Academic literature on the topic 'Oxygen Gas Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxygen Gas Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oxygen Gas Sensors"
Sembodo, Shafanda Nabil, Nazrul Effendy, Kenny Dwiantoro, and Nidlom Muddin. "Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (June 1, 2022): 3044. http://dx.doi.org/10.11591/ijece.v12i3.pp3044-3050.
Full textZhang, Mao Lin, Tao Ning, and Yu Hong Yang. "Gas Response Properties of Noble Metal Modified TiO2 Gas Sensor." Advanced Materials Research 706-708 (June 2013): 126–29. http://dx.doi.org/10.4028/www.scientific.net/amr.706-708.126.
Full textSun, Jingxia, Aimin Zhang, Guoqiang Gong, and Jian Jiang. "Study on calibration period of Gas Sensor in exercise Pulmonary Function instrument." Modern Electronic Technology 2, no. 3 (October 26, 2018): 66. http://dx.doi.org/10.26549/met.v2i3.1133.
Full textDuan, Chao, Lejun Zhang, Zhaoxi Wu, Xu Wang, Meng Meng, and Maolin Zhang. "Study on the Deterioration Mechanism of Pb on TiO2 Oxygen Sensor." Micromachines 14, no. 1 (January 7, 2023): 156. http://dx.doi.org/10.3390/mi14010156.
Full textMaskell, W. C., and B. C. H. Steele. "Solid state potentiometric oxygen gas sensors." Journal of Applied Electrochemistry 16, no. 4 (July 1986): 475–89. http://dx.doi.org/10.1007/bf01006843.
Full textLiu, Jianqiao, Wanqiu Wang, Zhaoxia Zhai, Guohua Jin, Yuzhen Chen, Wusong Hong, Liting Wu, and Fengjiao Gao. "Influence of Oxygen Vacancy Behaviors in Cooling Process on Semiconductor Gas Sensors: A Numerical Analysis." Sensors 18, no. 11 (November 14, 2018): 3929. http://dx.doi.org/10.3390/s18113929.
Full textAgustinur, Satya Cantika, Khaled Issa Khalifa, Meta Yantidewi, and Utama Alan Deta. "Literature Review: Air Oxygen Level Monitoring System." International Journal of Research and Community Empowerment 1, no. 2 (July 24, 2023): 62–70. http://dx.doi.org/10.58706/ijorce.v1n2.p62-70.
Full textTutunea, Dragos, Ilie Dumitru, Oana Victoria Oţăt, Laurentiu Racila, Ionuţ Daniel Geonea, and Claudia Cristina Rotea. "Oxygen Sensor Testing for Automotive Applications." Applied Mechanics and Materials 896 (February 2020): 249–54. http://dx.doi.org/10.4028/www.scientific.net/amm.896.249.
Full textHendryani, Atika, Vita Nurdinawati, and Nashrul Dharma. "Design of Manifold with Pressure Controller for Automatic Exchange of Oxygen Gas Cylinders in Hospital." TEKNIK 42, no. 1 (March 25, 2021): 45–51. http://dx.doi.org/10.14710/teknik.v42i1.33127.
Full textMoos, Ralf, Noriya Izu, Frank Rettig, Sebastian Reiß, Woosuck Shin, and Ichiro Matsubara. "Resistive Oxygen Gas Sensors for Harsh Environments." Sensors 11, no. 4 (March 24, 2011): 3439–65. http://dx.doi.org/10.3390/s110403439.
Full textDissertations / Theses on the topic "Oxygen Gas Sensors"
Blanchard, Jeffrey Allen 1974. "Specific gas sensing using zirconia amperometric oxygen sensors." Thesis, The University of Arizona, 1998. http://hdl.handle.net/10150/278662.
Full textMartínez, Hurtado Juan Leonardo. "Gas-sensitive holographic sensors." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244643.
Full textIoannou, Andreas Stylianou. "Development of solid state thick film zirconia oxygen gas sensors." Thesis, Middlesex University, 1992. http://eprints.mdx.ac.uk/6549/.
Full textGali, Pradeep. "Development of Indium Oxide Nanowires as Efficient Gas Sensors." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103318/.
Full textKRIK, Soufiane. "Low-operating temperature chemiresistive gas sensors: Fabrication and DFT calculations." Doctoral thesis, Università degli studi di Ferrara, 2021. http://hdl.handle.net/11392/2488099.
Full textI sensori di gas basati sugli ossidi metallici semiconduttori (MOX) si sono rivelati negli ultimi anni una tecnologia estremamente vantaggiosa. Nonostante i progressi fatti in questo campo, questi dispositivi presentano ancora alcuni punti deboliche spingono la ricerca ad effettuare ulteriori indagini per perfezionare il loro funzionamento. I ricercatori hanno cercato di risolvere questi svantaggi in diversi modi, focalizzandosi sullo sviluppo di MOX innovativi, tra cui il drogaggio tramite l’utilizzo di additivi o l’introduzione nel materiale di vacanze di ossigeno a concentrazione controllata. Questa’alternativa sta attirando l’attenzione di molti gruppi di ricerca, anche se, ad oggi, la letteratura scientifica presenta una mancanza di studi su come la disposizione e concentrazione di vacanze di ossigeno influenzano le performance di sensing e solo alcuni lavori preliminari hanno portato a risultati interessanti. Per cercare di ovviare ai limiti dei sensori MOX, una seconda via è stata lo sviluppo e di materiali 2D basati su solfuri metallici, grafene o similari. Il fosforene è uno dei migliori candidati per tale applicazione tecnologica, poiché mostra un'attività elettrica anche a temperatura ambiente, anche se studi preliminari hanno evidenziato un alto tasso di degradazione nel tempo del materiale durante il suo utilizzo. L'obiettivo di questo lavoro è quello di diminuire la temperatura di funzionamento di sensori di gas basati su SnO2 sfruttando il controllo delle vacanze di ossigeno. A tale scopo, è stato fatto inizialmente uno studio della letteratura e un’analisi analitica nell’ambito della DFT per indagare come le vacanze di ossigeno influenzano le proprietà fisico-chimiche del materiale. È stato studiato l'effetto di due diverse concentrazioni di vacanze di ossigeno sulle proprietà chimico-fisiche dello SnO2 bulk. Successivamente è stata studiata la formazione della vacanze in superficie per investigare l'adsorbimento di molecole di ossigeno dall'atmosfera circostante sulla superficie dello SnO2 è stato sintetizzato tramite sintesi sol-gel e la riduzione è stata ottenuta tramite trattamento termico in presenza di H2 a diverse temperature. I risultati hanno mostrato un'alta risposta dei sensori basati su SnO2-x in presenza di basse concentrazioni di NO2 spostando a 130 °C la temperatura ottimale di funzionamento del dispositivo. Questa diminuzione della temperatura operativa implica una diminuzione del consumo energetico del dispositivo Come menzionato precedentemente, il fosforene è uno dei materiali 2D più promettenti per lo sviluppo di sensori di gas chemoresistivi, ma presenta ancora alcuni svantaggi. Molti studi sono stati sviluppati sulla decorazione del fosforene con atomi metallici al fine di migliorare le sue prestazioni per diverse applicazioni tecnologiche, ma non sono stati ancora condotti studi specifici su questa particolare forma di fosforene decorato per applicazioni di sensoristica gassosa. Nello studio qui proposto, sono stati eseguiti calcoli DFT per spiegare come il nichel influenzi le proprietà elettroniche del fosforene, poiché la decorazione con nichel ha mostrato una migliore stabilità del sensore e un’alta sensibilità all’NO2. Tramite simulazione DFT è stato possibile investigare l'adsorbimento delle molecole di ossigeno sul Fosforene tal quale e decorato con nichel. I risultati hanno evidenziato che le molecole di ossigeno si dissociano sullo strato di fosforene tal quale e reagiscono con gli atomi di fosforo, ossidandolo, mentre in presenza dei cluster di nichel è quest’ultimo a svolgere il ruolo di catalizzatore, interagendo con le molecole di ossigeno. Infine, il meccanismo di interazione tra NO2 e la superficie del fosforene tal quale e funzionalizzato è stato caratterizzato teoricamente studiando il trasferimento di carica che avviene sulla superficie del materiale in esame.
Benammar, Mohieddine. "Development of instrumentation incorporating solid state gas sensors for measurement of oxygen partial pressure." Thesis, Middlesex University, 1991. http://eprints.mdx.ac.uk/6532/.
Full textSpirig, John Vincent. "A new generation of high temperature oxygen sensors." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1188570727.
Full textXiong, Linhongjia. "Amperometric gas sensing." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:a8dcbf36-14b6-4627-b380-3b81e83d446c.
Full textPoudel, Chhetri Tej Bahadur. "EFFECTS OF LIGHT ILLUMINATION, TEMPERATURE AND OXYGEN GAS FLOW ON THE ELECTRICAL TRANSPORT PROPERTIES OF Sb-DOPED ZnO MICRO AND NANOWIRES." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501776637539529.
Full textBrien, Stephanie. "Characterisation of a novel planar single cell zirconium dioxide oxygen gas sensor." Thesis, University of the West of Scotland, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.732972.
Full textBooks on the topic "Oxygen Gas Sensors"
Ioannou, Andreas Stylianou. Development of solid state thick film zirconia oxygen gas sensors. [London]: Middlesex Polytechnic, 1992.
Find full textBenammar, Mohieddine. Development of instrumentation incorporating solid state gas sensors for measurement of oxygen partial pressure. London: Middlesex Polytechnic, 1991.
Find full textJ, Watson, ed. The stannic oxide gas sensor: Principles and applications. Boca Raton: CRC Press, 1994.
Find full textHaynes, John Harold. Powertrain Codes and Oxygen Sensors 1990-99: 1995-99 (Chilton's Professional Series Quick-Reference Manuals). Haynes Manuals, Inc., 1999.
Find full textEranna, G. Metal Oxide Nanostructures As Gas Sensing Devices. Taylor & Francis Group, 2016.
Find full textEranna, G., and Eranna Eranna. Metal Oxide Nanostructures As Gas Sensing Devices. Taylor & Francis Group, 2011.
Find full textEranna, G. Metal Oxide Nanostructures As Gas Sensing Devices. Taylor & Francis Group, 2019.
Find full textEranna, G. Metal Oxide Nanostructures As Gas Sensing Devices. Taylor & Francis Group, 2016.
Find full textBook chapters on the topic "Oxygen Gas Sensors"
Friedman, Avner. "Modeling exhaust-gas oxygen sensors." In Mathematics in Industrial Problems, 205–13. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-8383-3_21.
Full textShuk, P. "Oxygen Gas Sensing Technologies Application: A Comprehensive Review." In Sensors for Everyday Life, 81–107. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47322-2_5.
Full textYates, A. "Exploiting Semiconducting Oxides for Automotive Exhaust Gas Oxygen Sensors." In Electronic Materials, 499–508. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_33.
Full textOpitz, N., and D. W. Lubbers. "Kinetics and Transient Times of Fluorescence Optical Sensors (Optodes) for Blood Gas Analysis (O2, CO2, pH)." In Oxygen Transport to Tissue IX, 45–50. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-7433-6_6.
Full textOpitz, N., and D. W. Lübbers. "Blood Gas Analysis Using Fluorescence and Absorption Indicators in Optical Sensors (Optodes) with Integrated Excitation and Fluorescence Detection on Semiconductor Basis." In Oxygen Transport to Tissue X, 177–81. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9510-6_20.
Full textKrik, Soufiane, Andrea Gaiardo, Matteo Valt, Barbara Fabbri, Cesare Malagù, Giancarlo Pepponi, Davide Casotti, Giuseppe Cruciani, Vincenzo Guidi, and Pierluigi Bellutti. "Influence of Oxygen Vacancies in Gas Sensors Based on Metal-Oxide Semiconductors: A First-Principles Study." In Lecture Notes in Electrical Engineering, 309–14. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37558-4_47.
Full textAslamiya, M., T. S. Saleena, A. K. M. Bahalul Haque, and P. Muhamed Ilyas. "A 3D Designed Portable Programmable Device Using Gas Sensors for Air Quality Checking and Predicting the Concentration of Oxygen in Coal Mining Areas." In Soft Computing and Signal Processing, 557–66. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8669-7_49.
Full textHuygen, P. E. M., A. Hartog, C. Kolle, E. Oosterbosch, and B. Lachmann. "An In-Line Oxygen Gas-Fraction Sensor for Anesthesia and Intensive Care." In Advances in Experimental Medicine and Biology, 579–83. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5399-1_82.
Full textEgashira, Makoto, Masayo Nakashima, and Shohachi Kawasumi. "Oxygen Desorption and Conductivity Change of Palladium-Doped Tin(IV) Oxide Gas Sensor." In ACS Symposium Series, 71–82. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0309.ch004.
Full textKimura, Teiichi, and Takashi Goto. "Preparation of Ru-C Nano-Composite Film by MOCVD and Electrode Properties for Oxygen Gas Sensor." In Progress in Powder Metallurgy, 1485–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.1485.
Full textConference papers on the topic "Oxygen Gas Sensors"
Lu, Ganhua, Liying Zhu, Stephen Hebert, Edward Jen, Leonidas Ocola, and Junhong Chen. "Engineering Gas Sensors With Aerosol Nanocrystals." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21301.
Full textAkasaka, Shunsuke, and Isaku Kanno. "Limiting current-type MEMS oxygen gas sensor integrated with micro-hotplate." In 2021 IEEE Sensors. IEEE, 2021. http://dx.doi.org/10.1109/sensors47087.2021.9639801.
Full textVosz, Adam, Shawn Midlam-Mohler, Yann Guezennec, and Steve Yurkovich. "Experimental Investigation of Switching Oxygen Sensor Behavior Due to Exhaust Gas Effects." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14915.
Full textWang, T., R. E. Soltis, E. M. Logothetis, J. A. Cook, and D. R. Hamburg. "Static Characteristics of ZrO2 Exhaust Gas Oxygen Sensors." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/930352.
Full textJahangir, Ifat, Alina Wilson, Md Ahsan Uddin, M. V. S. Chandrashekhar, and Goutam Koley. "Oxygen plasma treated graphene/InN nanowire heterojunction based sensors for toxic gas detection." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808463.
Full textAl-Saudi, Ahmed, Watheq Al-Basheer, Abdulaziz Aljalal, Khaled Gasmi, and Samer A. Qari. "Estimation of pore sizes using laser absorption in molecular oxygen gas enclosed in mesoporous alumina." In Optical Sensors, edited by Robert A. Lieberman, Francesco Baldini, and Jiri Homola. SPIE, 2019. http://dx.doi.org/10.1117/12.2519604.
Full textTakami, Akio, Toshitaka Matsuura, Toshifumi Sekiya, Teppei Okawa, and Yuzuru Watanabe. "Progress in Lead Tolerant Titania Exhaust Gas Oxygen Sensors." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/850381.
Full textEsteban, Ó., and C. Pulido. "Simple oxygen gas sensor based on side-illuminated polymer optical fiber." In Fifth European Workshop on Optical Fibre Sensors, edited by Leszek R. Jaroszewicz. SPIE, 2013. http://dx.doi.org/10.1117/12.2025391.
Full textSari, Wangi P., Chris Blackman, Yiyun Zhu, and James Covington. "Deposition of tungsten oxide and silver decorated tungsten oxide for use in oxygen gas sensing." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234313.
Full textWan, Hao, Heyu Yin, and Andrew J. Mason. "Room temperature ionic liquid electrochemical gas sensor for rapid oxygen detection with transient double potential amperometry." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808787.
Full textReports on the topic "Oxygen Gas Sensors"
Deininger. PR-443-13605-R01 Sensors for Gas Quality Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2014. http://dx.doi.org/10.55274/r0010127.
Full textMcKinnon, Mark, Craig Weinschenk, and Daniel Madrzykowski. Modeling Gas Burner Fires in Ranch and Colonial Style Structures. UL Firefighter Safety Research Institute, June 2020. http://dx.doi.org/10.54206/102376/mwje4818.
Full textBora. PR-004-14604-R01 Miniaturized Gas Chromatography and Gas Quality Sensor. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2015. http://dx.doi.org/10.55274/r0010869.
Full text