Journal articles on the topic 'Oxygen generator'

To see the other types of publications on this topic, follow the link: Oxygen generator.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Oxygen generator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

HALL, L. W., R. E. B. KELLAGHER, and K. J. FLEET. "A portable oxygen generator." Anaesthesia 41, no. 5 (May 1986): 516–18. http://dx.doi.org/10.1111/j.1365-2044.1986.tb13277.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rosca, A. T., V. Stanciu, V. Cimpoiasu, R. Scorei, and D. Rosca. "Autonomous Generator for Technical Oxygen." Molecular Crystals and Liquid Crystals 417, no. 1 (January 2004): 67–73. http://dx.doi.org/10.1080/15421400490481395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshida, S., H. Saito, T. Fujioka, H. Yamakoshi, and T. Uchiyama. "New singlet oxygen generator for chemical oxygen‐iodine lasers." Applied Physics Letters 49, no. 18 (November 3, 1986): 1143–44. http://dx.doi.org/10.1063/1.97447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sultanov, M. M., and E. V. Kuryanova. "Research of the application of hydrogen as a fuel to improve energy and environmental performance of gas turbine plants." Power engineering: research, equipment, technology 23, no. 2 (May 21, 2021): 46–55. http://dx.doi.org/10.30724/1998-9903-2021-23-2-46-55.

Full text
Abstract:
THE PURPOSE. To consider various variants of thermal schemes of power plants and to assess the main technical and economic parameters. The article presents the results of the development of schemes of electric power plants with a capacity of up to 100 kW with a steam-generating hydrogen-oxygen plant for modeling and selecting effective options for thermal schemes of microgeneration power plants at the stage of design and development of energy systems. METHODS. The analysis of the proposed variants of thermal schemes with a hydrogen-oxygen steam generator, including circuit solutions of micro-gas turbine installations with a hydrogen-oxygen steam generator, a scheme of a steam-gas installation with a hydrogen-oxygen steam generator and intermediate steam superheating, a scheme of a steam-turbine installation with a hydrogen-oxygen steam generator, a scheme of a steam-turbine installation with a hydrogen-oxygen steam generator and a single-stage intermediate steam superheating, is performed, the scheme of a steam turbine installation with a hydrogen-oxygen steam generator and an intermediate superheat of steam and a steam cooler. RESULTS. A variant of the thermal scheme is proposed, which will allow determining the approach to estimating the fuel component of the production cost of heat and electricity for domestic power plants. The article describes a chemical method for producing hydrogen under laboratory conditions in hydrogen generators based on the hydrolysis of a solid reagent-aluminum-in a reaction vessel, in which the contact of aluminum particles occurs in the liquid phase of an aqueous solution of caustic soda. A feature of the proposed method is the possibility of regulating the flow rates in the supply lines of an aqueous suspension of aluminum and an aqueous solution of caustic soda, which can significantly improve the quality of regulation and reduce the cost of operating such systems. To a large extent, the creation of such systems becomes possible if there is a demand for the generated electrical energy, which determines the need to ensure high values of technical and economic indicators of the operation of power plants. CONCLUSHION. Calculated estimates have shown that the specific consumption of conventional fuel for the production of electric energy by microgeneration systems based on gas turbine units with a hydrogen generator with a capacity of 5-100 kW ranges from 0.098 to 0.117 kg/kWh.
APA, Harvard, Vancouver, ISO, and other styles
5

Gizicki, Wojciech, and Tomasz Banaszkiewicz. "Performance Optimization of the Low-Capacity Adsorption Oxygen Generator." Applied Sciences 10, no. 21 (October 25, 2020): 7495. http://dx.doi.org/10.3390/app10217495.

Full text
Abstract:
This paper presents an innovative method of optimizing energy consumption by a low-capacity adsorption oxygen generator. As a result of the applied optimization, reduction in the energy consumption of oxygen separation by about 40% with a possible increase in the maximum efficiency by about 80% was achieved. The experiments were carried out on a test stand with the use of a commercially available adsorption oxygen generator using the PSA technology. The experimental analysis clearly shows that the adsorption oxygen generators offered for sale are not optimized in terms of energy consumption or capacity. The reduction of the oxygen separation energy consumption was achieved by appropriate adjustment of the device operating parameters for the given adsorption pressure and maintaining an appropriate pressure difference between the adsorption bed and the product tank.
APA, Harvard, Vancouver, ISO, and other styles
6

Emanuel, George, Darren M. King, Joseph W. Zimmerman, David L. Carroll, and Justin Camp. "High-Performance Froth Singlet Oxygen Generator." AIAA Journal 59, no. 7 (July 2021): 2816–19. http://dx.doi.org/10.2514/1.j060380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu Mingxiu, 徐明秀, 桑凤亭 Sang Fengting, 金玉奇 Jin Yuqi, and 房本杰 Fang Benjie. "Research Development of Singlet Oxygen Generator." Laser & Optoelectronics Progress 46, no. 10 (2009): 57–63. http://dx.doi.org/10.3788/lop20094610.0057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bloch, Konstantin, Eli Papismedov, Karina Yavriyants, Marina Vorobeychik, Sven Beer, and Pnina Vardi. "Photosynthetic Oxygen Generator for Bioartificial Pancreas." Tissue Engineering 12, no. 2 (February 2006): 337–44. http://dx.doi.org/10.1089/ten.2006.12.337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

FUJII, Hiroo, Yoshihumi KIHARA, Eiji YOSHITANI, and Josef SCHMIEDBERGER. "Singlet Oxygen Generator for a Discharge Pumped Oxygen-Iodine Laser." Review of Laser Engineering 29, no. 9 (2001): 605–9. http://dx.doi.org/10.2184/lsj.29.605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zagidullin, M. V., V. D. Nikolaev, M. I. Svistun, and N. A. Khvatov. "Oxygen—iodine ejector laser with a centrifugal bubbling singlet-oxygen generator." Quantum Electronics 35, no. 10 (October 31, 2005): 907–8. http://dx.doi.org/10.1070/qe2005v035n10abeh013010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Azyazov, V. N., A. P. Torbin, A. A. Pershin, P. A. Mikheyev, and M. C. Heaven. "Kinetics of oxygen species in an electrically driven singlet oxygen generator." Chemical Physics 463 (December 2015): 65–69. http://dx.doi.org/10.1016/j.chemphys.2015.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jirásek, V., J. Hrubý, O. Špalek, M. Čenský, and J. Kodymová. "Spray generator of singlet oxygen for a chemical oxygen-iodine laser." Applied Physics B 100, no. 4 (May 22, 2010): 779–91. http://dx.doi.org/10.1007/s00340-010-4060-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Takehisa, K., N. Shimizu, and T. Uchiyama. "Singlet oxygen generator using a porous pipe." Journal of Applied Physics 61, no. 1 (January 1987): 68–73. http://dx.doi.org/10.1063/1.338802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chen, Wenwu, Yuqi Jin, Fengting Sang, and Guoqing Li. "Research on Uniform-Droplet Singlet-Oxygen Generator." Japanese Journal of Applied Physics 48, no. 11 (November 20, 2009): 116504. http://dx.doi.org/10.1143/jjap.48.116504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Barmashenko, B. D., V. A. Kochelap, and L. Yu Mel'nikov. "Singlet oxygen generator of the atomizer type." Soviet Journal of Quantum Electronics 15, no. 10 (October 31, 1985): 1346–52. http://dx.doi.org/10.1070/qe1985v015n10abeh007762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Muto, Shigeki, Masamori Endo, Kenzo Nanri, and Tomoo Fujioka. "Development of a Mist Singlet Oxygen Generator." Japanese Journal of Applied Physics 41, Part 1, No. 8 (August 15, 2002): 5193–97. http://dx.doi.org/10.1143/jjap.41.5193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hoflund, Gar B., Mark R. Davidson, and R. A. Outlaw. "Development of a hyperthermal oxygen-atom generator." Surface and Interface Analysis 19, no. 1-12 (June 1992): 325–30. http://dx.doi.org/10.1002/sia.740190161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dai, Yu Qiang, Zhen Dong Liu, Xiao Bo Xu, Wen Wu Chen, Li Zhi Zhu, and Da Peng Hu. "A Singlet Oxygen Generator with Rapid Separation Process." Applied Mechanics and Materials 148-149 (December 2011): 1223–26. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1223.

Full text
Abstract:
Singlet oxygen generator is the heart of chemical oxygen iodine lasers and has been the focus of research for many years. In this paper, a novel singlet oxygen generator with rapid separation technology is briefly put forward. To ensure short residence time, the design of reaction and separation processes happening simultaneously in through-flow reactors is dumpy shaped. By means of computational fluid dynamics, the calculations indicate that the residence time of O2(1Δ) in the new structure is about 15ms and the new SOG has excellent anti-entrainment and defoaming separation performance. The analytical results show the new structure is a feasible and promising technology in singlet oxygen generation cases.
APA, Harvard, Vancouver, ISO, and other styles
19

Becker-Glad, Carol A., and Wayne E. Glad. "A chemical oxygen generator using seawater and a chemical oxygen generator using seawater and moderator to control the temperature." International Journal of Hydrogen Energy 45, no. 53 (October 2020): 29477–91. http://dx.doi.org/10.1016/j.ijhydene.2020.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jin, Long-Zhe, Shu Wang, Shu-Ci Liu, and Zheng Zhang. "Development of a Low Oxygen Generation Rate Chemical Oxygen Generator for Emergency Refuge Spaces in Underground Mines." Combustion Science and Technology 187, no. 8 (March 24, 2015): 1229–39. http://dx.doi.org/10.1080/00102202.2015.1031223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Alabbadi, Saif A. "Hydrogen Oxygen Steam Generator Integrating with Renewable Energy Resource for Electricity Generation." Energy Procedia 29 (2012): 12–20. http://dx.doi.org/10.1016/j.egypro.2012.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zagidullin, M. V., V. D. Nikolaev, and M. I. Svistun. "Compact oxygen-iodine laser with a thermally insulated jet singlet—oxygen generator." Quantum Electronics 24, no. 1 (January 31, 1994): 21–22. http://dx.doi.org/10.1070/qe1994v024n01abeh000010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Špalek, O., J. Hrubý, M. Čenský, V. Jirásek, and J. Kodymová. "Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser." Applied Physics B 100, no. 4 (May 21, 2010): 793–802. http://dx.doi.org/10.1007/s00340-010-4061-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bo-wei, JIAO, YU Nan-jia, and ZHOU Chuang. "Parameter optimization and simulation of lean-burn gas generator." Journal of Physics: Conference Series 2235, no. 1 (May 1, 2022): 012080. http://dx.doi.org/10.1088/1742-6596/2235/1/012080.

Full text
Abstract:
Abstract The pre-cooling engine cools the incoming air through a pre-cooler and then makes it enter the subsequent components to work. This type of engine is one of the most important development directions in the combined power scheme. In order to accurately control the lean-burn gas temperature and oxygen concentration under different incoming flow conditions, and adjust it through the nitrogen-to-hydrogen ratio (GNGH) and oxygen-to-hydrogen ratio (GOGH). The oxygen concentration and temperature were obtained by thermal calculation and the optimal nitrogen-hydrogen ratio and oxygen-hydrogen ratio were optimized by genetic algorithm. Finally, the sensitivity analysis of the influence of nitrogen-hydrogen ratio and oxygen-hydrogen ratio on temperature and oxygen concentration was performed near the optimal point. According to the research, when α (weight coefficient) is determined, as the height increases, GNGH and GOGH decreases, and the amount of hydrogen required increases. When α > 1, the temperature term plays a major role in the optimization result. When α < 0.01, the oxygen concentration term plays a major role in the optimization result. When 0.01 < α < 1, the temperature term and oxygen concentration term are considered to have an effect on the optimization result at the same time. For the sensitivity analysis of the nitrogen-hydrogen ratio, oxygen-hydrogen ratio, temperature and oxygen concentration under different working conditions, accurate numerical results have also been obtained.
APA, Harvard, Vancouver, ISO, and other styles
25

Liu Zhendong, 刘振东, 陈文武 Chen Wenwu, 许晓波 Xu Xiaobo, 吕国盛 Lü Guosheng, 王景龙 Wang Jinglong, 刘宇时 Liu Yushi, 金玉奇 Jin Yuqi, and 桑凤亭 Sang Fengting. "Research on performance of eject singlet oxygen generator." High Power Laser and Particle Beams 25, no. 5 (2013): 1087–90. http://dx.doi.org/10.3788/hplpb20132505.1087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Maleki, T., Ning Cao, Seung Hyun Song, Chinghai Kao, Song-Chu Ko, and B. Ziaie. "An Ultrasonically Powered Implantable Micro-Oxygen Generator (IMOG)." IEEE Transactions on Biomedical Engineering 58, no. 11 (November 2011): 3104–11. http://dx.doi.org/10.1109/tbme.2011.2163634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Watanabe, Goro, Daichi Sugimoto, Oleg Vyskubenko, Kazuyoku Tei, Kenzo Nanri, and Tomoo Fujioka. "Modeling of crossflow jet-type singlet oxygen generator." Journal of Applied Physics 97, no. 11 (June 2005): 114905. http://dx.doi.org/10.1063/1.1922089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Murakami, Takurou N., Mitsuo Takahashi, and Norimichi Kawashima. "Decomposition of Aromatic Compounds by Active Oxygen Generator." Chemistry Letters 29, no. 11 (November 2000): 1312–13. http://dx.doi.org/10.1246/cl.2000.1312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hoflund, G. B., and J. F. Weaver. "Performance characteristics of a hyperthermal oxygen atom generator." Measurement Science and Technology 5, no. 3 (March 1, 1994): 201–4. http://dx.doi.org/10.1088/0957-0233/5/3/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Outlaw, R. A., and Mark R. Davidson. "Small ultrahigh vacuum compatible hyperthermal oxygen atom generator." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, no. 3 (May 1994): 854–60. http://dx.doi.org/10.1116/1.579266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tyagi, R. K., R. Rajesh, Gaurav Singhal, Mainuddin, A. L. Dawar, and M. Endo. "Supersonic COIL with angular jet singlet oxygen generator." Optics & Laser Technology 35, no. 5 (July 2003): 395–99. http://dx.doi.org/10.1016/s0030-3992(03)00034-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Douglas, J. O., D. J. Williams, J. Dingley, and P. Douglas. "An emergency medical oxygen generator for difficult environments." European Journal of Anaesthesiology 30 (June 2013): 81–82. http://dx.doi.org/10.1097/00003643-201306001-00251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Endo, Masamori, Shigeki Muto, Tomoo Fujioka, and Kenzo Nanri. "Numerical Simulation of a Mist Singlet Oxygen Generator." Japanese Journal of Applied Physics 41, Part 1, No. 1 (January 15, 2002): 125–33. http://dx.doi.org/10.1143/jjap.41.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Naeem, Sumayyah, Farah Naeem, Jinrun Liu, Vladimir A. Bolaños Quiñones, Jing Zhang, Le He, Gaoshan Huang, Alexander A. Solovev, and Yongfeng Mei. "Oxygen Microbubble Generator Enabled by Tunable Catalytic Microtubes." Chemistry – An Asian Journal 14, no. 14 (June 6, 2019): 2431–34. http://dx.doi.org/10.1002/asia.201900418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bleier, Lea, Ilka Wittig, Heinrich Heide, Mirco Steger, Ulrich Brandt, and Stefan Dröse. "Generator-specific targets of mitochondrial reactive oxygen species." Free Radical Biology and Medicine 78 (January 2015): 1–10. http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lubis, Annita, and Sukardi Sukardi. "Pembangkit Tegangan Tinggi Frekuensi Tinggi Kumparan Tesla untuk Generator Ozon." JTEIN: Jurnal Teknik Elektro Indonesia 1, no. 2 (October 19, 2020): 116–23. http://dx.doi.org/10.24036/jtein.v1i2.34.

Full text
Abstract:
Ozone is a compound that has many benefits and roles in the development of science and technology. Ozone can be used for sterilization, removing color, deodorizing, and breaking down organic compounds. Ozone can be generated by several methods, including plasma discharge and plasma dielectric barrier discharge (DBDP). In the plasma discharge method high voltage electricity is required to break down oxygen molecules into oxygen ions which will form ozone. High voltage can be generated by using a DC Tesla coil. The advantages of DC Tesla coil compared to other high voltage generators are that it can generate high voltages with a simple system, only requires a small space, and does not cost a lot of money. Based on experiments carried out the deposition of ozone which is generated by several factors, including ozonation time, oxygen flow rate, and high voltage.
APA, Harvard, Vancouver, ISO, and other styles
37

Naeem, Sumayyah, Farah Naeem, Jing Zhang, Jawayria Mujtaba, Kailiang Xu, Gaoshan Huang, Alexander A. Solovev, and Yongfeng Mei. "Parameters Optimization of Catalytic Tubular Nanomembrane-Based Oxygen Microbubble Generator." Micromachines 11, no. 7 (June 29, 2020): 643. http://dx.doi.org/10.3390/mi11070643.

Full text
Abstract:
A controllable generation of oxygen gas during the decomposition of hydrogen peroxide by the microreactors made of tubular catalytic nanomembranes has recently attracted considerable attention. Catalytic microtubes play simultaneous roles of the oxygen bubble producing microreactors and oxygen bubble-driven micropumps. An autonomous pumping of peroxide fuel takes place through the microtubes by the recoiling microbubbles. Due to optimal reaction–diffusion processes, gas supersaturation, leading to favorable bubble nucleation conditions, strain-engineered catalytic microtubes with longer length produce oxygen microbubbles at concentrations of hydrogen peroxide in approximately ×1000 lower in comparison to shorter tubes. Dynamic regimes of tubular nanomembrane-based oxygen microbubble generators reveal that this depends on microtubes’ aspect ratio, hydrogen peroxide fuel concentration and fuel compositions. Different dynamic regimes exist, which produce specific bubble frequencies, bubble size and various amounts of oxygen. In this study, the rolled-up Ti/Cr/Pd microtubes integrated on silicon substrate are used to study oxygen evolution in different concentrations of hydrogen peroxide and surfactants. Addition of Sodium dodecyl sulfate (SDS) surfactants leads to a decrease of bubble diameter and an increase of frequencies of bubble recoil. Moreover, an increase of temperature (from 10 to 35 °C) leads to higher frequencies of oxygen bubbles and larger total volumes of produced oxygen.
APA, Harvard, Vancouver, ISO, and other styles
38

Nikolaev, V. D., M. I. Svistun, M. V. Zagidullin, and G. D. Hager. "Efficient chemical oxygen-iodine laser powered by a centrifugal bubble singlet oxygen generator." Applied Physics Letters 86, no. 23 (June 6, 2005): 231102. http://dx.doi.org/10.1063/1.1946911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

HIRAHARA, Shinichi, Yasuhiro ICHINOHE, Josef SCHMIEDBERGER, Hiroo FUJII, Masataro SUZUKI, and Wataru MASUDA. "801 RF Hollow Electrode Generator of Singlet Delta Oxygen For Oxygen-Iodine Laser." Proceedings of Conference of Hokuriku-Shinetsu Branch 2000.37 (2000): 293–94. http://dx.doi.org/10.1299/jsmehs.2000.37.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Borzenko, V., and A. Schastlivitsev. "Efficiency of steam generation in hydrogen-oxygen steam generator of kilowatt power class." Теплофизика высоких температур 56, no. 6 (December 2018): 1011–18. http://dx.doi.org/10.31857/s004036440003574-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Molotov, I. M., A. I. Schastlivtsev, L. V. Yamshchikova, and I. A. Molotova. "Development of an automated system for experimental investigation of thermal processes in a hydrogen-oxygen steam generator." Journal of Physics: Conference Series 2039, no. 1 (October 1, 2021): 012023. http://dx.doi.org/10.1088/1742-6596/2039/1/012023.

Full text
Abstract:
Abstract The paper presents the results of the development and creation of an automated system of scientific research (ASSR). It provides experimental studies of heat and mass transfer processes in a hydrogen-oxygen steam generator (HOSG). The most relevant fields of application of hydrogen-oxygen steam generators are considered. The paper discusses the most relevant areas of application of hydrogen-oxygen steam generators, scientific and technical barriers to the introduction of technology and the features of the construction of ASSR for experimental research. The schematic diagram of the primary measuring transducers and the control mechanisms of the experimental stand are described. The choice of the configuration of the automated control and measurement system is justified from the point of view of completeness and reliability of the obtained data.
APA, Harvard, Vancouver, ISO, and other styles
42

Rofik, Denis Abdur. "PERANCANGAN DAN ANALISIS ALAT MICROBUBBLE GENERATOR (MBG) UNTUK AERASI KOLAM IKAN TIPE NOZZEL VENTURI." Gorontalo Journal of Infrastructure and Science Engineering 3, no. 2 (October 1, 2020): 24. http://dx.doi.org/10.32662/gojise.v3i2.1206.

Full text
Abstract:
This study aims to apply a kind of aeration in a fish pond called Microbubble Generator (MBG) to the cultivation of fish. Microbubble Generator (MBG) carried on based on the principle of a tube venturi in which water circulates through a channel narrows so that air that is sucked into a device and driven by water flowing to make micro is the size of bubbles. Microbubble Generator (MBG) Tested in fish breeding research center Subang (BRPI), the results highlight the potential promised Microbubble Generator (MBG) as aeration affordable to applied in cultivation. Notwithstanding the oxygen dissolved do not differ significantly with aeration conventional, Microbubble Generator (MBG) shows degradation faster than organic content in water and induced a faster growth. Nozzle venturi is made with a different form between the input and output. The input nozzle venturi semicircular 18 mm in diameter than the 3mm in diameter and output, as for the output conical 8mm in diameter and output in the 14mm and the diameter of flow water use semi jet pump. The result of testing Microbubble Generator (MBG) where the initial conditions oxygen content 7,7 mg/l, after Microbubble Generator (MBG) on the run in the 1 hour in which it is dissolved oxygen content increased to 8,8 mg/l, the lowest oxygen content produced 8,0 mg/l and highest oxygen content produced 9,0 mg/lPenelitian ini bertujuan untuk menerapkan jenis aerasi kolam ikan disebut Microbubble Generator (MBG) untuk budidaya ikan. Microbubble Generator (MBG) dijalankan berdasarkan prinsip tabung venturi di mana air beredar melalui saluran menyempit sehingga udara yang tersedot ke dalam perangkat dan didorong oleh air yang mengalir untuk membuat gelembung berukuran mikro. Microbubble Generator (MBG) diuji Di Balai Riset Pemuliaan Ikan Subang (BRPI), Hasil menyoroti potensi menjanjikan Microbubble Generator (MBG) sebagai aerasi terjangkau untuk diterapkan dalam budidaya. Meskipun tingkat oksigen terlarut tidak berbeda secara signifikan dengan aerasi konvensional, Microbubble Generator (MBG) menunjukkan degradasi lebih cepat dari kandungan organik dalam air dan diinduksi pertumbuhan yang lebih cepat. Nozzel Venturi ini dibuat dengan bentuk yang berbeda antara input dan output. Lubang input nozzel venturi berbentuk setengah lingkaran yang berdiameter 18 mm di hulu dan keluaran berdiameter 3 mm, sedangkan untuk lubang output berbentuk kerucut yang berdiameter 8 mm di hulu dan keluaran berdiameter 14 mm dan untuk proses mengalirkan air menggunakan pompa semijet. Hasil dari pengujian microbubble generator (MBG) dimana kondisi awal kadar oksigen 7,7 mg/l, setelah microbubble generator (MBG) dijalankan dalam waktu 1 jam kadar oksigen yang terlarut meningkat menjadi 8,8 mg/l, kadar oksigen terendah yang dihasilkan 8,0 mg/l dan kadar oksigen tertinggi yang dihasilkan 9,0 mg/l.
APA, Harvard, Vancouver, ISO, and other styles
43

Spirin, Alexey, Alexandr Lipilin, Victor Ivanov, Sergey Paranin, Alexey Nikonov, Vladimir Khrustov, Dmitriy Portnov, Nikolai Gavrilov, and Alexander Mamaev. "Solid Oxide Electrolyte Based Oxygen Pump." Advances in Science and Technology 65 (October 2010): 257–62. http://dx.doi.org/10.4028/www.scientific.net/ast.65.257.

Full text
Abstract:
The method of electrochemical extraction of oxygen from air employing a solid oxide electrolyte (SOE) is presented. The prototype of electrochemical oxygen generator (pump) for medical applications has been developed and fabricated. It is based on thin-walled tubular segments of YSZ electrolyte (170 μm) with LSM based electrodes (~20 μm). Different technologies: nanopowder production by laser ablation, casting of polymer-ceramic tapes, formation of electrodes-electrolyte green structures by radial magnetic pulsed compaction followed by cosintering at 1200°C, were used for segments fabrication. The magnetron sputtering method was applied to protect metallic interconnects (Crofer 22 APU) with (Mn-Co)3O4 layer. Presented oxygen generator prototype produced 9 liters of pure oxygen per hour under applied power of 50 W at 800°C. No noble metals were used in construction.
APA, Harvard, Vancouver, ISO, and other styles
44

MUTO, Shigeki, Yosuke KOBAYASHI, Yoshinobu TAKEKAWA, Masamori ENDO, Kenzo NANRI, Tomoo FUJIOKA, Takanori KAWANO, and Shuzaburo TAKEDA. "Parametric study of a mist jet-singlet oxygen generator." Journal of Advanced Science 12, no. 1/2 (2000): 136–37. http://dx.doi.org/10.2978/jsas.12.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

FUKUOKA, Shuji, Shigeki MUTO, Masamori ENDO, Kenzo NANRI, and Tomoo FUJIOKA. "Parametric study of a mist-singlet oxygen generator. II." Journal of Advanced Science 13, no. 1/2 (2001): 88–89. http://dx.doi.org/10.2978/jsas.13.88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

TAKAHASHI, Noriaki, Makoto SHIMIZU, Shigeki MUTO, Masamori ENDO, Tomoo FUJIOKA, and Kenzo NANRI. "Parametric study of a mist-singlet oxygen generator. III." Journal of Advanced Science 14, no. 1/2 (2002): 89–90. http://dx.doi.org/10.2978/jsas.14.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tajima, Yusuke, and Kazuo Takeuchi. "Crosslinking of Furan Substituted Polymer using Singlet Oxygen Generator." Journal of Photopolymer Science and Technology 11, no. 1 (1998): 37–39. http://dx.doi.org/10.2494/photopolymer.11.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Watanabe, G., D. Sugimoto, K. Tei, and T. Fujioka. "Analysis of cross-flow jet-type singlet oxygen generator." IEEE Journal of Quantum Electronics 40, no. 8 (August 2004): 1030–40. http://dx.doi.org/10.1109/jqe.2004.831617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Shi, W., L. Deng, H. Yang, G. Sha, and C. Zhang. "Preliminary study of a centrifugal-flow singlet oxygen generator." Quantum Electronics 38, no. 2 (February 28, 2008): 199–203. http://dx.doi.org/10.1070/qe2008v038n02abeh013596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Vagin, Nikolai P., P. G. Kryukov, V. L. Kutuzov, S. V. Loginov, V. Ya Rosolovskiĭ, and Nikolai N. Yuryshev. "Low temperature operation of a chemical singlet oxygen generator." Soviet Journal of Quantum Electronics 15, no. 3 (March 31, 1985): 421–23. http://dx.doi.org/10.1070/qe1985v015n03abeh006375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography