Journal articles on the topic 'Oxyen isotopes'

To see the other types of publications on this topic, follow the link: Oxyen isotopes.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Oxyen isotopes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Xiangnan, Baisha Weng, Denghua Yan, Tianling Qin, Kun Wang, Wuxia Bi, Zhilei Yu, and Batsuren Dorjsuren. "Anthropogenic Effects on Hydrogen and Oxygen Isotopes of River Water in Cities." International Journal of Environmental Research and Public Health 16, no. 22 (November 12, 2019): 4429. http://dx.doi.org/10.3390/ijerph16224429.

Full text
Abstract:
Stable hydrogen and oxygen isotopes are important indicators for studying water cycles. The isotopes are not only affected by climate, but are also disturbed by human activities. Urban construction has changed the natural attributes and underlying surface characteristics of river basins, thus affecting the isotopic composition of river water. We collected urban river water isotope data from the Global Network for Isotopes in Rivers (GNIR) database and the literature, and collected river water samples from the Naqu basin and Huangshui River basin on the Tibetan Plateau to measure hydrogen and oxygen isotopes. Based on 13 pairs of urban area and non-urban area water samples from these data, the relationship between the isotopic values of river water and the artificial surface area of cities around rivers was analyzed. The results have shown that the hydrogen and oxygen isotope (δD and δ18O) values of river water in urban areas were significantly higher than those in non-urban areas. The isotopic variability of urban and non-urban water was positively correlated with the artificial surface area around the rivers. In addition, based on the analysis of isotope data from 21 rivers, we found that the cumulative effects of cities on hydrogen and oxygen isotopes have led to differences in surface water line equations for cities with different levels of development. The combined effects of climate and human factors were the important reasons for the variation of isotope characteristics in river water in cities. Stable isotopes can not only be used to study the effects of climate on water cycles, but also serve as an important indicator for studying the degree of river development and utilization.
APA, Harvard, Vancouver, ISO, and other styles
2

Passey, Benjamin H. "Reconstructing Terrestrial Environments Using Stable Isotopes in Fossil Teeth and Paleosol Carbonates." Paleontological Society Papers 18 (November 2012): 167–94. http://dx.doi.org/10.1017/s1089332600002606.

Full text
Abstract:
Carbon isotopes in Neogene-age fossil teeth and paleosol carbonates are commonly interpreted in the context of past distributions of C3 and C4 vegetation. These two plant types have very different distributions in relation to climate and ecology, and provide a robust basis for reconstructing terrestrial paleoclimates and paleoenvironments during the Neogene. Carbon isotopes in pre-Neogene fossil teeth are usually interpreted in the context of changes in the δ13C value of atmospheric CO2, and variable climate-dependent carbon-isotope discrimination in C3 plants. Carbon isotopes in pre-Neogene soil carbonates can be used to estimate past levels of atmospheric CO2. Oxygen isotopes in fossil teeth and paleosol carbonates primarily are influenced by the oxygen isotopic compositions of ancient rainfall and surface waters. The oxygen isotopic composition of rainfall is has a complex, but tractable, relationship with climate, and variably relates to temperature, elevation, precipitation amount, and other factors. Mammal species that rely on moisture in dietary plant tissues to satisfy their water requirements (rather than surface drinking water) may have oxygen isotopic compositions that track aridity. Thus, oxygen isotopes of fossil mammals can place broad constraints on paleoaridity. Carbonate clumped isotope thermometry allows for reconstruction of soil temperatures at the time of pedogenic carbonate mineralization. The method is unique because it is the only thermodynamically based isotopic paleothermometer that does not require assumptions about the isotopic composition of the fluid in which the archive mineral formed. Soil temperature reflects a complex interplay of air temperature, solar radiative heating, latent heat effects, soil thermal diffusivity, and seasonal variations of these parameters. Because plants and most animals live in and/or near the soil, soil temperature is an important aspect of terrestrial (paleo)climate.
APA, Harvard, Vancouver, ISO, and other styles
3

Miljević, Nada, and Dušan Golobočanin. "Potential Use of Environmental Isotopes in Pollutant Migration Studies." Archives of Industrial Hygiene and Toxicology 58, no. 2 (June 1, 2007): 251–62. http://dx.doi.org/10.2478/v10004-007-0015-5.

Full text
Abstract:
Potential Use of Environmental Isotopes in Pollutant Migration StudiesThis article presents the use of natural abundance stable isotope (hydrogen, carbon, nitrogen, oxygen, chlorine) analysis data as a tool for providing important information about the origin of contaminants, the contribution of different sources to a multi-source plume, characterisation of their complex transport (rate and mechanisms) and for evaluating the success of contaminated site remediation. Isotopic signatures of contaminants are useful tracers of their sources, while isotopic fractionation can be used to quantitatively assess the progress of an environmental process such as biodegradation. This new isotopic approach is reliable and can offer more information than traditional techniques in pollutant migration studies, particularly after waste disposal. During biological degradation of any organic compound, molecules containing lighter isotopes are degraded, and the portion of heavier isotopes in the substrate is increased, identifying specific microbial roles in biogeochemical cycling. Since isotopic fractionation is proportional to degradation, depending on the type of contamination, a microbial degradation of 50% to 99% of the initial concentration can be quantified using isotope ratio measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Swart, Peter K., and Jim J. Leder. "The utility of stable isotopic signatures in coral skeletons." Paleontological Society Papers 1 (October 1996): 249–91. http://dx.doi.org/10.1017/s1089332600000127.

Full text
Abstract:
There is a fundamental ecologic differentiation between zooxanthellate and non-zooxanthellate corals. This paper reviews factors which govern the stable carbon and oxygen isotopic composition of these groups of corals. Although the stable carbon and oxygen isotope compositions of coral skeletons are strongly influenced by environmental and physiological factors, the precise mechanisms remain a matter of debate. In particular the oxygen isotopic composition is known to be governed by the temperature and the oxygen isotopic composition of the water and perhaps also by kinetic factors. In contrast the carbon isotopic composition is controlled by a combination of photosynthesis, respiration, autotrophy, heterotrophy, and the isotopic composition of dissolved inorganic carbon. Using a combination of carbon and oxygen isotopes it is possible to distinguish zooxanthellate from non-zooxanthellate corals.
APA, Harvard, Vancouver, ISO, and other styles
5

Alderton, David H. M. "Oxygen isotope fractionation between cassiterite and water." Mineralogical Magazine 53, no. 371 (June 1989): 373–76. http://dx.doi.org/10.1180/minmag.1989.053.371.13.

Full text
Abstract:
Analysis of stable isotopes in coexisting minerals has found wide application in the study of hydrothermal mineral deposits, particularly for elucidating the temperature and source of the fluid phase involved in mineralisation. For these purposes the temperature dependence of isotopic fractionation in several mineral-water systems has already been established (e.g. Friedman and O'Neil, 1977; O'Neil, 1986). Unfortunately, the oxygen isotope fractionation between cassiterite (SnO2) and water has not been adequately characterized, and this has hindered a full utilization of oxygen isotope data derived from studies of tin deposits (e.g. Harzer, 1970; Patterson et al., 1981; Kelly and Rye, 1979). Because of this situation, an attempt is made here to derive a relationship between temperature and the fractionation of oxygen isotopes (Δ) between quartz and cassiterite, based on the fractionations observed in naturally-occurring assemblages and independent temperature estimates.
APA, Harvard, Vancouver, ISO, and other styles
6

Kakareka, S. V., T. I. Kukharchyk, A. A. Ekaykin, and Yu G. Giginyak. "Stable isotopes in the snow of the coastal areas of Antarctica." Doklady of the National Academy of Sciences of Belarus 65, no. 4 (September 2, 2021): 495–502. http://dx.doi.org/10.29235/1561-8323-2021-65-4-495-502.

Full text
Abstract:
The first results of study of stable isotopes of oxygen (δ18O) and hydrogen (δD) in the snow samples taken on the islands of Marguerite Bay (Antarctic Peninsula), in the Vecherny Oasis (Enderby Land), and Larsemann Hills (Princess Elizabeth Land) by the participants of the 12th Belarusian Antarctic Expedition (January–March 2020) are presented. The concentration of water isotopes: deuterium (D) and oxygen-18 (18O) in the samples was determined using a laser isotope composition analyzer Picarro L2130. A total of 32 snow samples were analyzed. The statistical parameters of the isotopic composition of snow were estimated, and the main differences in the content of δ18O and δD between the study areas were shown. A decrease in the content of heavy oxygen and hydrogen isotopes in the newly fallen snow to the old snow of the surface horizons is shown. The maximum values of δ18O and δD are typical for the Maritime Antarctica, decreasing towards the coastal zone and further – towards its continental part. The possible factors affecting the isotope content are described. It is shown that the monitoring of the isotope composition can be an integral part of the monitoring of climatic changes within the area of operation of the Belarusian Antarctic Expedition. The study of the isotopic composition of surface snow is important for the reconstruction of the paleoclimate of the marginal zone of the Antarctic ice sheet based on the ice cores study.
APA, Harvard, Vancouver, ISO, and other styles
7

Pollard, A. M. "Isotopes and impact: a cautionary tale." Antiquity 85, no. 328 (May 2011): 631–38. http://dx.doi.org/10.1017/s0003598x00068034.

Full text
Abstract:
There can be no doubt that isotopic studies have made a huge contribution to archaeology in recent years, so much so that isotope archaeology is now seen as an essential subdiscipline of archaeology in much the same way as isotope geochemistry is a key subdiscipline of geochemistry. Ignoring for current purposes the contribution made by the measurement of a particular radioactive isotope of carbon (14C) since 1950, we can date the beginnings of isotope archaeology to the mid 1960s with the first measurements of lead isotopes in archaeological metals and slags by Brill and Wampler (1965, 1967). This was followed by carbon stable isotopes in human bone collagen in the late 1970s, building on previous work measuring σ13C in archaeological bone for radiocarbon determinations (Vogel & Van der Merwe 1977; Van der Merwe & Vogel 1978). Other isotopes followed rapidly, such as nitrogen, oxygen, sulphur and hydrogen for archaeological, palaeoecological or palaeoclimatological purposes and, more recently, the heavier radiogenic isotopes of strontium and neodymium for determining the provenance of organic and inorganic materials (Pollard & Heron 2008).
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Yue, Guo-dong Liu, and Cheng-cheng Xia. "Multi-time scale analysis of hydrogen and oxygen isotope characteristics and influence factors in precipitation in Vienna." MATEC Web of Conferences 246 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201824602011.

Full text
Abstract:
Based on isotope and meteorology data at Vienna station from 1972 to 2014 provided by GNIP, the average monthly and annual hydrogen and oxygen stable isotopic compositions and main factors were analyzed by using various trend analysis, periodic analysis and correlation analysis methods. The monthly mean isotopic compositions change slightly, reflecting the fact that although Vienna is affected by the maritime climate and the continental climate, the former impact is more significant. The slope and intercept of the LMWL in Vienna changed significantly from October to March, indicating that it was affected by alternating effects of the two climates. The annual mean isotopes show a trend of enrichment, and it has an obvious temperature effect, but the rainfall amount effect does not exist, and no simple linear relationship was found between isotopes and vapor pressure. The annual mean isotopes also show the periodic variation characteristics with scales such as 9-16 years and 18~29 years, and it is concluded that the isotope values will be enriched after 2011 at the scale 22 years. The multivariate regression relationship established by δD and δ18O with three climate parameters of temperature, precipitation and vapor pressure can quantitatively estimate the missing value in isotopic data.
APA, Harvard, Vancouver, ISO, and other styles
9

Bühler, Janica C., Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld. "Investigating stable oxygen and carbon isotopic variability in speleothem records over the last millennium using multiple isotope-enabled climate models." Climate of the Past 18, no. 7 (July 13, 2022): 1625–54. http://dx.doi.org/10.5194/cp-18-1625-2022.

Full text
Abstract:
Abstract. The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modeled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modeled water isotopologues, as well as the diversity of their representation in different models, are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable terrestrial paleoclimate archives and provide well-preserved (semi-)continuous multivariate isotope time series in the lower latitudes and mid-latitudes and are therefore well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationships of speleothem oxygen and carbon isotopes to climate variables are influenced by site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and Analysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISS-E2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for modeled isotopes and compare them to those of measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modeled surface temperature. At low latitudes, precipitation amount is the dominant driver for stable water isotope variability; however, at cave locations the agreement between modeled temperature variability is higher than for precipitation variability. While modeled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes. This may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems (albeit to varying extents). We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach whenever comparing proxy data to modeled data. Considering karst and cave internal processes, e.g., through isotope-enabled karst models, may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using, e.g., different isotopes, different climate archives, or different time periods.
APA, Harvard, Vancouver, ISO, and other styles
10

Reyes-García, Casandra, and José Luis Andrade. "Los isótopos estables del hidrógeno y el oxígeno en los estudios ecofisiológicos de plantas." Botanical Sciences, no. 80 (June 3, 2017): 19. http://dx.doi.org/10.17129/botsci.1742.

Full text
Abstract:
Stable isotope studies of elements in biological organisms have become a useful tool to assess the exchange of molecules in the biosphere. Since water is one of the most abundant molecules in such an exchange, studies on stable isotopes of hydrogen and oxygen have become a fundamental component of many plant ecophysiological studies, from the leaf level to the reconstruction of past climates. In this review, we mention the most common methodologies, general notation and the most relevant research on hydrogen and oxygen stable isotopes. Also, we discuss studies on plant water sources, leaf isotopic enrichment due to transpiration, the relationship between environment and oxygen stable isotopes in organic matter, and present studies that propose some plant species as environmental indicators in a globally changing world.
APA, Harvard, Vancouver, ISO, and other styles
11

Hamzić Gregorčič, Staša, Doris Potočnik, Federica Camin, and Nives Ogrinc. "Milk Authentication: Stable Isotope Composition of Hydrogen and Oxygen in Milks and Their Constituents." Molecules 25, no. 17 (September 2, 2020): 4000. http://dx.doi.org/10.3390/molecules25174000.

Full text
Abstract:
This paper summarises the isotopic characteristics, i.e., oxygen and hydrogen isotopes, of Slovenian milk and its major constituents: water, casein, and lactose. In parallel, the stable oxygen isotope ratios of cow, sheep, and goat’s milk were compared. Oxygen stable isotope ratios in milk water show seasonal variability and are also 18O enriched in relation to animal drinking water. The δ18Owater values were higher in sheep and goat’s milk when compared to cow milk, reflecting the isotopic composition of drinking water source and the effect of differences in the animal’s thermoregulatory physiologies. The relationship between δ18Omilk and δ18Olactose is an indication that even at lower amounts (>7%) of added water to milk can be determined. This procedure once validated on an international scale could become a reference method for the determination of milk adulteration with water.
APA, Harvard, Vancouver, ISO, and other styles
12

Jones, Douglas S. "Isotopic Determination of Growth and Longevity in Fossil and Modern Invertebrates." Paleontological Society Papers 4 (October 1998): 37–67. http://dx.doi.org/10.1017/s1089332600000395.

Full text
Abstract:
The isotopic composition of fossil invertebrates contains a wealth of information about the physical and chemical environments of the ancient past. The exploitation of this biogeochemical archive by paleontologists began about 50 years ago with the realization that the ratios of oxygen isotopes in the shells and skeletons of marine organisms offered the potential to accurately reconstruct paleoenvironmental conditions, particularly temperature (Urey, 1947; Urey et al., 1951). With the introduction of the oxygen isotope paleotemperature methodology (Epstein et al., 1951, 1953; Epstein and Lowenstam, 1953), the field of “isotope paleontology” was born (Wefer and Berger, 1991).
APA, Harvard, Vancouver, ISO, and other styles
13

Jung, Hyejung, Dong-Chan Koh, Yun Kim, Sung-Wook Jeen, and Jeonghoon Lee. "Stable Isotopes of Water and Nitrate for the Identification of Groundwater Flowpaths: A Review." Water 12, no. 1 (January 1, 2020): 138. http://dx.doi.org/10.3390/w12010138.

Full text
Abstract:
Nitrate contamination in stream water and groundwater is a serious environmental problem that arises in areas of high agricultural activities or high population density. It is therefore important to identify the source and flowpath of nitrate in water bodies. In recent decades, the dual isotope analysis (δ15N and δ18O) of nitrate has been widely applied to track contamination sources by taking advantage of the difference in nitrogen and oxygen isotope ratios for different sources. However, transformation processes of nitrogen compounds can change the isotopic composition of nitrate due to the various redox processes in the environment, which often makes it difficult to identify contaminant sources. To compensate for this, the stable water isotope of the H2O itself can be used to interpret the complex hydrological and hydrochemical processes for the movement of nitrate contaminants. Therefore, the present study aims at understanding the fundamental background of stable water and nitrate isotope analysis, including isotope fractionation, analytical methods such as nitrate concentration from samples, instrumentation, and the typical ranges of δ15N and δ18O from various nitrate sources. In addition, we discuss hydrograph separation using the oxygen and hydrogen isotopes of water in combination with the nitrogen and oxygen isotopes of nitrate to understand the relative contributions of precipitation and groundwater to stream water. This study will assist in understanding the groundwater flowpaths as well as tracking the sources of nitrate contamination using the stable isotope analysis in combination with nitrate and water.
APA, Harvard, Vancouver, ISO, and other styles
14

Smith, Abigail M., and Marcus M. Key. "Controls, variation, and a record of climate change in detailed stable isotope record in a single bryozoan skeleton." Quaternary Research 61, no. 2 (March 2004): 123–33. http://dx.doi.org/10.1016/j.yqres.2003.11.001.

Full text
Abstract:
The long-lived (about 20 yr) bryozoan Adeonellopsis sp. from Doubtful Sound, New Zealand, precipitates aragonite in isotopic equilibrium with seawater, exerting no metabolic or kinetic effects. Oxygen isotope ratios (δ18O) in 61 subsamples (along three branches of a single unaltered colony) range from −0.09 to +0.68‰ PDB (mean = +0.36‰ PDB). Carbon isotope ratios (δ13C) range from +0.84 to +2.18‰ PDB (mean = +1.69‰ PDB). Typical of cool-water carbonates, δ18O-derived water temperatures range from 14.2 to 17.5 °C. Adeonellopsis has a minimum temperature growth threshold of 14 °C, recording only a partial record of environmental variation. By correlating seawater temperatures derived from δ18O with the Southern Oscillation Index, however, we were able to detect major events such as the 1983 El Niño. Interannual climatic variation can be recorded in skeletal carbonate isotopes. The range of within-colony isotopic variability found in this study (0.77‰ in δ18O and 1.34 in δ13C) means that among-colony variation must be treated cautiously. Temperate bryozoan isotopes have been tested in less than 2% of described extant species — this highly variable phylum is not yet fully understood.
APA, Harvard, Vancouver, ISO, and other styles
15

Humphrey, John D., and C. Reid Ferring. "Stable Isotopic Evidence for Latest Pleistocene and Holocene Climatic Change in North-Central Texas." Quaternary Research 41, no. 2 (March 1994): 200–213. http://dx.doi.org/10.1006/qres.1994.1022.

Full text
Abstract:
AbstractA paleoclimatic record for a southern Great Plains locality (the Aubrey Clovis site in north-central Texas) has been established using stable carbon and oxygen isotopes. Detailed composite stratigraphic sections, constrained by 14 C ages, place the age of these deposits between 14,200 and 1600 yr B.P. Calcium carbonate samples of lacustrine and pedogenic origin were analyzed. Oxygen isotopic compositions of most of these in situ carbonates reflect equilibrium precipitation from local meteoric waters. Oxygen isotope values reflect changes in the composition of meteoric waters tied to changes in the isotopic composition of moisture derived from the Gulf of Mexico. Oxygen isotopic variability at the Aubrey site is coincident with marine isotopic records from the gulf that vary due to changes in Laurentide ice sheet volume and meltwater influx. The stable carbon isotopic record, reflecting changing biomass through time, corroborates humid versus arid interpretations based on sedimentology and rates of alluviation. A middle Holocene arid period was in contrast to moist early and late Holocene climate, affirming interpretations of other workers studying southern Great Plains Holocene climate history.
APA, Harvard, Vancouver, ISO, and other styles
16

ROSADO, BRUNO H. P., EDUARDO A. DE MATTOS, and LEONEL DA S. L. STERNBERG. "Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?" Anais da Academia Brasileira de Ciências 85, no. 3 (September 2013): 1035–46. http://dx.doi.org/10.1590/s0001-37652013005000051.

Full text
Abstract:
During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.
APA, Harvard, Vancouver, ISO, and other styles
17

Peters, Stefan T. M., Narges Alibabaie, Andreas Pack, Seann J. McKibbin, Davood Raeisi, Niloofar Nayebi, Farhad Torab, Trevor Ireland, and Bernd Lehmann. "Triple oxygen isotope variations in magnetite from iron-oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks." Geology 48, no. 3 (December 17, 2019): 211–15. http://dx.doi.org/10.1130/g46981.1.

Full text
Abstract:
Abstract Oxygen isotope ratios in magnetite can be used to study the origin of iron-oxide ore deposits. In previous studies, only 18O/16O ratios of magnetite were determined. Here, we report triple O isotope data (17O/16O and 18O/16O ratios) of magnetite from the iron-oxide–apatite (IOA) deposits of the Yazd and Sirjan areas in central Iran. In contrast to previous interpretations of magnetite from similar deposits, the triple O isotope data show that only a few of the magnetite samples potentially record isotopic equilibrium with magma or with pristine magmatic water (H2O). Instead, the data can be explained if magnetite had exchanged O isotopes with fluids that had a mass-independently fractionated O isotope composition (i.e., MIF-O), and with fluids that had exchanged O isotopes with marine sedimentary carbonate rocks. The MIF-O signature of the fluids was likely obtained by isotope exchange with evaporite rocks of early Cambrian age that are associated with the IOA deposits in central Iran. In order to explain the triple O isotope composition of the magnetite samples in conjunction with available iron isotope data for magnetite from the deposits, we propose that magnetite formed from magmatic fluids that had interacted with evaporite and carbonate rocks at high temperatures and at variable water/rock ratios; e.g., magmatic fluids that had been released into the country rocks of a magma reservoir. Additionally, the magnetite could have formed from magmatic fluids that had exchanged O isotopes with SO2 and CO2 that, in turn, had been derived by the magmatic assimilation and/or metamorphic breakdown of evaporite and carbonate rocks.
APA, Harvard, Vancouver, ISO, and other styles
18

Polyakov, V. B., M. V. Mironenko, and M. V. Alenina. "Simultaneous Calculation of Chemical and Isotope Equilibria Using the GEOCHEQ_Isotope Software: Oxygen Isotopes." Geochemistry International 59, no. 11 (November 2021): 1090–105. http://dx.doi.org/10.1134/s0016702921110094.

Full text
Abstract:
Abstract— The GEOCHEQ_Isotope software package, elaborated previously for modeling chemical and carbon isotope equilibria in hydrothermal and hydrogeochemical systems by minimizing the Gibbs energy, is extended to the simultaneous calculation of carbon and oxygen isotopic effects. Similar to what was done for carbon, the β-factor formalism was used to develop algorithms and a database for calculating the isotopic effects of oxygen. According to the developed algorithm, the Gibbs energy of formation of a rare isotopologue, G*(P, T), is calculated through the Gibbs energy of formation of the main isotopologue, the value of the β18O factor of this substance, and the mass ratio of the rare (18O) and main (16O) isotopes. The isotope mixture is assumed to be ideal. The temperature dependence of the β-factor is unified as a polynomial in reciprocal absolute temperature. Necessary information on oxygen isotope equilibria involving important geochemical compounds was critically analyzed, and the available data were reconciled and modified. The temperature dependences of the β18O-factors were correspondingly optimized. The thermodynamic database was updated by adding information on the temperature dependence of β18O-factors specified by polynomial coefficients for each substance. The usage of the GEOCHEQ_Isotope software package and the corresponding database is demonstrated by modeling the dependence of oxygen and carbon isotope fractionation factors on the acidity of the solution (pH) in a carbonate hydrothermal system. The simulation results are in a good agreement with experimental data available from the literature. The enrichment of dissolved carbonates in the 18O heavy oxygen isotope relative to water decreases with increasing pH of the system. At the same time, a pH increase results in a decrease in the negative carbon isotope shift between calcite and dissolved carbonates. At high pH values (~11), the isotope shift inversion and the enrichment of the dissolved carbonate in the heavy carbon isotope relative to calcite are predicted.
APA, Harvard, Vancouver, ISO, and other styles
19

Ling, Xiaoxiao, Qiuli Li, Lianjun Feng, Di Zhang, Yu Liu, Guoqiang Tang, Jiao Li, et al. "Beryl Reference Materials for In Situ Oxygen Isotope Determination." Crystals 11, no. 11 (October 29, 2021): 1322. http://dx.doi.org/10.3390/cryst11111322.

Full text
Abstract:
The mineral beryl (Be3Al2(SiO3)6) has the most abundant phase with industrial value for extracting a critical metal—beryllium. Due to multi-stage, fluid-induced growth, individual beryl grains may yield complex geochemical records, revealing variations in the oxygen isotopes of the fluids from which they crystallize. Secondary ion mass spectrometry (SIMS) with high sensitivity and high spatial resolution represents a good tool for in situ isotopic analysis. SIMS oxygen analyses require matrix-matched reference materials to calibrate instrumental mass fractionations during measurement. In this work, the oxygen isotope homogeneities of six beryl samples with different compositions (BS1, BS2, BS3, BS4, BS5, and BS6) were documented by SIMS. These samples’ recommended oxygen isotope compositions were characterized by laser fluorination isotope ratio mass spectrometry (IRMS). This study suggests that there is no matrix effect related to composition variation in beryl SIMS oxygen isotope analysis. The recommended δ18O values of the four reference materials, BS1, BS2, BS4, and BS5, were 15.01 ± 0.34‰ (2 standard deviations, 2 SD), 7.53 ± 0.16‰ (2 SD), 2.38 ± 0.14‰ (2 SD), and 10.72 ± 0.44‰ (2 SD), respectively. Therefore, BS1, BS2, BS4, and BS5 are recommended as suitable reference materials for in situ mineral beryl oxygen isotope microanalysis.
APA, Harvard, Vancouver, ISO, and other styles
20

Bataille, Clément P., Klervia Jaouen, Stefania Milano, Manuel Trost, Sven Steinbrenner, Éric Crubézy, and Rozenn Colleter. "Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe." PLOS ONE 16, no. 5 (May 5, 2021): e0250383. http://dx.doi.org/10.1371/journal.pone.0250383.

Full text
Abstract:
Sulfur isotope composition of organic tissues is a commonly used tool for gathering information about provenance and diet in archaeology and paleoecology. However, the lack of maps predicting sulfur isotope variations on the landscape limits the possibility to use this isotopic system in quantitative geographic assignments. We compiled a database of 2,680 sulfur isotope analyses in the collagen of archaeological human and animal teeth from 221 individual locations across Western Europe. We used this isotopic compilation and remote sensing data to apply a multivariate machine-learning regression, and to predict sulfur isotope variations across Western Europe. The resulting model shows that sulfur isotope patterns are highly predictable, with 65% of sulfur isotope variations explained using only 4 variables representing marine sulfate deposition and local geological conditions. We used this novel sulfur isoscape and existing strontium and oxygen isoscapes of Western Europe to apply triple isotopes continuous-surface probabilistic geographic assignments to assess the origin of a series of teeth from local animals and humans from Brittany. We accurately and precisely constrained the origin of these individuals to limited regions of Brittany. This approach is broadly transferable to studies in archaeology and paleoecology as illustrated in a companion paper (Colleter et al. 2021).
APA, Harvard, Vancouver, ISO, and other styles
21

Oi, Takao. "18O/16O and D/H Isotopic Preference in Hydration Spheres of Alkali Metal Ions." Zeitschrift für Naturforschung A 66, no. 8-9 (September 1, 2011): 569–75. http://dx.doi.org/10.5560/zna.2011-0019.

Full text
Abstract:
Abstract With the final goal set at theoretical elucidation of experimentally observed isotope salt effects, molecular orbital calculations were performed to estimate the 18O/16O and D/H isotopic reduced partition function ratios (RPFRs) of water molecules around lithium, sodium, and potassium ions. As model water molecules in the ith hydration sphere of the cation in aqueous solutions containing that cation, we considered water molecules in the ith hydration sphere that were surrounded by water molecules in the (i+1)th hydration sphere in clusters, M+(H2O)n (M = Li, Na or K; n up to 100). The calculations indicated that the decreasing order of the 18 O preference over 16 O in the primary hydration sphere is: Li+ > (bulk water) ≥ Na+ > K+. That is, water molecules in the primary hydration spheres of the Li+, Na+, and K+ ions are, respectively, enriched, slightly depleted, and depleted in the heavier isotope of oxygen relative to water molecules in bulk. No such preference was observed for hydrogen isotopes in any hydration sphere or for oxygen isotopes in the secondary and outer hydration spheres.
APA, Harvard, Vancouver, ISO, and other styles
22

Lewicka-Szczebak, Dominika, Jens Dyckmans, Jan Kaiser, Alina Marca, Jürgen Augustin, and Reinhard Well. "Oxygen isotope fractionation during N<sub>2</sub>O production by soil denitrification." Biogeosciences 13, no. 4 (February 24, 2016): 1129–44. http://dx.doi.org/10.5194/bg-13-1129-2016.

Full text
Abstract:
Abstract. The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by soil denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. In our soil incubation experiments Δ17O isotope tracing was applied for the first time to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found that N2O formation in static anoxic incubation experiments was typically associated with oxygen isotope exchange close to 100 % and a stable difference between the 18O ∕ 16O ratio of soil water and the N2O product of δ18O(N2O ∕ H2O) = (17.5 ± 1.2) ‰. However, flow-through experiments gave lower oxygen isotope exchange down to 56 % and a higher δ18O(N2O ∕ H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O ∕ H2O) showed a significant correlation (R2 = 0.70, p < 0.00001). We hypothesize that this observation was due to the contribution of N2O from another production process, most probably fungal denitrification. An oxygen isotope fractionation model was used to test various scenarios with different magnitudes of branching isotope effects at different steps in the reduction process. The results suggest that during denitrification, isotope exchange occurs prior to isotope branching and that this exchange is mostly associated with the enzymatic nitrite reduction mediated by NIR. For bacterial denitrification, the branching isotope effect can be surprisingly low, about (0.0 ± 0.9) ‰, in contrast to fungal denitrification where higher values of up to 30 ‰ have been reported previously. This suggests that δ18O might be used as a tracer for differentiation between bacterial and fungal denitrification, due to their different magnitudes of branching isotope effects.
APA, Harvard, Vancouver, ISO, and other styles
23

Lewicka-Szczebak, D., J. Dyckmans, J. Kaiser, A. Marca, J. Augustin, and R. Well. "The mechanism of oxygen isotope fractionation during N<sub>2</sub>O production by denitrification." Biogeosciences Discussions 12, no. 20 (October 22, 2015): 17009–49. http://dx.doi.org/10.5194/bgd-12-17009-2015.

Full text
Abstract:
Abstract. The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. We performed several soil incubation experiments. For the first time, Δ17O isotope tracing was applied to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found bacterial denitrification to be typically associated with almost complete oxygen isotope exchange and a stable difference in δ18O between soil water and the produced N2O of δ18O(N2O / H2O) = (17.5 ± 1.2) ‰. However, some experimental setups yielded oxygen isotope exchange as low as 56 % and a higher δ18O(N2O / H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O / H2O) showed a very significant correlation (R2 = 0.70, p < 0.00001). We hypothesise that this observation was due to the contribution of N2O from another production process, most probably fungal denitrification. An oxygen isotope fractionation model was used to test various scenarios with different magnitudes of branching isotope effects at different steps in the reduction process. The results suggest that during denitrification the isotope exchange occurs prior to the isotope branching and that the mechanism of this exchange is mostly associated with the enzymatic nitrite reduction mediated by NIR. For bacterial denitrification, the branching isotope effect can be surprisingly low, about (0.0 ± 0.9) ‰; in contrast to fungal denitrification where higher values of up to 30 ‰ have been reported previously. This suggests that δ18O might be used as a tracer for differentiation between bacterial and fungal denitrification, due to their different magnitudes of branching isotope effects.
APA, Harvard, Vancouver, ISO, and other styles
24

Abiye, Tamiru A., Molla B. Demlie, and Haile Mengistu. "An Overview of Aquifer Physiognomies and the δ18O and δ2H Distribution in the South African Groundwaters." Hydrology 8, no. 2 (April 19, 2021): 68. http://dx.doi.org/10.3390/hydrology8020068.

Full text
Abstract:
A comprehensive assessment of the stable isotope distribution in the groundwater systems of South Africa was conducted in relation to the diversity in the aquifer lithology and corresponding hydraulic characteristics. The stable isotopes of oxygen (18O) and hydrogen (2H) in groundwater show distinct spatial variation owing to the recharge source and possibly mixing effect in the aquifers with the existing water, where aquifers are characterized by diverse hydraulic conductivity and transmissivity values. When the shallow aquifer that receives direct recharge from rainfall shows a similar isotopic signature, it implies less mixing effect, while in the case of deep groundwater interaction between recharging water and the resident water intensifies, which could change the isotope signature. As aquifer depth increases the effect of mixing tends to be minimal. In most cases, the isotopic composition of recharging water shows depletion in the interior areas and western arid zones which is attributed to the depleted isotopic composition of the moisture source. The variations in the stable isotope composition of groundwater in the region are primarily controlled by the isotope composition of the rainfall, which shows variable isotope composition as it was observed from the local meteoric water lines, in addition to the evaporation, recharge and mixing effects.
APA, Harvard, Vancouver, ISO, and other styles
25

Kennedy, Brenda V., and H. Roy Krouse. "Isotope fractionation by plants and animals: implications for nutrition research." Canadian Journal of Physiology and Pharmacology 68, no. 7 (July 1, 1990): 960–72. http://dx.doi.org/10.1139/y90-146.

Full text
Abstract:
The isotopic compositions of animal tissues, minerals, and fluids reflect those of ingested food and water and inhaled gases. This relationship is illustrated by a review of data pertaining to five light elements of biological interest (carbon, nitrogen, hydrogen, oxygen, and sulphur). Processes affecting the isotopic composition of inorganic compounds in reservoirs are summarized, and isotope fractionation during transfer of elements from these inorganic reservoirs through progressive trophic levels of food webs is discussed. Variability of δ values within and among individuals, populations, and species of plants and animals is attributed to at least six factors: locality, dietary selectivity, biochemical composition of food, isotope effects in metabolic processes, turnover rates, and stress. Features of a variety of terrestrial and aquatic ecosystems are used to illustrate basic concepts. Future research should seek to clarify specific mechanisms affecting δ values during the transfer of elements through food webs.Key words: food webs, stable isotopes, isotope fractionation, ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
26

Sehrawat, Jagmahender Singh, and Jaspreet Kaur. "Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review." Anthropological Review 80, no. 3 (September 1, 2017): 243–58. http://dx.doi.org/10.1515/anre-2017-0017.

Full text
Abstract:
AbstractThis article reviews the present scenario of use of stable isotopes (mainly δ13C, δ15N, δ18O,87Sr) to trace past life behaviours like breast feeding and weaning practices, the geographic origin, migration history, paleodiet and subsistence patterns of past populations from the chemical signatures of isotopes imprinted in human skeletal remains. This approach is based on the state that food-web isotopic signatures are seen in the human bones and teeth and such signatures can change parallely with a variety of biogeochemical processes. By measuring δ13C and δ15N isotopic values of subadult tissues of different ages, the level of breast milk ingestion at particular ages and the components of the complementary foods can be assessed. Strontium and oxygen isotopic analyses have been used for determining the geographic origins and reconstructing the way of life of past populations as these isotopes can map the isotopic outline of the area from where the person acquired water and food during initial lifetime. The isotopic values of strontium and oxygen values are considered specific to geographical areas and serve as reliable chemical signatures of migration history of past human populations (local or non-local to the site). Previous isotopic studies show that the subsistence patterns of the past human populations underwent extensive changes from nomadic to complete agricultural dependence strategies. The carbon and nitrogen isotopic values of local fauna of any archaeological site can be used to elucidate the prominence of freshwater resources in the diet of the past human populations found near the site. More extensive research covering isotopic descriptions of various prehistoric, historic and modern populations is needed to explore the role of stable isotope analysis for provenancing human skeletal remains and assessing human migration patterns/routes, geographic origins, paleodiet and subsistence practices of past populations.
APA, Harvard, Vancouver, ISO, and other styles
27

Cullen, T. M., F. J. Longstaffe, U. G. Wortmann, M. B. Goodwin, L. Huang, and D. C. Evans. "Stable isotopic characterization of a coastal floodplain forest community: a case study for isotopic reconstruction of Mesozoic vertebrate assemblages." Royal Society Open Science 6, no. 2 (February 2019): 181210. http://dx.doi.org/10.1098/rsos.181210.

Full text
Abstract:
Stable isotopes are powerful tools for elucidating ecological trends in extant vertebrate communities, though their application to Mesozoic ecosystems is complicated by a lack of extant isotope data from comparable environments/ecosystems (e.g. coastal floodplain forest environments, lacking significant C 4 plant components). We sampled 20 taxa across a broad phylogenetic, body size, and physiological scope from the Atchafalaya River Basin of Louisiana as an environmental analogue to the Late Cretaceous coastal floodplains of North America. Samples were analysed for stable carbon, oxygen and nitrogen isotope compositions from bioapatite and keratin tissues to test the degree of ecological resolution that can be determined in a system with similar environmental conditions, and using similar constraints, as those in many Mesozoic assemblages. Isotopic results suggest a broad overlap in resource use among taxa and considerable terrestrial–aquatic interchange, highlighting the challenges of ecological interpretation in C 3 systems, particularly when lacking observational data for comparison. We also propose a modified oxygen isotope-temperature equation that uses mean endotherm and mean ectotherm isotope data to more precisely predict temperature when compared with measured Atchafalaya River water data. These results provide a critical isotopic baseline for coastal floodplain forests, and act as a framework for future studies of Mesozoic palaeoecology.
APA, Harvard, Vancouver, ISO, and other styles
28

VOIGT, SILKE. "Stable oxygen and carbon isotopes from brachiopods of southern England and northwestern Germany: estimation of Upper Turonian palaeotemperatures." Geological Magazine 137, no. 6 (November 2000): 687–703. http://dx.doi.org/10.1017/s0016756800004696.

Full text
Abstract:
More than 190 articulate brachiopods from Turonian sections in northwestern Germany and southern England were studied for their stable carbon and oxygen isotopic composition, and some of them for their elemental composition. Most of the brachiopod shells are well preserved, and oxygen isotope composition reflects the temperate conditions of the European epicontinental sea. Upper Turonian mean δ18O values from Lower Saxony and southern England show bottom-water temperatures in the range of 14.2 to 18.2 °C (δ18Ow = −1.5‰ SMOW for an ice-free world). The relative trend of mean brachiopod oxygen and carbon isotopes shows a short-term (200 k.y.) increase in the mid-Upper Turonian horizons that confirms the climate cooling (∼ 2 °C) observed in bulk-rock samples at different sites in Europe. Interbasinal comparisons between England and Germany show similar δ13C values in both basins, whereas oxygen isotopes are heavier in northwestern Germany than in England, suggesting a cool-water influence from the North Sea basin and temperate conditions in the Anglo-Paris basin.
APA, Harvard, Vancouver, ISO, and other styles
29

Wu, Li, Ling, Yang, Li, Li, Mao, Li, and Putlitz. "Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis." Minerals 9, no. 10 (September 26, 2019): 583. http://dx.doi.org/10.3390/min9100583.

Full text
Abstract:
The oxygen (O) and neodymium (Nd) isotopic composition of monazite provides an ideal tracer of metamorphism and hydrothermal activity. Calibration of the matrix effect and monitoring of the external precision of monazite O–Nd isotopes with microbeam techniques, such as secondary ion mass spectrometry (SIMS) and laser ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICPMS), require well-characterized natural monazite standards for precise microbeam measurements. However, the limited number of standards available is impeding the application of monazite O–Nd isotopes. Here, we report on the RW-1 monazite as a potential new working reference material for microbeam analysis of O–Nd isotopes. Microbeam measurements by electron probe microanalysis (EPMA), SIMS, and LA-MC-ICPMS at 10–24 µm scales have confirmed that it is homogeneous in both elemental and O–Nd isotopic compositions. SIMS measurements yield δ18O values consistent, within errors, with those obtained by laser fluorination techniques. Precise analyses of Nd isotope by thermal ionization mass spectrometry (TIMS) are consistent with mean results of LA-MC-ICPMS analyses. We recommend δ18O = 6.30‰ ± 0.16‰ (2SD) and 143Nd/144Nd = 0.512282 ± 0.000011 (2SD) as being the reference values for the RW-1 monazite.
APA, Harvard, Vancouver, ISO, and other styles
30

Brennan, C. E., A. J. Weaver, M. Eby, and K. J. Meissner. "Modelling oxygen isotopes in the University of Victoria Earth System Climate Model." Geoscientific Model Development Discussions 4, no. 3 (September 28, 2011): 2545–76. http://dx.doi.org/10.5194/gmdd-4-2545-2011.

Full text
Abstract:
Abstract. Implementing oxygen isotopes (H218O, H216O) in coupled climate models provides both an important test of the individual model's hydrological cycle, and a powerful tool to mechanistically explore past climate changes while producing results directly comparable to isotope proxy records. Here we describe the addition of oxygen isotopes in the University of Victoria Earth System Climate Model (UVic ESCM). Equilibrium simulations are performed for preindustrial and Last Glacial Maximum conditions. The oxygen isotope content in the model preindustrial climate is compared against observations for precipitation and seawater. The distribution of oxygen isotopes during the LGM is compared against available paleo-reconstructions.
APA, Harvard, Vancouver, ISO, and other styles
31

Albertin, Sarah, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon. "Measurement report: Nitrogen isotopes (<i>δ</i><sup>15</sup>N) and first quantification of oxygen isotope anomalies (<i>Δ</i><sup>17</sup>O, <i>δ</i><sup>18</sup>O) in atmospheric nitrogen dioxide." Atmospheric Chemistry and Physics 21, no. 13 (July 13, 2021): 10477–97. http://dx.doi.org/10.5194/acp-21-10477-2021.

Full text
Abstract:
Abstract. The isotopic composition of nitrogen and oxygen in nitrogen dioxide (NO2) potentially carries a wealth of information about the dynamics of the nitrogen oxides (NOx = nitric oxide (NO) + NO2) chemistry in the atmosphere. While nitrogen isotopes of NO2 are subtle indicators of NOx emissions and chemistry, oxygen isotopes are believed to reflect only the O3 / NOx / VOC chemical regime in different atmospheric environments. In order to access this potential tracer of the tropospheric chemistry, we have developed an efficient active method to trap atmospheric NO2 on denuder tubes and measured, for the first time, its multi-isotopic composition (δ15N, δ18O, and Δ17O). The Δ17O values of NO2 trapped at our site in Grenoble, France, show a large diurnal cycle peaking in late morning at (39.2 ± 0.3) ‰ and decreasing at night until (20.5 ± 0.3) ‰. On top of this diurnal cycle, Δ17O also exhibits substantial daytime variability (from 29.7 ‰ to 39.2 ‰), certainly driven by changes in the O3 to peroxyl radicals (RO2) ratio. The nighttime decay of Δ17O(NO2) appears to be driven by NO2 slow removal, mostly from conversion into N2O5, and its formation from the reaction between O3 and freshly emitted NO. As expected from a nighttime Δ17O(NO2) expression, our Δ17O(NO2) measured towards the end of the night is quantitatively consistent with typical values of Δ17O(O3). Daytime N isotope fractionation is estimated using a general expression linking it to Δ17O(NO2). An expression is also derived for the nighttime N isotope fractionation. In contrast to Δ17O(NO2), δ15N(NO2) measurements exhibit little diurnal variability (−11.8 ‰ to −4.9 ‰) with negligible isotope fractionations between NO and NO2, mainly due to high NO2 / NOx ratios, excepted during the morning rush hours. The main NOx emission sources are estimated using a Bayesian isotope mixing model, indicating the predominance of traffic emissions in this area. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the NOx sources and fate and for interpreting nitrate isotopic composition records.
APA, Harvard, Vancouver, ISO, and other styles
32

Novikov, Dmitry A., Aleksandr N. Pyrayev, Fedor F. Dultsev, Anatoliy V. Chernykh, Svetlana V. Bakustina, and Dmitry V. Ulyanov. "FORMATION CONDITIONS OF GROUNDWATER OF THE UPPER JURASSIC OF THE CENTRAL REGIONS OF THE ZAURAL MEGAMONOCLYSIS." Interexpo GEO-Siberia 2, no. 1 (May 21, 2021): 181–90. http://dx.doi.org/10.33764/2618-981x-2021-2-1-181-190.

Full text
Abstract:
The article presents the first results of complex isotope-hydrogeochemical studies of reservoir waters of the Upper Jurassic deposits of the central regions of the Zaural megamonoclysis. It was shown that most waters have a narrow distribution of oxygen and hydrogen isotopes (δD from -103.2 to -85.6 ‰ and δO from -15.4 to -12.9 ‰). Some of them have pronounced excursions on the isotopic composition, which indicates a difference in their genesis: from condensate to mixed with ancient infiltrogenic. The isotopic composition of carbon of water-dissolved carbon dioxide (δС from -41.6 to -16.3 ‰) indicates its biogenic origin and the possibility of interstratal flows from overlying horizons.
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Yong Sen, Zheng He Xu, and Si Fang Dong. "An Oxygen Isotope Study of Seasonal Trends in Jinxiuchuan River of Jinan South Mountain." Applied Mechanics and Materials 522-524 (February 2014): 954–57. http://dx.doi.org/10.4028/www.scientific.net/amm.522-524.954.

Full text
Abstract:
The stable isotope composition of river water contains some information of water cycle and climatic factors, such as precipitation, evaporation and temperature. Oxygen isotopes in river water were monitored at one site in Jinxiuchuang basin of Jinan southern mountain.δ18O values of river water show a variation from-7.82 on July 6 to-9.98 on June 6. The result reveals that the river water was mainly supplied by the precipitation. The isotopic variations at Jinxiuchuan river have strong precipitation patterns owning to different rainfall in summer.
APA, Harvard, Vancouver, ISO, and other styles
34

Holzkämper, Steffen, Päivi Kaislahti Tillman, Peter Kuhry, and Jan Esper. "Comparison of stable carbon and oxygen isotopes in Picea glauca tree rings and Sphagnum fuscum moss remains from subarctic Canada." Quaternary Research 78, no. 2 (June 20, 2012): 295–302. http://dx.doi.org/10.1016/j.yqres.2012.05.014.

Full text
Abstract:
AbstractStable isotope ratios from tree rings and peatland mosses have become important proxies of past climate variations. We here compare recent stable carbon and oxygen isotope ratios in cellulose of tree rings from white spruce (Picea glauca), growing near the arctic tree line; and cellulose of Sphagnum fuscum stems, growing in a hummock of a subarctic peatland, in west-central Canada. Results show that carbon isotopes in S. fuscum correlate significantly with July temperatures over the past ~20 yr. The oxygen isotopes correlate with both summer temperature and precipitation. Analyses of the tree-ring isotopes revealed summer temperatures to be the main controlling factor for carbon isotope variations, whereas tree-ring oxygen isotope ratios are controlled by a combination of spring temperatures and precipitation totals. We also explore the potential of combining high-frequency (annual) climate signals derived from long tree-ring series with low-frequency (decadal to centennial) climate signals derived from the moss remains in peat deposits. This cross-archive comparison revealed no association between the oxygen isotopes, which likely results from the varying sensitivity of the archives to different seasons. For the carbon isotopes, common variance could be achieved through adjustments of the Sphagnum age model within dating error.
APA, Harvard, Vancouver, ISO, and other styles
35

Nishizawa, Manabu, Sanae Sakai, Uta Konno, Nozomi Nakahara, Yoshihiro Takaki, Yumi Saito, Hiroyuki Imachi, et al. "Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream." Applied and Environmental Microbiology 82, no. 15 (May 13, 2016): 4492–504. http://dx.doi.org/10.1128/aem.00250-16.

Full text
Abstract:
ABSTRACTAmmonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in thein situquantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2−and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and thein siturate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilicThaumarchaeotapopulations composed almost entirely of “CandidatusNitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilicThaumarchaeotacould be estimated using δ18ONO2−in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments.IMPORTANCEBecause ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilicThaumarchaeotaand elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation.
APA, Harvard, Vancouver, ISO, and other styles
36

Gennett, Judith A., and Ethan L. Grossman. "Oxygen and Carbon Isotope Trends in a Late Glacial-Holocene Pollen Site in Wyoming, U.S.A." Géographie physique et Quaternaire 40, no. 2 (December 4, 2007): 161–69. http://dx.doi.org/10.7202/032636ar.

Full text
Abstract:
ABSTRACT Stable isotope studies of North American Late Glacial and Holocene lake sediments are few. Previous studies of pollen sites in Indiana, South Dakota, and the Great Lakes area show low δ18O values during deglaciation, rising to a Hypsithermal peak, and provide paleoenvironmental reconstructions similar to those obtained from pollen studies. Blacktail Pond, located in Douglas fir steppe in northern Yellowstone National Park, Wyoming, is one of the highest elevation lakes (2018 m) yet studied with both pollen and stable isotopes. Analyses of marls yield low oxygen and carbon isotope values at the base of the core probably due to meltwater influx at 12,500 to 14,000 BP. Tundra vegetation persisted for about an additional 1,500 years following the end of meltwater input. Later, more enriched isotope values fluctuate due to the high sensitivity of Blacktail Pond to evaporation and CO2 exchange because of its shallow depth. These processes result in a covariance between δ13C and δ18O related to the residence time of water in the pond; they exert a primary control on the isotopic composition of the Holocene marl. It may be possible to filter the data for residence time effects and extract additional paleoenvironmental information based on the offsets of isotopic data from the δ13C-δ18O trend for a particular pollen zone.
APA, Harvard, Vancouver, ISO, and other styles
37

Høie, Hans, Erling Otterlei, and Arild Folkvord. "Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.)." ICES Journal of Marine Science 61, no. 2 (January 1, 2004): 243–51. http://dx.doi.org/10.1016/j.icesjms.2003.11.006.

Full text
Abstract:
Abstract Analysis of stable oxygen isotopes in otoliths is a promising technique for estimating the ambient temperature experienced by fish, but consistent equations relating temperature and fractionation of stable oxygen isotopes in otoliths among different fish species are lacking. Juvenile cod were reared at constant temperatures from 6 to 20°C and the sagittal otoliths were analysed for oxygen isotope values. We determined that temperature-dependent fractionation of oxygen isotopes in the otoliths was close to that reported for inorganic aragonite at low temperatures, but there were deviations from oxygen isotope fractionation equations for otoliths of other species. The linear relationship between oxygen isotope value in the cod otoliths and temperature was determined to be: 1000 Ln α = 16.75(103 TK−1) − 27.09. Temperature estimates with 1°C precision at the 95% probability level require a sample size of ≥5 otoliths. Only an insignificant amount of the variance in the data was due to variance between left and right otolith, and due to repeated measurements of otolith subsamples. This study confirms that stable isotope values of cod otoliths can give precise and accurate estimates of the ambient temperature experienced by fish.
APA, Harvard, Vancouver, ISO, and other styles
38

Wommack, Elizabeth A., Lisa C. Marrack, Stefania Mambelli, Joshua M. Hull, and Todd E. Dawson. "Using oxygen and hydrogen stable isotopes to track the migratory movement of Sharp-shinned Hawks (Accipiter striatus) along Western Flyways of North America." PLOS ONE 15, no. 11 (November 17, 2020): e0226318. http://dx.doi.org/10.1371/journal.pone.0226318.

Full text
Abstract:
The large-scale patterns of movement for the Sharp-shinned Hawk (Accipiter striatus), a small forest hawk found throughout western North America, are largely unknown. However, based on field observations we set out to test the hypothesis that juvenile migratory A. striatus caught along two distinct migration routes on opposite sides of the Sierra Nevada Mountains of North America (Pacific Coast and Intermountain Migratory Flyways) come from geographically different natal populations. We applied stable isotope analysis of hydrogen (H) and oxygen (O) of feathers, and large scale models of spatial isotopic variation (isoscapes) to formulate spatially explicit predictions of the origin of the migrant birds. Novel relationships were assessed between the measured hydrogen and oxygen isotope values of feathers from A. striatus museum specimens of known origin and the isoscape modeled hydrogen and oxygen isotope values of precipitation at those known locations. We used these relationships to predict the origin regions for birds migrating along the two flyways from the measured isotope values of migrant’s feathers and the associated hydrogen and oxygen isotopic composition of precipitation where these feathers were formed. The birds from the two migration routes had overlap in their natal/breeding origins and did not differentiate into fully separate migratory populations, with birds from the Pacific Coast Migratory Flyway showing broader natal geographic origins than those from the Intermountain Flyway. The methodology based on oxygen isotopes had, in general, less predictive power than the one based on hydrogen. There was broad agreement between the two isotope approaches in the geographic assignment of the origins of birds migrating along the Pacific Coast Flyway, but not for those migrating along the Intermountain Migratory Flyway. These results are discussed in terms of their implications for conservation efforts of A. striatus in western North America, and the use of combined hydrogen and oxygen stable isotope analysis to track the movement of birds of prey on continental scales.
APA, Harvard, Vancouver, ISO, and other styles
39

Yang, Kunhua, Guilin Han, Man Liu, Xiaoqiang Li, Jinke Liu, and Qian Zhang. "Spatial and Seasonal Variation of O and H Isotopes in the Jiulong River, Southeast China." Water 10, no. 11 (November 17, 2018): 1677. http://dx.doi.org/10.3390/w10111677.

Full text
Abstract:
The stable isotope technique of oxygen and hydrogen (δ18O and δ2H) and deuterium excess (d-excess) was used to investigate distribution characteristics in June 2017 and January 2018 in the Jiulong River, southeast China. The results revealed that (1) seasonal isotopic composition was mainly controlled by precipitation. It enriched lighter water isotopes in winter more than in summer because of the aggravating effect of low temperature and great rainfall. (2) Spatial distribution of the North, West, and South River showed increasing enrichment of heavy isotopes in that order. In the high-flow season, the continuous high-flow made δ18O and δ2H homogeneous, despite increasing weak evaporation along water-flow paths in the West and South River. In the low-flow season, there was a decreasing trend in the middle and lower reaches of the North and West main stream and an increasing trend in the South River. (3) O and H isotopic geochemistry exhibited natural and anthropogenic influence in hydrological process, such as heavy rainfall and cascade reservoirs. The results showed that O and H isotopes are indeed useful tracers of the water cycle.
APA, Harvard, Vancouver, ISO, and other styles
40

Guo, Rong, Shengjie Wang, Mingjun Zhang, Athanassios A. Argiriou, Xuemei Liu, Bo Su, Xue Qiu, et al. "Stable Hydrogen and Oxygen Isotope Characteristics of Bottled Water in China: A Consideration of Water Source." Water 11, no. 5 (May 22, 2019): 1065. http://dx.doi.org/10.3390/w11051065.

Full text
Abstract:
The origin of bottled water can be identified via its stable isotope signature because of the spatial variation of the stable isotope composition of natural waters. In this paper, the spatial pattern of δ2H and δ18O values were analyzed for a total of 242 bottled water samples produced at 137 sites across China that were randomly purchased during 2014–2015. The isotopic ratios of bottled water vary between −166‰ and −19‰ for δ2H, and between −21.6‰ and −2.1‰ for δ18O. Based on multiple regression analyses using meteorological and geographical parameters, an isoscape of Chinese bottled water was created. The results showed that altitude among spatial parameters and precipitation amount and air temperature among meteorological parameters were major natural factors determining the isotopic variation of bottled water. Our findings indicate the potential and the significance of the use of stable isotopes for the source identification of bottled water. An analysis of different origin types (spring, glacier and unmarked) and several different brands of bottled water in the same location reflected different production processes and source signatures.
APA, Harvard, Vancouver, ISO, and other styles
41

LeGrande, A. N., and G. A. Schmidt. "Sources of holocene variability of oxygen isotopes in paleoclimate archives." Climate of the Past Discussions 5, no. 2 (March 23, 2009): 1133–62. http://dx.doi.org/10.5194/cpd-5-1133-2009.

Full text
Abstract:
Abstract. Variability in water isotopes has been captured in numerous archives and used to infer climate change. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, mostly 1000 years apart are simulated using estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that water isotopes in the model match well with those captured in proxy climate archives in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern analog interpretations. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrologic cycle, but are better interpreted in terms of regional changes rather than local climate variables.
APA, Harvard, Vancouver, ISO, and other styles
42

Price, T. Douglas, Vera Tiesler, William J. Folan, and Robert H. Tykot. "CALAKMUL AS A CENTRAL PLACE: ISOTOPIC INSIGHTS ON URBAN MAYA MOBILITY AND DIET DURING THE FIRST MILLENNIUM AD." Latin American Antiquity 29, no. 3 (July 24, 2018): 439–54. http://dx.doi.org/10.1017/laq.2018.31.

Full text
Abstract:
Isotopic investigations of human burials from excavations of the Autonomous University of Campeche (CIHS) at the prehispanic Maya capital of Calakmul in southeastern Mexico, near the border with Guatemala, include determination of radiocarbon dates; carbon and nitrogen isotope ratios in collagen; and strontium, carbon, and oxygen isotope ratios in tooth enamel. A total of 22 human and 5 faunal samples analyzed for strontium isotopes reveal a narrow range of variation in values, pointing to the likely local origin of over two-thirds of the central population of Calakmul, including two of its rulers. Carbon and nitrogen data confirm a typical Classic Maya diet at the site and identify a diet high in meat consumption for one dynastic individual. Interpreted jointly, the isotopic information offers new perspectives on the provenience and lifestyles of the residents of Calakmul, including a potential place of origin for the royal occupant of chamber tomb Burial VII-1.
APA, Harvard, Vancouver, ISO, and other styles
43

DeSantis, L. R. G., and C. Hedberg. "Stable isotope ecology of the koala (Phascolarctos cinereus)." Australian Journal of Zoology 64, no. 5 (2016): 353. http://dx.doi.org/10.1071/zo16057.

Full text
Abstract:
Australia has undergone significant climate change, both today and in the past. Koalas, due to their restricted diet of predominantly eucalyptus leaves and limited drinking behaviour may serve as model organisms for assessing past climate change via stable isotopes of tooth enamel. Here, we assess whether stable carbon and oxygen isotopes from tooth enamel record known climate variables, including proxies of relative aridity (e.g. mean annual precipitation, mean annual maximum temperature, and relative humidity). The results demonstrate significant negative relationships between oxygen isotope values and both relative humidity and mean annual precipitation, proxies for relative aridity. The best model for predicting enamel oxygen isotope values incorporates mean annual precipitation and modelled oxygen isotope values of local precipitation. These data and the absence of any relationship between modelled oxygen isotope precipitation values, independently, suggest that koalas do not track local precipitation values but instead record relative aridity. The lack of significant relationships between carbon isotopes and climate variables suggests that koalas may instead be tracking the density of forests and/or their location in the canopy. Collectively, these data suggest that koalas are model organisms for assessing relative aridity over time – much like kangaroos.
APA, Harvard, Vancouver, ISO, and other styles
44

He, Zhiwei, Bo Li, Xinfu Wang, Xianguo Xiao, Xin Wan, and Qingxi Wei. "The Origin of Carbonate Components in Carbonate Hosted Pb-Zn Deposit in the Sichuan-Yunnan-Guizhou Pb-Zn Metallogenic Province and Southwest China: Take Lekai Pb-Zn Deposit as an Example." Minerals 12, no. 12 (December 15, 2022): 1615. http://dx.doi.org/10.3390/min12121615.

Full text
Abstract:
The Lekai lead–zinc (Pb-Zn) deposit is located in the northwest of the Sichuan–Yunnan–Guizhou (SYG) Pb-Zn metallogenic province, southwest China. Even now, the source of the metallogenic fluid of Pb-Zn deposits in the SYG Pb-Zn metallogenic province has not been recognized. Based on traditional lithography, rare earth elements (REEs), and carbon–oxygen (C–O) isotopes, this work uses the magnesium (Mg) isotopes of hydrothermal carbonate to discuss the fluid source of the Lekai Pb-Zn deposit and discusses the fractionation mechaism of Mg isotopes during Pb-Zn mineralization. The REE distribution patterns of hydrothermal calcite/dolomite are similar to that of Devonian sedimentary carbonate rocks, which are all present steep right-dip type, indicating that sedimentary carbonate rocks may be serve as the main source units of ore-forming fluids. The C–O isotopic results of hydrothermal dolomite/calcite and the δ13CPDB–δ18 OSMOW diagram show that dolomite formation is closely related to the dissolution of marine carbonate rocks, and calcite may be affected to some extent by basement fluid. The Mg isotopic composition of dolomite/calcite ranges from −3.853‰ to −1.358‰, which is obviously lighter than that of chondrites, mantle, or seawater and close to that of sedimentary carbonate rock. It shows that the source of the Mg element in metallogenic fluid of Lekai Pb-Zn deposit may be sedimentary carbonate rock rather than mantle, chondrites, or seawater. In addition, the mineral phase controls the Mg isotope fractionation of dolomite/calcite in the Lekai Pb-Zn deposit. Based on the geological, mineralogical, and hydrothermal calcite/dolomite REE, C–O isotope, and Mg isotope values, this work holds that the mineralization of the Lekai Pb-Zn deposit is mainly caused by basin fluids, influenced by the basement fluids; the participation of basement fluids affects the scale and grade of the deposit.
APA, Harvard, Vancouver, ISO, and other styles
45

Shi, Yudong, Shengjie Wang, Mingjun Zhang, Athanassios A. Argiriou, Rong Guo, Yang Song, and Xiaofan Zhu. "Isoscape of δ18O in Precipitation of the Qinghai-Tibet Plateau: Assessment and Improvement." Water 12, no. 12 (December 2, 2020): 3392. http://dx.doi.org/10.3390/w12123392.

Full text
Abstract:
The spatial distribution of stable water isotopes (also known as an isoscape) in precipitation has drawn increasing attention during the recent years. In this study, based on the observations at 32 stations, we assessed two widely applied global isoscape products (Regionalized Cluster-based Water Isotope Prediction (RCWIP) and Online Isotopes in Precipitation Calculator (OIPC)) at the Qinghai-Tibet Plateau (QTP) and then established an improved isoscape of oxygen isotopes in precipitation on a monthly basis using a regionalized fuzzy cluster method. Two fuzzy clusters can be determined, which is consistent using three meteorological data. The monthly isoscapes show the seasonal movement of high and low isotopic value regions across the QTP and reveal the influences of monsoon and westerly moisture. According to the cross validation, the δ18O in precipitation in the new monthly isoscapes for the QTP we propose performs better compared to the existing global products. To create a regional isoscape in many other regions, the regionalized fuzzy cluster method can be considered especially for regions with complex controlling regimes of precipitation isotopes.
APA, Harvard, Vancouver, ISO, and other styles
46

Kanzaki, Yoshiki. "Quantifying the buffering of oceanic oxygen isotopes at ancient midocean ridges." Solid Earth 11, no. 4 (August 11, 2020): 1475–88. http://dx.doi.org/10.5194/se-11-1475-2020.

Full text
Abstract:
Abstract. To quantify the intensity of oceanic oxygen isotope buffering through hydrothermal alteration of the oceanic crust, a 2D hydrothermal circulation model was coupled with a 2D reactive transport model of oxygen isotopes. The coupled model calculates steady-state distributions of temperature, water flow and oxygen isotopes of solid rock and porewater given the physicochemical conditions of oceanic crust alteration and seawater δ18O. Using the present-day seawater δ18O under plausible modern alteration conditions, the model yields δ18O profiles for solid rock and porewater and fluxes of heat, water and 18O that are consistent with modern observations, confirming the model's validity. The model was then run with different assumed seawater δ18O values to evaluate oxygen isotopic buffering at the midocean ridges. The buffering intensity shown by the model is significantly weaker than previously assumed, and calculated δ18O profiles of oceanic crust are consistently relatively insensitive to seawater δ18O. These results are attributed to the fact that isotope exchange at shallow depths does not reach equilibrium due to the relatively low temperatures, and 18O supply via spreading solid rocks overwhelms that through water flow at deeper depths. Further model simulations under plausible alteration conditions during the Precambrian showed essentially the same results. Therefore, δ18O records of ophiolites that are invariant at different Earth ages can be explained by the relative insensitivity of oceanic rocks to seawater δ18O and do not require constant seawater δ18O through time.
APA, Harvard, Vancouver, ISO, and other styles
47

Michalski, G., S. K. Bhattacharya, and G. Girsch. "NO<sub>x</sub> cycle and the tropospheric ozone isotope anomaly: an experimental investigation." Atmospheric Chemistry and Physics 14, no. 10 (May 21, 2014): 4935–53. http://dx.doi.org/10.5194/acp-14-4935-2014.

Full text
Abstract:
Abstract. The oxygen isotope composition of nitrogen oxides (NOx) in the atmosphere is a useful tool for understanding the oxidation of NOx into nitric acid / nitrate in the atmosphere. A set of experiments was conducted to examine change in isotopic composition of NOx due to NOx–O2–O3 photochemical cycling. At low NOx / O2 mixing ratios, NOx became progressively and nearly equally enriched in 17O and 18O over time until it reached a steady state with Δ17O values of 39.3 ± 1.9‰ and δ18O values of 84.2 ± 4‰, relative to the isotopic composition of the initial O2 gas. As the mixing ratios were increased, the isotopic enrichments were suppressed by isotopic exchange between O atoms, O2, and NOx. A kinetic model was developed to simulate the observed data and it showed that the isotope effects occurring during O3 formation play a dominant role in controlling NOx isotopes and, in addition, secondary kinetic isotope effects or isotope exchange reactions are also important during NOx cycling. The data and model were consistent with previous studies which showed that the NO + O3 reactions occur mainly via the transfer of the terminal atoms of O3. The model predicts that under tropospheric concentrations of NOx and O3, the timescale of NOx–O3 isotopic equilibrium ranges from hours (for ppbv NOx / O2 mixing ratios) to days (for pptv mixing ratios) and yields steady state Δ17O and δ18O values of 45‰ and 117‰ respectively (relative to Vienna Standard Mean Ocean Water (VSMOW)) in both cases. Under atmospheric conditions when O3 has high concentrations, the equilibrium between NOx and O3 should occur rapidly (h) but this equilibrium cannot be reached during polar winters and/or nights if the NOx conversion to HNO3 is faster. The experimentally derived rate coefficients can be used to model the major NOx–O3 isotopologue reactions at various pressures and in isotope modeling of tropospheric nitrate.
APA, Harvard, Vancouver, ISO, and other styles
48

Kuo, Ching-Huei, Pi-Yi Li, Jun-Yi Lin, and Yi-Lin Chen. "Integrating Stable Isotopes with Mean Residence Time Estimation to Characterize Groundwater Circulation in a Metamorphic Geothermal Field in Yilan, Taiwan." Water 14, no. 1 (January 4, 2022): 97. http://dx.doi.org/10.3390/w14010097.

Full text
Abstract:
This paper presents a water circulation model by combing oxygen and hydrogen stable isotopes and mean residence time (MRT) estimation in a high-temperature metamorphic geothermal field, Tuchen, in Yilan, Taiwan. A total of 18 months of oxygen and hydrogen stable isotopes of surface water and thermal water show the same variation pattern, heavier values in summer and lighter values in the rest of the year. A shift of δ18O with a relative constant δD indicates the slow fluid–rock interaction process in the study area. Two adjacent watersheds, the Tianguer River and Duowang River, exhibit different isotopic values and imply different recharge altitudes. The seasonal variation enabled us to use stable isotope to estimate mean residence time of groundwater in the study area. Two wells, 160 m and 2200 m deep, were used to estimate mean residence time of the groundwater. Deep circulation recharges from higher elevations, with lighter isotopic values, 5.9‰ and 64‰ of δ18O and δD, and a longer mean residence time, 1148 days, while the shallow circulation comes from another source with heavier values, 5.7‰ and 54.4‰ of δ18O and δD, and a shorter mean residence time, 150 days. A two-circulation model was established based on temporal and spatial distribution characteristics of stable isotopes and the assistance of MRT. This study demonstrates the usefulness of the combined usage for further understanding water circulation of other various temperatures of metamorphic geothermalfields.
APA, Harvard, Vancouver, ISO, and other styles
49

Sossi, Paolo A., Frédéric Moynier, and Kirsten van Zuilen. "Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes." Proceedings of the National Academy of Sciences 115, no. 43 (October 8, 2018): 10920–25. http://dx.doi.org/10.1073/pnas.1809060115.

Full text
Abstract:
Terrestrial and lunar rocks share chemical and isotopic similarities in refractory elements, suggestive of a common precursor. By contrast, the marked depletion of volatile elements in lunar rocks together with their enrichment in heavy isotopes compared with Earth’s mantle suggests that the Moon underwent evaporative loss of volatiles. However, whether equilibrium prevailed during evaporation and, if so, at what conditions (temperature, pressure, and oxygen fugacity) remain unconstrained. Chromium may shed light on this question, as it has several thermodynamically stable, oxidized gas species that can distinguish between kinetic and equilibrium regimes. Here, we present high-precision Cr isotope measurements in terrestrial and lunar rocks that reveal an enrichment in the lighter isotopes of Cr in the Moon compared with Earth’s mantle by 100 ± 40 ppm per atomic mass unit. This observation is consistent with Cr partitioning into an oxygen-rich vapor phase in equilibrium with the proto-Moon, thereby stabilizing the CrO2 species that is isotopically heavy compared with CrO in a lunar melt. Temperatures of 1,600–1,800 K and oxygen fugacities near the fayalite–magnetite–quartz buffer are required to explain the elemental and isotopic difference of Cr between Earth’s mantle and the Moon. These temperatures are far lower than modeled in the aftermath of a giant impact, implying that volatile loss did not occur contemporaneously with impact but following cooling and accretion of the Moon.
APA, Harvard, Vancouver, ISO, and other styles
50

Naylor, J. R., B. M. Manighetti, H. L. Neil, and S. W. Kim. "Validated estimation of growth and age in the New Zealand abalone Haliotis iris using stable oxygen isotopes." Marine and Freshwater Research 58, no. 4 (2007): 354. http://dx.doi.org/10.1071/mf06088.

Full text
Abstract:
The growth and reproductive patterns of abalone are central to an understanding of the dynamics of their populations, and provide essential input into many of the stock assessment models currently used as the basis of assessing the sustainability of the fisheries. At present, most of this knowledge is obtained by tag-recapture methods, which are time consuming, often expensive and potentially confounding. The aim of the present study was to determine whether variations in the ratios of oxygen and carbon isotopes in the shells of Haliotis iris can be used to determine age, growth and reproductive patterns. Isotopic analyses of H. iris shells indicated that oxygen isotope profiles within the shells reflected ambient water temperature at the time of shell precipitation, and that these profiles could be used to determine age and growth patterns. To match the variation in isotopic ratios with ambient temperature cycles, we also adopted the novel approach of fitting a growth function to the data sets. The method should allow the collection of abalone growth information over the finer scales more appropriate for the rational management of abalone fisheries. Variations in the ratios of carbon isotopes showed no consistent patterns and, unlike some mollusc species, did not appear to be useful predictors of reproductive status at length.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography