Academic literature on the topic 'Oxygen evolving complex'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxygen evolving complex.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Oxygen evolving complex"

1

Coleman, William F. "Photosystem II Oxygen-Evolving Complex." Journal of Chemical Education 82, no. 5 (May 2005): 800. http://dx.doi.org/10.1021/ed082p800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shen, J. R., and N. Kamiya. "Crystallizaion of oxygen-evolving photosystem II complex." Seibutsu Butsuri 39, supplement (1999): S106. http://dx.doi.org/10.2142/biophys.39.s106_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghanotakis, D. F., and C. F. Yocum. "Photosystem II and the Oxygen-Evolving Complex." Annual Review of Plant Physiology and Plant Molecular Biology 41, no. 1 (June 1990): 255–76. http://dx.doi.org/10.1146/annurev.pp.41.060190.001351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shutilova, N. I. "The oxygen-evolving complex of chloroplast membranes." Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology 4, no. 2 (June 2010): 125–33. http://dx.doi.org/10.1134/s1990747810020017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tang, Xiao-Song, and Kimiyuki Satoh. "The oxygen-evolving photosystem II core complex." FEBS Letters 179, no. 1 (January 1, 1985): 60–64. http://dx.doi.org/10.1016/0014-5793(85)80191-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

RAYMOND, J., and R. BLANKENSHIP. "The origin of the oxygen-evolving complex." Coordination Chemistry Reviews 252, no. 3-4 (February 2008): 377–83. http://dx.doi.org/10.1016/j.ccr.2007.08.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mei, R., J. P. Green, R. T. Sayre, and W. D. Frasch. "Manganese-binding proteins of the oxygen-evolving complex." Biochemistry 28, no. 13 (June 27, 1989): 5560–67. http://dx.doi.org/10.1021/bi00439a033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tommos, Cecilia, John McCracken, Stenbjörn Styring, and Gerald T. Babcock. "Stepwise Disintegration of the Photosynthetic Oxygen-Evolving Complex." Journal of the American Chemical Society 120, no. 40 (October 1998): 10441–52. http://dx.doi.org/10.1021/ja980281z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beauregard, M., L. Morin, and R. Popovic. "Sulfate inhibition of photosystem II oxygen evolving complex." Applied Biochemistry and Biotechnology 16, no. 1 (September 1987): 109–17. http://dx.doi.org/10.1007/bf02798360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frasch, Wayne D., Rui Mei, and Matthew A. Sanders. "Oxidation of alcohols catalyzed by the oxygen-evolving complex." Biochemistry 27, no. 10 (May 1988): 3715–19. http://dx.doi.org/10.1021/bi00410a029.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Oxygen evolving complex"

1

Nilsson, Håkan. "Substrate water binding to the oxygen-evolving complex in photosystem II." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-86500.

Full text
Abstract:
Oxygenic photosynthesis in plants, algae and cyanobacteria converts sunlight into chemical energy. In this process electrons are transferred from water molecules to CO2 leading to the assembly of carbohydrates, the building blocks of life. A cluster of four manganese ions and one calcium ion, linked together by five oxygen bridges, constitutes the catalyst for water oxidation in photosystem II (Mn4CaO5 cluster). This cluster stores up to four oxidizing equivalents (S0,..,S4 states), which are then used in a concerted reaction to convert two substrate water molecules into molecular oxygen. The reaction mechanism of this four-electron four-proton reaction is not settled yet and several hypotheses have been put forward. The work presented in this thesis aims at clarifying several aspects of the water oxidation reaction by analyzing the mode of substrate water binding to the Mn4CaO5 cluster. Time-resolved membrane-inlet mass spectrometric detection of flash-induced O2 production after fast H218O labelling was employed to study the exchange rates between substrate waters bound to the Mn4CaO5 cluster and the surrounding bulk water. By employing this approach to dimeric photosystem II core complexes of the red alga Cyanidoschyzon merolae it was demonstrated that both substrate water molecules are already bound in the S2 state of the Mn4CaO5 cluster. This was confirmed with samples from the thermophilic cyanobacterium Thermosynechococcus elongatus. Addition of the water analogue ammonia, that is shown to bind to the Mn4CaO5 cluster by replacing the crystallographic water W1, did not significantly affect the exchange rates of the two substrate waters. Thus, these experiments exclude that W1 is a substrate water molecule. The mechanism of O-O bond formation was studied by characterizing the substrate exchange in the S3YZ● state. For this the half-life time of this transient state into S0 was extended from 1.1 ms to 45 ms by replacing the native cofactors Ca2+ and Cl- by Sr2+ and I-. The data show that both substrate waters exchange significantly slower in the S3YZ● state than in the S3 state. A detailed discussion of this finding lead to the conclusions that (i) the calcium ion in the Mn4CaO5 cluster is not a substrate binding site and (ii) O-O bond formation occurs via the direct coupling between two Mn-bound water-derived oxygens, which were assigned to be the terminal water/hydroxy ligand W2 and the central oxo-bridging O5. The driving force for the O2 producing S4→S0 transition was studied by comparing the effects of N2 and O2 pressures of about 20 bar on the flash-induced O2 production of photosystem II samples containing either the native cofactors Ca2+ and Cl- or the surrogates Sr2+ and Br-. While for the Ca/Cl-PSII samples no product inhibition was observed, a kinetic limitation of O2 production was found for the Sr/Br-PSII samples under O2 pressure. This was tentatively assigned to a significant slowdown of the O2 release in the Sr/Br-PSII samples. In addition, the equilibrium between the S0 state and the early intermediates of the S4 state family was studied under 18O2 atmosphere in photosystem II centers devoid of tyrosine YD. Water-exchange in the transiently formed early S4 states would have led to 16,18O2 release, but none was observed during a three day incubation time. Both experiments thus indicate that the S4→S0 transition has a large driving force. Thus, photosynthesis is not limited by the O2 partial pressure in the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
2

Polander, Brandon C. "The hydrogen-bonded water network in the oxygen-evolving complex of photosystem II." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50222.

Full text
Abstract:
Protein dynamics play a key role in enzyme-catalyzed reactions. Vibrational spectroscopy provides a method to follow these structural changes and thereby describe the reaction coordinate as a function of space and time. A vibrational spectroscopic technique, reaction-induced FTIR spectroscopy, has been applied to the study of the oxygen-evolving complex (OEC) of photosystem II (PSII). In plant photosynthesis, PSII evolves oxygen from the substrate, water, by the accumulation of photo-oxidizing equivalents at the OEC. Molecular oxygen and protons are the products of this reaction, which is responsible for the maintenance of an aerobic atmosphere on earth. The OEC is a Mn4CaO5 cluster with nearby bound chloride ions. Sequentially oxidized states of the OEC are termed the S states. The dark-stable state is S1, and oxygen is released on the transition from S3 to S0. Using short laser flashes, individual S states are generated, allowing vibrational spectroscopy to be used to study these different oxidation states of the OEC. In current X-ray crystal structures, hydrogen bonds to water molecules are predicted to form an extensive network around the Mn4CaO5 cluster. In the OEC, four peptide carbonyl groups are linked to the water network, which extends to two Mn-bound and two Ca-bound water molecules. This dissertation discusses a vibrational spectroscopic method that uses these peptide carbonyl frequencies as reporters of solvatochromic changes in the OEC. This technique provides a new, high-resolution method with which to study water and protein dynamics in PSII and other enzymes.
APA, Harvard, Vancouver, ISO, and other styles
3

Ifuku, Kentaro. "Molecular characterization of the oxygen-evolving complex 23 kDa polypeptide(OEC23)in photosystem II." Kyoto University, 2001. http://hdl.handle.net/2433/150774.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第9003号
農博第1185号
新制||農||821(附属図書館)
学位論文||H13||N3522(農学部図書室)
UT51-2001-F333
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 佐藤 文彦, 教授 關谷 次郎, 教授 大山 莞爾
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
4

Gau, Michael. "Self-assembled, labile, multinuclear metal complexes inspired by nature's oxygen-evolving complex of photosystem II and iron-molybdenum cofactor." Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/430413.

Full text
Abstract:
Chemistry
Ph.D.
The aim of this work is to synthesize and study novel multinuclear manganese systems to model the structure and function of the oxygen-evolving complex (OEC). With the synthesis and study of these model complexes, a greater understanding of nature’s OEC mechanism and processes will come to fruition as well as a viable homogenous water-oxidation catalyst. In addition, small molecule activation was investigated using an FeI precursor. A tetramanganese “pinned-butterfly” cluster with the chemical formula Mn4(µ3-N2Ph2)2(µ-N2Ph2)(µ-NHPh)2(L)4, was synthesized via self-assembly with the addition of N, N’-diphenylhydrazine to Mn(N(SiMe3)2)2). The reaction proceeds over the course of a few hours with a visible color change pale yellow to yellow, black and finally red. The self-assembly mechanism was elucidated with methods such as ligand labeling, kinetic isotope effect, IR spectroscopy, X-ray diffractometry (single crystal and powder), UV/vis kinetic studies and absorbance studies, hydrogen-atom transfer (HAT) competition studies, NMR studies, GC studies and freezing point depression studies. The “twisted basket” cluster is a two-hydrogen-atom reduced analogue of the aforementioned “pinned-butterfly” cluster with a chemical formula of Mn4(µ-NHPh)4(µ-PhNNPh-2N,N’)2(py)4. Conversion between the clusters was investigated and achieved with the addition of an equivalent of N,N’-diphenylhydrazine and heat to a solution of the “pinned-butterfly” complex. This conversion between the clusters displays similarities to the OEC in the sense that it is undergoing proton-coupled electron transfer (PCET), cluster rearrangement and N-N bond formation. While these novel tetramanganese clusters provide us unique, reactive, and flexible clusters, they are far too sensitive to air and water to perform any useful catalysis. Due to the ligands’ lack of stabilization, alternate ligand platforms were investigated that would be able to form more rigid complexes, but retain lability. Bi- and tridentate ligands were investigated that resulted in the synthesis of several novel multinuclear homo- and hetero- metallic complexes. The ligands include polyoligimeric silsesquioxanes and substituted pyridines. These multinuclear Mn clusters show similarities to the OEC in their composition and structures. Upon exposure to air, a color change is observed without the precipitation of a manganese oxide insoluble species. This observation supports the increased stability, yet retained reactivity of the chelated clusters. Lastly, an FeI precursor was reacted with CS2 in attempts to isolate an Fe-S carbide complex and model the iron-molybdenum cofactor (FeMoco). Instead, a CS2 bridging dimer was formed and isolated. The activation of CS2 led us to attempt the reaction of the FeI precursor with other analogues such as CO2, diisopropylcarbodiimide, methylisothiocyanate, and phenylacetylene. CO2 and acetylene have been shown to be reactive substrates to the native FeMoco. These small molecule activated Fe complexes were characterized using X-ray diffraction technqiues, UV/visible spectroscopy, electron paramagnetic resonance spectroscopy and infrared spectroscopy.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
5

Herrero, Moreno Christian. "Modélisation de Processus Photo induits du Photosystem II." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00364271.

Full text
Abstract:
La photosynthèse est un processus biologique naturel qui convertit l'énergie lumineuse en énergie chimique par l'action de centres réactionnels photosynthétiques. L'énergie convertie est stockée sous forme de produits de haute énergie synthétisés par la branche réductive du processus photosynthétique. Les électrons nécessaires à ces réactions sont fournis par des molécules d'eau lors de leur oxydation par le centre de dégagement de l'oxygène (Oxygen Evolving Complex: OEC) pour le système de photosynthèse II (PSII). La photosynthèse artificielle cherche à reproduire les réactions qui se produisent dans les organismes naturels afin de i) de mieux comprendre les processus chimiques qui se déroulent dans les systèmes naturels, et ii) de parvenir à exploiter l'énergie solaire pour le développement de carburants propres et renouvelables. Chaque étape qui survient dans le processus de photosynthèse naturelle, telle que la capture de lumière, le transfert d'énergie, le transfert d'électron, la séparation de charge, l'activation du catalyseur et la réaction catalytique doit se produire au sein du système artificiel. La photosynthèse artificielle cherche à reproduire les réactions qui se produisent dans les organismes naturels afin de i) de mieux comprendre les processus chimiques qui se déroulent dans les systèmes naturels, et ii) de parvenir à exploiter l'énergie solaire pour le développement de carburants propres et renouvelables. Chaque étape qui survient dans le processus de photosynthèse naturelle, telle que la capture de lumière, le transfert d'énergie, le transfert d'électron, la séparation de charge, l'activation du catalyseur et la réaction catalytique doit se produire au sein du système artificiel. Avec ces concepts en vue, nous avons conçu, synthétisé et caractérisé des molécules qui imitent les réactions réalisées par les antennes et les centres réactionnels présents dans le photosystème II. Ces molécules sont capables de reproduire la séparation de charges induite par la lumière, le transfert d'électrons et l'accumulation d'équivalents oxydo-réducteurs observés pendant la photosynthèse naturelle. Les antennes artificielles se constituent de caroténoïdes et phthalocyanines. Ces molécules présentent des profiles d'absorption large avec des coefficients d'extinction élevés, et sont capables de supporter des transferts d'énergie ultra rapides qui permettent l'état de séparation de charges. En faisant varier la longueur de la chaine conjuguée des caroténoïdes de neuf à onze liaisons doubles, nous avons pu mettre en évidence comment ces molécules peuvent agir aussi bien comme donneurs que comme agents dissipateurs d'énergie, effet caractéristique qui s'apparente au processus de trempe non-photochimique (Non Photochemical Quenching: NPQ) qui se produit dans le cycle de la zéaxanthine. Les mimiques des agents donneurs du photosystème II ont aussi été étudiées. Ces systèmes supramoléculaires contiennent une partie photoactive liée de façon covalente par un intermédiaire à une cavité contenant un ion ou un agrégat d'ions métalliques. La photosensibilisateur utilisé est un complexe du ruthénium [Ru(bipy)3]2+ (bpy = 2,20-bipyridine), homologue du P680, qui absorbe la lumière dans le spectre visible et déclenche le transfert d'électron. Les espèces RuIII résultantes ont un potentiel d'oxydation réversible de 1.3 V vs SCE, comparables à celui de P680 (1.25 V vs NHE) et présentent donc la possibilité d'oxyder à la fois un complexe manganèse ainsi qu'une source d'électron. Concernant les molécules imitant le coté donneur du PSII, nous avons synthétisé des paires ruthénium-phénol, ainsi que des systèmes ruthénium-manganèse bimétalliques. Parmi ces dernières, nous avons étudié celles présentant des cavités de coordination constituées de terpyridines, vu qu'il a déjà été montré que les dimères Mn-di-μ-oxo-Mn de ce type peuvent catalyser l'oxydation de l'eau en oxygène moléculaire. Des salènes et salophènes ont aussi été examinés étant donné que de tels groupes peuvent accomplir l'oxydation à deux électrons de substrats organique. Dans la littérature, ces réactions sont toutes conduites par l'action d'oxydants chimiques externes, tandis que nous avons pour but d'utiliser des espèces oxydantes induites par l'action de la lumière.
APA, Harvard, Vancouver, ISO, and other styles
6

Ketchner, Susan Lynn. "Characterization of the expression of the photosystem II : oxygen evolving complex in C₃, C₃-C₄ intermediate and C₄ species of the genus Flaveria /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487687115926787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hendry, Garth S., and Garth Hendry@baldwins com. "Dependence of substrate-water binding on protein and inorganic cofactors of photosystem II." The Australian National University. Research School of Biological Sciences, 2002. http://thesis.anu.edu.au./public/adt-ANU20041124.140348.

Full text
Abstract:
The photosynthetic water oxidation reaction is catalyzed by an inorganic Mn4OxCaClyHCO3-z cluster at the heart of the oxygen evolving complex (OEC) in photosystem II. In the absence of an atomic resolution crystal structure, the precise molecular organization of the OEC remains unresolved. Accordingly, the role of the protein and inorganic cofactors of PSII (Ca2+, HCO3- and Cl-) in the mechanism of O2-evolution await clarification. In this study, rapid 18O-isotope exchange measurements were applied to monitor the substrate-water binding kinetics as a function of the intermediate S-states of the catalytic site (i.e. S3, S2 and S1) in Triton X-100 solubilized membrane preparations that are enriched in photosystem II activity and are routinely used to evaluate cofactor requirements. Consistent with the previous determinations of the 18O exchange behavior in thylakoids, the initial 18O exchange measurements of native PSII membranes at m/e = 34 (which is sensitive to the 16O18O product) show that the ‘fast’ and ‘slowly’ exchanging substrate-waters are bound to the catalytic site in the S3 state, immediately prior to O2 release. Although the slowly exchanging water is bound throughout the entire S-state cycle, the kinetics of the fast exchanging water remains too fast in the S2, S1 [and S0] states to be resolved using the current instrumentation, and left open the possibility that the second substrate-water only binds to the active site after the formation of the S3 state. Presented is the first direct evidence to show that fast exchanging water is already bound to the OEC in the S2 state. Rapid 18O-isotope exchange measurements for Ex-depleted PSII (depleted of the 17- and 23-kDa extrinsic proteins) in the S2 state reveals a resolvable fast kinetic component of 34k2 = 120 ± 14 s-1. The slowing down of the fast phase kinetics is discussed in terms of increased water permeation and the effect on the local dielectric following removal of the extrinsic subunits. In addition, the first direct evidence to show the involvement of calcium in substrate-water binding is also presented. Strontium replacement of the OEC Ca2+-site reveals a factor of ~3-4 increase in the 18O exchange of the slowly exchanging water across the S3, S2 and S1 states while the kinetics of the fast exchanging water remain unchanged. Finally, a re-investigation of the proposed role for bicarbonate as an oxidizable electron donor to photosystem II was unable to discern any 18O enrichment of the photosynthetically evolved O2 in the presence of 18O-bicarbonate. A working model for O2-evolution in terms of these results is presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Codolà, Duch Zoel. "Iron and iridium molecular complex for water oxidation catalysis." Doctoral thesis, Universitat de Girona, 2014. http://hdl.handle.net/10803/276172.

Full text
Abstract:
Harness light from the sun is one of the 21st century’s major goals towards the substitution of fossil fuels for a renewable source of energy. Sustainable production of highly energetic molecules using sunlight as energy source can provide a recyclable fuel round the clock. In this regard, hydrogen from water is envisioned as an ideal cofactor as this energetic store. Viable production of solar fuels will require the use of earth-abundant based catalysts with high activity and efficiency. Long ago, Nature figured out how to take advantage of the sunlight by converting solar energy into chemical bonds, through water and carbon dioxide. This process has been perfected during millions of years and the development of an artificial system to replicate the natural photosynthesis is extremely challenging. Towards the design of these energy conversion schemes based on sunlight, CO2 and H2O, a key step is the water oxidation. The water oxidation provides the electrons needed for the production of fuel. An efficient catalyst is required to overcome the uphill energy multi-electron transformation. The main objective of this thesis is the design of artificial compounds that efficiently oxidizes water into O2, protons and electrons, as the first step towards the exploitation of the sunlight. The study of these complexes could contribute with valuable information about the oxidation mechanisms taking place during the photosynthesis. The results obtained in this thesis firstly show that readily available iron and iridium complexes can carry out the water oxidation in an efficient manner. Homogeneous high valent metal species (IrV/VI, FeV) are the responsible of this redox process. Furthermore, the characterization of a novel oxo-bridged iron-cerium complex constitutes the first direct observation of a heterodimetallic core in a synthetic water oxidation catalyst. These species can be construed as the closest structural and functional model for the essential heterodimetallic MnV–O–CaII center involved in the water oxidation in PSII.
L’aprofitament de la llum solar com a font d’energia és un dels objectius més prometedors alhora de substituir els combustibles fòssils per una font d’energia renovable. La producció sostenible de molècules energètiques mitjançant la llum del sol pot proporcionar un combustible reciclable durant les 24 hores del dia. En aquest aspecte, l’hidrogen obtingut de l’aigua s’entreveu com un cofactor ideal per aquest emmagatzematge energètic. L’ús de catalitzadors basats en materials abundants i amb una activitat i eficiència elevades seran elements indispensables per a la producció viable de combustibles solars. La natura va ser capaç de trobar un mecanisme per aprofitar l’energia solar convertint-la en enllaços químics mitjançant aigua i diòxid de carboni. Aquest procés ha sigut perfeccionat al llarg de milions d’anys i conseqüentment, el desenvolupament de sistemes artificials capaços d’imitar la fotosíntesi natural és extremadament complex. De camí cap al disseny de sistemes per a la conversió d’energia basats en la llum solar, el CO2 i l’H2O, un pas clau és l’etapa d’oxidació de l’aigua. Aquesta etapa proporciona els electrons necessaris per la producció de combustible. La presència d’un catalitzador és necessària per superar aquesta transformació multielectrònica, ja que requereix una elevada energia. L’objectiu principal d’aquesta tesi és el disseny de compostos artificials que oxidin l’aigua i alliberin oxigen, protons i electrons de manera eficient, com a primer pas cap a l’explotació de la llum. L’estudi d’aquests complexos pot contribuir amb informació valuosa sobre el mecanisme d’oxidació que tenen lloc durant la fotosíntesi. Els resultats obtinguts en aquesta tesi mostren que complexos de ferro i iridi fàcilment a l’abat són capaços de catalitzar l’oxidació de l’aigua de manera eficient. Espècies homogènies en alts estat d’oxidació (IrV/VI, FeV) són les responsables de dur a terme aquest procés redox. La caracterització d’un nou dímer de ferro-ceri unit per un pont oxo constitueix la primera observació directa d’un centre heterodimetàl•lic en un catalitzador artificial d’oxidació de l’aigua. Aquesta espècie constitueix el model estructural i funcional més semblant al centre de MnV-O-CaII present en el PSII.
APA, Harvard, Vancouver, ISO, and other styles
9

Kanady, Jacob Steven. "Models of the Oxygen-Evolving Complex of Photosystem II." Thesis, 2015. https://thesis.library.caltech.edu/8643/1/JKanady_Thesis_Edited.pdf.

Full text
Abstract:

In the five chapters that follow, I delineate my efforts over the last five years to synthesize structurally and chemically relevant models of the Oxygen Evolving Complex (OEC) of Photosystem II. The OEC is nature’s only water oxidation catalyst, in that it forms the dioxygen in our atmosphere necessary for oxygenic life. Therefore understanding its structure and function is of deep fundamental interest and could provide design elements for artificial photosynthesis and manmade water oxidation catalysts. Synthetic endeavors towards OEC mimics have been an active area of research since the mid 1970s and have mutually evolved alongside biochemical and spectroscopic studies, affording ever-refined proposals for the structure of the OEC and the mechanism of water oxidation. This research has culminated in the most recent proposal: a low symmetry Mn4CaO5 cluster with a distorted Mn3CaO4 cubane bridged to a fourth, dangling Mn. To give context for how my graduate work fits into this rich history of OEC research, Chapter 1 provides a historical timeline of proposals for OEC structure, emphasizing the role that synthetic Mn and MnCa clusters have played, and ending with our Mn3CaO4 heterometallic cubane complexes.

In Chapter 2, the triarylbenzene ligand framework used throughout my work is introduced, and trinuclear clusters of Mn, Co, and Ni are discussed. The ligand scaffold consistently coordinates three metals in close proximity while leaving coordination sites open for further modification through ancillary ligand binding. The ligands coordinated could be varied, with a range of carboxylates and some less coordinating anions studied. These complexes’ structures, magnetic behavior, and redox properties are discussed.

Chapter 3 explores the redox chemistry of the trimanganese system more thoroughly in the presence of a fourth Mn equivalent, finding a range of oxidation states and oxide incorporation dependent on oxidant, solvent, and Mn salt. Oxidation states from MnII4 to MnIIIMnIV3 were observed, with 1-4 O2– ligands incorporated, modeling the photoactivation of the OEC. These complexes were studied by X-ray diffraction, EPR, XAS, magnetometry, and CV.

As Ca2+ is a necessary component of the OEC, Chapter 4 discusses synthetic strategies for making highly structurally accurate models of the OEC containing both Mn and Ca in the Mn3CaO4 cubane + dangling Mn geometry. Structural and electrochemical characterization of the first Mn3CaO4 heterometallic cubane complex— and comparison to an all-Mn Mn4O4 analog—suggests a role for Ca2+ in the OEC. Modification of the Mn3CaO4 system by ligand substitution affords low symmetry Mn3CaO4 complexes that are the most accurate models of the OEC to date.

Finally, in Chapter 5 the reactivity of the Mn3CaO4 cubane complexes toward O- atom transfer is discussed. The metal M strongly affects the reactivity. The mechanisms of O-atom transfer and water incorporation from and into Mn4O4 and Mn4O3 clusters, respectively, are studied through computation and 18O-labeling studies. The μ3-oxos of the Mn4O4 system prove fluxional, lending support for proposals of O2– fluxionality within the OEC.

APA, Harvard, Vancouver, ISO, and other styles
10

Ahrling, Karin Ann-Sofie. "Studies of the oxygen-evolving complex of photosystem II." Phd thesis, 1996. http://hdl.handle.net/1885/146037.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Oxygen evolving complex"

1

Canfield, Donald Eugene. Evolution of Oxygenic Photosynthesis. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691145020.003.0003.

Full text
Abstract:
This chapter discusses the evolution of oxygen-producing organisms by considering the evolution and assembly of its basic constituent parts. It focuses on the following key questions: (1) What is the evolutionary history of chlorophyll? (2) What are the evolutionary histories of photosystem I and photosystem II (PSII)? (3) What is the origin of the oxygen-evolving complex in PSII? And finally, (4) what is the evolutionary history of Rubisco? In addressing these, the chapter seeks to understand the complex path leading to the evolution of oxygenic photosynthesis on Earth. This event was one of the major transforming events in the history of life. With no oxygenic photosynthesis, there would be no oxygen in the atmosphere; there would also be no plants, no animals, and nobody to tell this story.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Oxygen evolving complex"

1

Mor, Tsafrir S., Anton F. Post, and Itzhak Ohad. "Characterization of the Oxygen Evolving Complex of Prochlorothrix Hollandica." In Regulation of Chloroplast Biogenesis, 427–32. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3366-5_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Penner-Hahn, J. E., R. M. Fronko, G. S. Waldo, C. F. Yocum, N. R. Bowlby, and S. D. Betts. "X-Ray Absorption Spectroscopy of the Photosynthetic Oxygen Evolving Complex." In Current Research in Photosynthesis, 797–800. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mizusawa, Naoki, Isamu Sakurai, Hisako Kubota, and Hajime Wada. "Role of Phosphatidylglycerol in Oxygen-Evolving Complex of Photosystem II." In Photosynthesis. Energy from the Sun, 463–66. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Busheva, Mira, and Antoaneta Popova. "Temperature Damage of the Oxygen-Evolving Complex in Thylakoid Membrane Particles." In Electromagnetic Fields and Biomembranes, 241–44. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9507-6_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Penner-Hahn, James E. "Structural characterization of the Mn site in the photosynthetic oxygen-evolving complex." In Structure & Bonding, 1–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-62888-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dexheimer, S. L., Kenneth Sauer, and Melvin P. Klein. "Parallel Polarization EPR Studies of the Oxygen-Evolving Complex of Photosystem II." In Current Research in Photosynthesis, 761–64. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ananyev, G. M., L. Zaltsman, R. A. McInturff, and G. C. Dismukes. "Assembly Intermediates and “Inorganic Mutants” of the Photosystem II Oxygen Evolving Complex." In Photosynthesis: Mechanisms and Effects, 1347–50. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Babcock, Gerald T. "The Oxygen-Evolving Complex in Photosystem II as a Metallo-Radical Enzyme." In Photosynthesis: from Light to Biosphere, 1187–93. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shen, Jian-Ren, Keisuke Kawakami, and Hiroyuki Koike. "Purification and Crystallization of Oxygen-Evolving Photosystem II Core Complex from Thermophilic Cyanobacteria." In Methods in Molecular Biology, 41–51. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-925-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ramaraj, R., and M. Kaneko. "Metal complex in polymer membrane as a model for photosynthetic oxygen evolving center." In Synthesis and Photosynthesis, 215–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-58908-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Oxygen evolving complex"

1

Wilson, Andrew, and Prashant Jain. "DETECTION OF WATER BINDING TO THE OXYGEN EVOLVING COMPLEX USING LOW FREQUENCY SERS." In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.wd01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yano, Junko, Yulia Pushkar, Johannes Messinger, Uwe Bergmann, Pieter Glatzel, and Vittal K. Yachandra. "Electronic Structure of the Mn4Ca Cluster in the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-Ray Scattering." In X-RAY ABSORPTION FINE STRUCTURE - XAFS13: 13th International Conference. AIP, 2007. http://dx.doi.org/10.1063/1.2644510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hatakeyama, Makoto, Waka Uchida, Koji Ogata, and Shinichiro Nakamura. "Theoretical study on OH[sup −] site and electronic spin state of oxygen-evolving complex in photosystem II at the dark S[sub 1] state." In SOLAR CHEMICAL ENERGY STORAGE: SolChES. AIP, 2013. http://dx.doi.org/10.1063/1.4848091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morris, J. P., B. Clary, Y. Kanarska, B. J. Isaac, A. L. Nichols, and K. Knight. "Modeling Thermomechanical Failure and Entrainment of Structural and Geological Materials into a Nuclear Fireball." In 56th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2022. http://dx.doi.org/10.56952/arma-2022-2290.

Full text
Abstract:
ABSTRACT: Understanding how the fireball from a nuclear detonation interacts with its environment is essential to predicting the post-detonation environment, including fallout composition and form. Realistic scenarios for nuclear events inevitably involve complex environments, such as urban settings, however the majority of data informing fallout processes come from environments devoid of relevant buildings or other structures. This paper summarizes recent developments in simulations of above-ground nuclear explosions as part of a broader effort to better characterize conditions within a fireball that may influence the chemical evolution of bomb materials and other materials entrained from the local explosion environment. We discuss our recent improvements in modeling of the coupling of radiation transport and mechanical deformation, as well as the transition from intact materials (e.g., rock, concrete, etc.) into airborne particulates. The entrainment process is particularly important to our investigations because entrained materials are a predominant influence on the chemistry and form of resultant fallout. 1. INTRODUCTION This paper discusses recent efforts as part of an internal research project at Lawrence Livermore National Laboratory to improve our understanding of the post nuclear detonation environment, including the chemical evolution of species within the fireball, addressing both bomb debris and entrained material. The motivation is to be able to provide actionable information for both forensic (e.g., establishing responsibility for an event) and consequence management (e.g., predicting the activity of respirable particles). Our goal is to be able to simulate complex scenarios that involve conditions outside of historical testing experience, including, for example, an event at street level in an urban environment. Modeling of such scenarios involves capturing a number of physical and chemical processes that span a range of spatial and temporal scales. Fig. 1 shows the approximate sequence of events and associated processes. At early time, the outgoing shockwave and radiation cause damage and vaporization of immediate geologic materials and structure prior to entrainment into the evolving fireball. It is critically important to capture the geomechanical processes at this stage of fireball evolution. The vaporization, pulverization, and comminution of the geologic materials will determine how much mass introduced into the fireball at early time. This entrained material plays at least two critical roles. First, the entrained mass will cool the fireball, leading to more rapid condensation of materials from the plasma state. Second, the entrained material introduces additional chemical species that contribute to subsequent fallout formation. As the fireball expands and radiates, the initial plasma state cools and individual atoms and molecules can develop. During this phase, it is important to be able to predict what specific molecules develop, because some molecules are more refractory than others. For example, depending upon how much oxygen is available, different oxidation states will be achieved with different melting points. Consequently, modeling the mixing of the fireball with both entrained materials and with the atmosphere is key to predicting the initial formation of fallout relevant radionuclide species. With further cooling, nucleation and condensation of particles occurs, and they are subsequently transported to the surrounding environment.
APA, Harvard, Vancouver, ISO, and other styles
5

Harrison, W. E., H. C. Mongia, S. P. Heneghan, and D. R. Ballal. "Advanced Jet Fuels — JP-4 Through JP-8 and Beyond." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-223.

Full text
Abstract:
Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel is the primary coolant for aircraft and engine subsystems and provides the propulsive energy for flight. To meet the evolving challenges, the U.S. Air Force, industry and academia have teamed to develop new and improved fuels that offer increased heat sink and thermal stability, properties that will enable improved aircraft design and decrease fuel system maintenance due to fuel fouling/coking. This paper describes the team effort to develop improved JP-8, named “JP-8+100”, that offers a 55C (100F) improvement in thermal stability and a 50% increase in heat sink. The government, industry, and academia team has made numerous advances in the development of JP-8+100 with a more complete understanding of the fundamental processes of deposition, new approaches to reducing fouling/coking, and new tests and models to assist the designers of aircraft and engine fuel systems. Some of the principal advances are: new quantitative research devices and fuel system simulators that provide thermal stability information that cannot be obtained using the standard JFTOT test; new techniques to measure oxygen consumption and fuel degradation pathways; a free radical theory to explain behaviors such as the inverse relationship between thermal and oxidative stability, advanced CFD models with coupled degradation chemistry, and a new thermal stability ranking scale for jet fuels. The insight obtained has been applied to the development of an additive package for JP-8 that shows thermal stability improvements equal to or greater than the stated goal and enables the development of even higher thermal stability fuels such as JP-900.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Oxygen evolving complex"

1

Visser, Hendrik. X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/787134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robblee, John Henry. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/773946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Woodbury, Neal. Combinatorial Development of Water Splitting Catalysts Based on the Oxygen Evolving Complex of Photosystem II. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/1080011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, Wenchuan. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/29428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography