To see the other types of publications on this topic, follow the link: Oxygen Electrochemistry.

Journal articles on the topic 'Oxygen Electrochemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Oxygen Electrochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

HORITA, Kiyoshi, Yukio NAGAOSA, and Kenichi NAKATSU. "Oxygen Electrode by Using Oxygen Plasma-Treated Acetylene Black." Denki Kagaku oyobi Kogyo Butsuri Kagaku 60, no. 6 (June 5, 1992): 547–49. http://dx.doi.org/10.5796/electrochemistry.60.547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Doyle, Andrew D., Joseph H. Montoya, and Aleksandra Vojvodic. "Improving Oxygen Electrochemistry through Nanoscopic Confinement." ChemCatChem 7, no. 5 (January 30, 2015): 738–42. http://dx.doi.org/10.1002/cctc.201402864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doyle, Andrew D., Joseph H. Montoya, and Aleksandra Vojvodic. "Improving Oxygen Electrochemistry through Nanoscopic Confinement." ChemCatChem 7, no. 5 (February 27, 2015): 709. http://dx.doi.org/10.1002/cctc.201500103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Daojin, Yin Jia, Hongbin Yang, Wenwen Xu, Kai Sun, Junming Zhang, Shiyuan Wang, Yun Kuang, Bin Liu, and Xiaoming Sun. "Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery." Journal of Materials Chemistry A 6, no. 42 (2018): 21162–66. http://dx.doi.org/10.1039/c8ta08862d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tang, Cheng, and Qiang Zhang. "Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?" Journal of Materials Chemistry A 4, no. 14 (2016): 4998–5001. http://dx.doi.org/10.1039/c6ta01062h.

Full text
Abstract:
The investigation of working active sites, insights into the durability, mechanism and bifunctional nature of metal–nitrogen–carbon catalysts render this family of materials promising candidates for oxygen electrochemistry.
APA, Harvard, Vancouver, ISO, and other styles
6

Gracia, J. "Spin dependent interactions catalyse the oxygen electrochemistry." Physical Chemistry Chemical Physics 19, no. 31 (2017): 20451–56. http://dx.doi.org/10.1039/c7cp04289b.

Full text
Abstract:
The technological interest of oxygen reduction and evolution reactions, ORR and OER, for the clean use and storage of energy has resulted in the discovery of multiple catalysts; and the physical and catalytic properties of the most active compositions are only comprehensible with the consideration of magnetic interactions.
APA, Harvard, Vancouver, ISO, and other styles
7

Sharon, Daniel, Daniel Hirshberg, Michal Afri, Arnd Garsuch, Aryeh A. Frimer, and Doron Aurbach. "LithiumOxygen Electrochemistry in Non-Aqueous Solutions." Israel Journal of Chemistry 55, no. 5 (February 6, 2015): 508–20. http://dx.doi.org/10.1002/ijch.201400135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Shu Min, Chun Kiang Chua, David Sedmidubský, Zdenĕk Sofer, and Martin Pumera. "Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER." Physical Chemistry Chemical Physics 18, no. 3 (2016): 1699–711. http://dx.doi.org/10.1039/c5cp06682d.

Full text
Abstract:
The study of the inherent electrochemistry of layered metal chalcogenides, GaSe and GeS, was performed. In particular, their impact towards the electrochemical sensing of redox probes as well as catalysis of oxygen reduction, oxygen evolution and hydrogen evolution reactions was examined.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Fei, Li-Jun Zheng, Xiao-Xue Wang, Ma-Lin Li, Ji-Jing Xu, and Yu Wang. "Driving Oxygen Electrochemistry in Lithium–Oxygen Battery by Local Surface Plasmon Resonance." ACS Applied Materials & Interfaces 13, no. 22 (May 31, 2021): 26123–33. http://dx.doi.org/10.1021/acsami.1c06540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nemanick, E. Joseph. "Electrochemistry of lithium–oxygen batteries using microelectrode voltammetry." Journal of Power Sources 247 (February 2014): 26–31. http://dx.doi.org/10.1016/j.jpowsour.2013.08.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Liang, Yantao Zhang, Zhenjie Liu, Limin Guo, and Zhangquan Peng. "Understanding oxygen electrochemistry in aprotic Li O2 batteries." Green Energy & Environment 2, no. 3 (July 2017): 186–203. http://dx.doi.org/10.1016/j.gee.2017.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

IZU, Noriya, Woosuck SHIN, Ichiro MATSUBARA, and Norimitsu MURAYAMA. "Resistive Oxygen Sensor Using Hafnium-Doped Cerium Oxide." Electrochemistry 73, no. 7 (July 5, 2005): 478–80. http://dx.doi.org/10.5796/electrochemistry.73.478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jiao, Yan, Yao Zheng, Mietek Jaroniec, and Shi Zhang Qiao. "Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions." Chemical Society Reviews 44, no. 8 (2015): 2060–86. http://dx.doi.org/10.1039/c4cs00470a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Götz, R., H. K. Ly, P. Wrzolek, M. Schwalbe, and I. M. Weidinger. "Surface enhanced resonance Raman spectroscopy of iron Hangman complexes on electrodes during electrocatalytic oxygen reduction: advantages and problems of common drycast methods." Dalton Transactions 46, no. 39 (2017): 13220–28. http://dx.doi.org/10.1039/c7dt01174a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Du, Minshu, Yao Meng, Geju Zhu, Mingze Gao, Hsien-Yi Hsu, and Feng Liu. "Intrinsic electrocatalytic activity of a single IrOx nanoparticle towards oxygen evolution reaction." Nanoscale 12, no. 43 (2020): 22014–21. http://dx.doi.org/10.1039/d0nr05780k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

YOSHIO, Masaki, Yongyao XIA, and Tetsuo SAKAI. "Electrochemical and Physicochemical Behaviors of Oxygen-deficient Manganese Spinel." Electrochemistry 69, no. 7 (July 5, 2001): 516–18. http://dx.doi.org/10.5796/electrochemistry.69.516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

ASANO, Itaru, Yasuyuki HAMANO, Seiya TSUJIMURA, Osamu SHIRAI, and Kenji KANO. "Improved Performance of Gas-diffusion Biocathode for Oxygen Reduction." Electrochemistry 80, no. 5 (2012): 324–26. http://dx.doi.org/10.5796/electrochemistry.80.324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

DIETHELM, Stefan, Alexandre CLOSSET, Jan VAN HERLE, and Kemal NISANCIOGLU. "Oxygen Transport and Nonstoichiometry in SrFeO3-δ." Electrochemistry 68, no. 6 (June 5, 2000): 444–50. http://dx.doi.org/10.5796/electrochemistry.68.444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

McCloskey, B. D., D. S. Bethune, R. M. Shelby, G. Girishkumar, and A. C. Luntz. "Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry." Journal of Physical Chemistry Letters 2, no. 10 (April 27, 2011): 1161–66. http://dx.doi.org/10.1021/jz200352v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sharon, Daniel, Daniel Hirshberg, Michal Afri, Arnd Garsuch, Aryeh A. Frimer, and Doron Aurbach. "ChemInform Abstract: Lithium-Oxygen Electrochemistry in Non-Aqueous Solutions." ChemInform 46, no. 28 (June 25, 2015): no. http://dx.doi.org/10.1002/chin.201528302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Katsounaros, Ioannis, Serhiy Cherevko, Aleksandar R. Zeradjanin, and Karl J. J. Mayrhofer. "Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion." Angewandte Chemie International Edition 53, no. 1 (December 11, 2013): 102–21. http://dx.doi.org/10.1002/anie.201306588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nandan, R., A. Gautam, and K. K. Nanda. "Maximizing the utilization of Fe–NxC/CNx centres for an air-cathode material and practical demonstration of metal–air batteries." Journal of Materials Chemistry A 5, no. 38 (2017): 20252–62. http://dx.doi.org/10.1039/c7ta06254k.

Full text
Abstract:
Maximum exposure of electroactive sites in NCNTs via opening of nitrogen-enriched bamboo compartments for excellent overall oxygen electrochemistry and practical viability in electrochemical energy storage devices.
APA, Harvard, Vancouver, ISO, and other styles
23

Nandan, Ravi, Ajay Gautam, and Karuna Kar Nanda. "Anthocephalus cadamba shaped FeNi encapsulated carbon nanostructures for metal–air batteries as a resilient bifunctional oxygen electrocatalyst." Journal of Materials Chemistry A 6, no. 41 (2018): 20411–20. http://dx.doi.org/10.1039/c8ta05822a.

Full text
Abstract:
A facile strategy is developed for mimicking Anthocephalus cadamba on the nanoscale to produce FeNi encapsulated in radially grown spatially separated NCNTs for excellent bifunctional oxygen electrochemistry.
APA, Harvard, Vancouver, ISO, and other styles
24

Laha, S., S. Natarajan, J. Gopalakrishnan, E. Morán, R. Sáez-Puche, M. Á. Alario-Franco, A. J. Dos Santos-Garcia, J. C. Pérez-Flores, A. Kuhn, and F. García-Alvarado. "Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe)." Physical Chemistry Chemical Physics 17, no. 5 (2015): 3749–60. http://dx.doi.org/10.1039/c4cp05052e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lu, Xunyu, Hubert M. Chan, Chia-Liang Sun, Chuan-Ming Tseng, and Chuan Zhao. "Interconnected core–shell carbon nanotube–graphene nanoribbon scaffolds for anchoring cobalt oxides as bifunctional electrocatalysts for oxygen evolution and reduction." Journal of Materials Chemistry A 3, no. 25 (2015): 13371–76. http://dx.doi.org/10.1039/c5ta02967h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

ISHIBASHI, Kenji, Seiya TSUJIMURA, and Kenji KANO. "Pentacyanoferrate and Bilirubin Oxidase-bound Polymer for Oxygen Reduction Bio-cathode." Electrochemistry 76, no. 8 (2008): 594–96. http://dx.doi.org/10.5796/electrochemistry.76.594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Xin, Sen, Zhiwen Chang, Xinbo Zhang, and Yu-Guo Guo. "Progress of rechargeable lithium metal batteries based on conversion reactions." National Science Review 4, no. 1 (November 13, 2016): 54–70. http://dx.doi.org/10.1093/nsr/nww078.

Full text
Abstract:
Abstract In this review, we focus on the conversion reaction in newly raised rechargeable lithium batteries instanced by lithium–sulfur and lithium–oxygen batteries. A comprehensive discussion is made on the fundamental electrochemistry and recent advancements in key components of both types of the batteries. The critical problems in the Li–S and Li–O2 conversion electrochemistry are addressed along with the corresponding improvement strategies, for the purpose of shedding light on the rational design of batteries to reach optimal performance.
APA, Harvard, Vancouver, ISO, and other styles
28

KITANI, Akira, Akihisa YOKOO, and Sotaro ITO. "Reduction of Oxygen at Polyaniline Electrodes Modified with Platinum and Iron." Electrochemistry 75, no. 2 (2007): 182–83. http://dx.doi.org/10.5796/electrochemistry.75.182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

UCHIDA, Hiroyuki, Hiroshi YANO, Mitsuru WAKISAKA, and Masahiro WATANABE. "Electrocatalysis of the Oxygen Reduction Reaction at Pt and Pt-Alloys." Electrochemistry 79, no. 5 (2011): 303–11. http://dx.doi.org/10.5796/electrochemistry.79.303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

NAGAMINE, Kuniaki, Shuntaro ITO, Mai TAKEDA, Shingo OTANI, and Matsuhiko NISHIZAWA. "An Oxygen Responsive Microparticle-Patterned Hydrogel Sheet for Enzyme Activity Imaging." Electrochemistry 80, no. 5 (2012): 318–20. http://dx.doi.org/10.5796/electrochemistry.80.318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

MATSUO, Keishi, Yoshiyuki TAKATSUJI, Masahiro KOHNO, Toshiaki KAMACHI, Hideo NAKADA, and Tetsuya HARUYAMA. "Dispersed-phase Interfaces between Mist Water Particles and Oxygen Plasma Efficiently Produce Singlet Oxygen (1O2) and Hydroxyl Radical (•OH)." Electrochemistry 83, no. 9 (2015): 721–24. http://dx.doi.org/10.5796/electrochemistry.83.721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

UENO, Mitsushi, Hiroyuki OGURA, and Tamotsu SHIROGAMI. "Oxygen Partial Pressure Dependence on Cell Voltage in Phosphoric Acid Fuel Cell." Electrochemistry 67, no. 10 (October 5, 1999): 979–84. http://dx.doi.org/10.5796/electrochemistry.67.979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

TOSHIMA, Shigero, Tomohisa KANBAYASHI, Kazuhiro KAN, Kazushige AOYAGI, and Masato KOBAYASHI. "Measurement of Oxygen Consumption of Biopsied Bovine Embryos using Scanning Electrochemical Microscopy." Electrochemistry 73, no. 11 (November 5, 2005): 942–44. http://dx.doi.org/10.5796/electrochemistry.73.942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Clausmeyer, Jan, Justus Masa, Edgar Ventosa, Dennis Öhl, and Wolfgang Schuhmann. "Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles." Chemical Communications 52, no. 11 (2016): 2408–11. http://dx.doi.org/10.1039/c5cc08796a.

Full text
Abstract:
Individual Ni(OH)2 nanoparticles deposited on carbon nanoelectrodes are investigated in non-ensemble measurements with respect to their energy storage properties and electrocatalysis for the oxygen evolution reaction (OER).
APA, Harvard, Vancouver, ISO, and other styles
35

SATO, Yuki, Sho KITANO, Damian KOWALSKI, Yoshitaka AOKI, Naoko FUJIWARA, Tsutomu IOROI, and Hiroki HABAZAKI. "Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers as a Bifunctional Catalyst for Oxygen Evolution Reaction and Oxygen Reduction Reaction." Electrochemistry 88, no. 6 (November 5, 2020): 566–73. http://dx.doi.org/10.5796/electrochemistry.20-00107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

McKee, Austin, Avik Samanta, Alan Rassoolkhani, Jonathan Koonce, Wuji Huang, Jacob Fields, Scott K. Shaw, Joseph Gomes, Hongtao Ding, and Syed Mubeen. "Effect of silver electrode wetting state on oxygen reduction electrochemistry." Chemical Communications 57, no. 65 (2021): 8003–6. http://dx.doi.org/10.1039/d1cc01438b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sours, Tyler, Anjli Patel, Jens Nørskov, Samira Siahrostami, and Ambarish Kulkarni. "Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks." Journal of Physical Chemistry Letters 11, no. 23 (November 12, 2020): 10029–36. http://dx.doi.org/10.1021/acs.jpclett.0c02889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cheng, Fangyi, and Jun Chen. "Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts." Chemical Society Reviews 41, no. 6 (2012): 2172. http://dx.doi.org/10.1039/c1cs15228a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wei, Jie, Yong-Li Zheng, Zi-Yue Li, Mian-Le Xu, Yan-Xia Chen, and Shen Ye. "Electrochemistry of Oxygen at Ir Single Crystalline Electrodes in Acid." Electrochimica Acta 246 (August 2017): 329–37. http://dx.doi.org/10.1016/j.electacta.2017.05.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jiang, Yuanyuan, Pengjuan Ni, Chuanxia Chen, Yizhong Lu, Ping Yang, Biao Kong, Adrian Fisher, and Xin Wang. "Selective Electrochemical H2 O2 Production through Two-Electron Oxygen Electrochemistry." Advanced Energy Materials 8, no. 31 (September 21, 2018): 1801909. http://dx.doi.org/10.1002/aenm.201801909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Marusczyk, Anika, Jan-Michael Albina, Thomas Hammerschmidt, Ralf Drautz, Thomas Eckl, and Graeme Henkelman. "Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3." Journal of Materials Chemistry A 5, no. 29 (2017): 15183–90. http://dx.doi.org/10.1039/c7ta04164k.

Full text
Abstract:
Over-lithiated transition metal oxides are currently the most promising high energy cathode materials. DFT calculations show that Li2MnO3 becomes increasingly unstable upon delithiation and experiences a driving force for either oxygen release from the surface or peroxide formation in the bulk. Both mechanisms are shown to be detrimental for the electrochemistry.
APA, Harvard, Vancouver, ISO, and other styles
42

UESHIMA, Masato, Katsuo TAKAHASHI, and Masaya IWAKI. "Hydrogen Absorption in Palladium Electrode with Structurely Changed by Oxygen Ion Implantation." Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, no. 7 (July 5, 1993): 792–93. http://dx.doi.org/10.5796/electrochemistry.61.792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

TACHIBANA, Koji, Akihiro TSURUNO, Katsumichi KOBAYASHI, and Ken-ichi NAGANUMA. "Preparation of Ni-Co Oxide Electrodes Containing Foreign Elements for Oxygen Evolution." Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, no. 7 (July 5, 1993): 800–801. http://dx.doi.org/10.5796/electrochemistry.61.800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

KAMEGAYA, Yoichi, Kouki SASAKI, Masayuki OGURI, Tomoyoshi ASAKI, and Takashi MITAMURA. "A Newly Designed Titanium Anode for Oxygen Evolution at High Current Densities." Denki Kagaku oyobi Kogyo Butsuri Kagaku 61, no. 7 (July 5, 1993): 802–4. http://dx.doi.org/10.5796/electrochemistry.61.802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

SATO, Jun, Kazuki HIGURASHI, Katsutoshi FUKUDA, and Wataru SUGIMOTO. "Oxygen Reduction Reaction Activity of Pt/Graphene Composites with Various Graphene Size." Electrochemistry 79, no. 5 (2011): 337–39. http://dx.doi.org/10.5796/electrochemistry.79.337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

AIKAWA, Hiroaki, Kenji SAKAMOTO, Mikihito SUGIYAMA, Kouji SAIKI, and Nagakazu FURUYA. "Deterioration Mechanism of Oxygen Cathode Loaded with Silver Catalyst for Chlor-alkali Electrolysis." Electrochemistry 71, no. 3 (March 5, 2003): 169–73. http://dx.doi.org/10.5796/electrochemistry.71.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

ITAGAKI, Masayuki, Hajime HASEGAWA, Kunihiro WATANABE, and Toshinori HACHIYA. "Electroreduction of Oxygen on Oxidized Silver Electrode Investigated by Channel Flow Double Electrode." Electrochemistry 71, no. 7 (July 5, 2003): 536–41. http://dx.doi.org/10.5796/electrochemistry.71.536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jung, Kyu-Nam, Jeonghun Kim, Yusuke Yamauchi, Min-Sik Park, Jong-Won Lee, and Jung Ho Kim. "Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes." Journal of Materials Chemistry A 4, no. 37 (2016): 14050–68. http://dx.doi.org/10.1039/c6ta04510c.

Full text
Abstract:
Lithium–air battery (LAB) technology is currently being considered as a future technology for resolving energy and environmental issues. Here, we introduce recent advances and the remaining technical challenges in the development of LABs, particularly focusing on the cathodes based on a fundamental understanding of Li–O2electrochemistry.
APA, Harvard, Vancouver, ISO, and other styles
49

Ananyev, M. V., E. Kh Kurumchin, and N. M. Porotnikova. "Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites." Russian Journal of Electrochemistry 46, no. 7 (July 2010): 789–97. http://dx.doi.org/10.1134/s1023193510070128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Öztaş, B., D. Akyüz, and A. Koca. "Immobilization of alkynyl functionalized manganese phthalocyanine via click electrochemistry for electrocatalytic oxygen evolution reaction." Physical Chemistry Chemical Physics 19, no. 38 (2017): 26121–31. http://dx.doi.org/10.1039/c7cp04354f.

Full text
Abstract:
Modified electrodes (ITO/PANI-N3-MnPc and GCE/PANI-N3-MnPc) were constructed by click electrochemistry (CEC). The GCE/PANI-N3-MnPc electrode was tested as a potential electrocatalyst for water splitting reaction.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography