completos $\nu_2(K(n,2))=\Theta(|V(K(n,2)|^4)=\nu(K(n,2))$ cujo termo líder $\ell(n)$ satisfaz $\frac{1}{2^{13}}\leq \ell(n)\leq \frac{1}{2^{10}}$.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography