Contents
Academic literature on the topic 'Oxydation de Fenton'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxydation de Fenton.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oxydation de Fenton"
Núñez-Tafalla, P., I. Salmerón, I. Oller, S. Venditti, S. Malato, and J. Hansen. "Micropollutant elimination by sustainable technologies: Coupling activated carbon with solar photo-Fenton as pre-oxydation step." Journal of Environmental Chemical Engineering 12, no. 5 (October 2024): 113305. http://dx.doi.org/10.1016/j.jece.2024.113305.
Full textFalcon, M., B. Peyrille, P. Reihac, J. N. Foussard, and H. Debellefontaine. "Oxydation en voie humide de la pollution organique aqueuse par le peroxyde d'hydrogène Procédé « Wet Peroxide Oxidation » (WPO®) Étude de nouveaux catalyseurs." Revue des sciences de l'eau 6, no. 4 (April 12, 2005): 411–26. http://dx.doi.org/10.7202/705183ar.
Full textDia, Oumar, Patrick Drogui, Rino Dubé, and Gerardo Buelna. "Utilisation des procédés électrochimiques et leurs combinaisons avec les procédés biologiques pour le traitement des lixiviats de sites d’enfouissement sanitaires - revue de littérature." Revue des sciences de l’eau 29, no. 1 (March 16, 2016): 63–89. http://dx.doi.org/10.7202/1035717ar.
Full textAl‐Hayek, N., and M. Dore. "Oxydation des composes organiques par le reactif de fenton: Possibilites et limites oxidation of organic compounds by Fenton's reagent: Possibilities and limits." Environmental Technology Letters 6, no. 1-11 (January 1985): 37–50. http://dx.doi.org/10.1080/09593338509384317.
Full textDoidy, V., B. Carré, C. Bouchoule, J. Barrault, and M. Blanchard. "OXYDATION CATALYTIQUE DU TOLUENE EN PHASE LIQUIDE PAR LE REACTIF DE FENTON FeII-H2O2 ET LE SYSTEME D'UDENFRIEND MODIFIE FeII-O2REGENERES PAR VOIE ELECTROCHIMIQUE." Bulletin des Sociétés Chimiques Belges 104, no. 7 (September 1, 2010): 431–37. http://dx.doi.org/10.1002/bscb.19951040705.
Full textRichard, Jeremy, Céline Beauvillain, Maxime Benoit, Magalie Barth, Cécile Aubert, Cyrielle Rolley, Sarah Bellal, et al. "Ketogenic diet enhances the anti-cancer effects of PD-L1 blockade in renal cell carcinoma." Frontiers in Endocrinology 15 (May 17, 2024). http://dx.doi.org/10.3389/fendo.2024.1344891.
Full textDissertations / Theses on the topic "Oxydation de Fenton"
Laugel, Caroline. "Oxydation catalytique de la biomasse : oxydation photo-fenton de l’amidon et oxydation de l’hydroxymethylfurfural." Thesis, Reims, 2013. http://www.theses.fr/2013REIMS048.
Full textSolutions of carboxylic acids, containing mainly formic acid, are produced under photo-Fenton conditions. Visible irradiation with a 60 W spot is sufficient to provide reproducible results under mild conditions. The oxidation products of potato starch and wheat starch have shown Ca sequestering properties similar to those of gluconic and glucuronic acids.Using halide salts and DMSO, an innovating method has been elaborated for the selective oxidation of HMF to DFF with quantitative yields. The one-pot transformation of fructose to DFF occurs with fair yields. Based on the mechanistic study, Br-HMF would be the reaction intermediate
Velichkova, Filipa Aleksandrova. "Vers un procédé Fenton hétérogène pour le traitement en continu d’eau polluée par des polluants pharmaceutiques." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/11950/1/velichkova.pdf.
Full textAyoub, Kaïdar. "Application des Procédés d’Oxydation Avancée : Fenton et électro-Fenton à la dégradation des explosifs en milieu aqueux." Paris 6, 2010. http://www.theses.fr/2010PA066146.
Full textDjeffal, Lemya. "Développement de matériaux à base d'argiles pour l'oxydation catalytique de polluants organiques par des réactions de type Fenton." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0354.
Full textIn this study, we are interested to the synthesis and charaterization of materials based on natural clays from Algeria and Tunisia, usable as catalysts in the oxidation of organic pollutants by the Fenton's and photo-Fenton's reaction. We have also optimized the reaction parameters (amount of catalyst, concentration of pollutant...) in order to improve the catalytic performance of these catalysts. Indeed, the oxidation of recalcitrant organic pollutants by Fenton-type reactions is regarded as one of the most effective method amongst the advanced oxidation process (AOPs). It can lead in some cases to the total mineralization of pollutants (conversion into CO₂ and H₂O). The caracterization of the raw clays various physicochemical methods shows that, in addiction to clay minerals, there are some metallic oxides in all studied clays, with varied proportions. Especially, smectite showed a fairly significant iron capacity. The synthesized clays show a good catalytic performance in minimum of time (2 hours of reaction). The smectite catalyst, sieved and calcined at 450°C gives the best performance. This activity can be explained by the high content of iron as well as the combination of the choice of particle size and the calcination temperature of the smectite. The caracterization of this catalyst, showed that this mesoporous material contains an amount of iron (III) stabilized in the structure by the fact of calcination
Xue, Xiaofei. "Oxydation par la réaction de Fenton modifiée des polluants organiques en présence des oxydes de fer (II, III)." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10041/document.
Full textFirstly, PCP was chosen as a model pollutant, to investigate the oxidation of PCP on the surface of magnetite used as heterogeneous catalyst. Oxidation experiments were carried out under various experimental conditions at neutral pH and correlated with the adsorption behavior. The surface reactivity of magnetite was evaluated by conducting the kinetic study of both H2O2 decomposition and PCP oxidation experiments. The occurrence of the optimum values of H2O2 and magnetite concentrations for the effective degradation of PCP could be explained by the scavenging reactions with H2O2 or iron oxide surface. All batch experiments indicate that Fenton-like oxidation of PCP was controlled by surface mechanism reaction and the species compete with each other for adsorption on a fixed number of surface active sites. The apparent degradation rate was dominated by the rate of intrinsic chemical reactions on the oxide surface rather than the rate of mass transfer. Raman analysis suggested that the sorbed PCP was removed from magnetite surface at the first stage of oxidation reaction. All X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Mössbauer spectroscopy and chemical analyses showed that the magnetite catalyst exhibited low iron leaching, good structural stability and no loss of performance in second reaction cycle. Secondly, Rhodamine B (RhB) was chosen as a model compound pollutant. Two types of iron (II, III) oxides were used as heterogeneous catalysts and characterized by XRD, Mössbauer spectroscopy, BET surface area, particle size and chemical analyses. The catalytic efficiency of iron (II, III) oxide to promote Fenton-like reaction was examined at neutral pH. The adsorption to the catalyst changed significantly with the pH value and the sorption isotherm was fitted using the Langmuir model for both solids. Both sorption and FTIR results indicated that surface complexation reaction may take place in the system. The variation of oxidation efficiency against H2O2 dosage and amount of exposed surface area per unit volume was evaluated and correlated with the adsorption behavior in the absence of oxidant. There is also an optimum amount of H2O2 value for the degradation of RhB. The phenomena could also be explained by the scavenging effect of hydroxyl radical by H2O2 or by iron oxide surface (like the oxidation of PCP). Sorption and decolourization rate of RhB as well as H2O2 decomposition rate were found to be depended on the surface characteristics of iron oxide. The kinetic oxidation experiments showed that structural FeII content strongly affect the reactivity towards H2O2 decomposition and therefore RhB decolourization. Finally, the effect of chelating agent on the heterogeneous Fenton reaction rate of pentachlorophenol in the presence of magnetite was investigated. Six kinds of chelating agents including oxalate, EDTA, CMCD, tartarate, citrate and succinate were chosen. The PCP oxidation rate in this system was significantly improved by using chelating agents at neutral pH. The kinetic rate constant was increased by 5.7, 4, 3.2, 2.4, 2.5 and 1.7 times with oxalate, EDTA, CMCD, tartarate, citrate and succinate, respectively. The enhancement factor of heterogeneous oxidation rate was found to be not correlated with that of dissolved iron dissolution amount. In homogeneous Fenton system (dissolved Fe2+ or Fe3+), EDTA-driven reaction showed the highest oxidation rate, while oxalate seems to be more efficiency in heterogeneous Fenton system (Fe3O4). This observation could be explained by the inactivation of iron surface sites which become unavailable for the interactions with H2O2 to initiate Fenton-like reactions. These results demonstrated that the chelating agent-promoted dissolution of magnetite did not play the key role in determining the efficiency of heterogeneous Fenton oxidation
Flotron, Vanina. "La réaction de Fenton comme procédé de réhabilitation dans le traitement des eaux : application à la dégradation des hydrocarbures aromatiques polycycliques dans les eaux et les boues résiduaires." Phd thesis, INAPG (AgroParisTech), 2004. http://pastel.archives-ouvertes.fr/pastel-00001190.
Full textArdo, Sandy. "Dégradation oxydative d'une quinolone par la nano-magnétite via l'interaction Fe(II) / O2." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066410/document.
Full textMagnetite, Fe3O4, is a natural mixed iron oxide Fe(II-III), that has a wide range of applications in biomedicine as well as in water treatment. Nanosized magnetite presents high capacities to adsorb and transform a wide range of contaminants via oxidative or reductive reactions. It was shown as an active catalyst for heterogeneous Fenton reactions in the removal of organic compounds under a broad range of pH. However, the mechanisms of these reactions are not well defined.The main objective of this study was to explore the nanomagnetite capacity to catalyze heterogeneous Fenton reactions in presence of dissolved oxygen, thus avoiding the use of strong chemical oxidants. These reactions could form the basis of a new efficient and eco-friendly process for the removal of organic pollutants. Nalidixic acid (NAL), an ionizable quinolone antibiotic known for being persistent and recalcitrant to classical treatments, was used as a model contaminant.We synthesized large surface area single-cristalline nanomagnetite with high NAL sorption ability (98%) under anoxic conditions. Furthermore, a desorption protocol was developed to recover the sorbed amount of NAL in order to measure the degradation percentage.Moreover, under oxic conditions, the model contaminant was transformed, up to nearly 60% and 80 % after a 30 and 90 minutes exposure to air bubbling, respectively. Five by-products issuing from the nalidixic acid oxidative degradation were identified by liquid chromatography-mass spectrometry and a degradation pathway was suggested. X-ray powder diffraction and Iron K-edge X-ray absorption spectroscopy were used to investigate mineralogical and iron redox changes in the solid phase over the course of the reaction. Magnetite was oxidized (up to about 40%) into maghemite, -Fe2O3, as the sole product of the oxidation, and without significant change in the size of the particles. These results, in addition to the monitoring of dissolved Fe(II), and experiences conducted in the presence of ethanol as hydroxyl radicals scavenger and at static pH, lead to a better understanding of the reaction mechanism and on the role of pH in the reaction efficiency. In conclusion, this study points out the promising potentialities of mixed valence iron oxides for the treatment of contaminated soils and wastewater by organic pollutants
Dirany, Ahmad. "Études cinétiques et mécanistique d'oxydation/minéralisation des antibiotiques sulfaméthoxazole (SMX), amoxicilline (AMX) et sulfachloropyridazine (SPC) en milieux aqueux par procédés électrochimiques d'oxydation avancée. Mesure et suivi d'évolution de la toxicité lors du traitement." Phd thesis, Université de Marne la Vallée, 2010. http://tel.archives-ouvertes.fr/tel-00740119.
Full textOzcan, Ali. "DEGRADATION DES POLLUANTS ORGANIQUES PAR LA TECHNOLOGIE ELECTRO-FENTON." Phd thesis, Université de Marne la Vallée, 2010. http://tel.archives-ouvertes.fr/tel-00742451.
Full textBaïliche, Zohra. "Synthèse de nanoparticules d'or supportées sur oxyde mésoporeux : Application à l'oxydation de composés organiques volatils modèles." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0350.
Full textWell dispersed gold nanoparticles are the key to obtain an active gold catalyst. Obtaining gold nanoparticles requires control of many parameters and understanding of the interaction mode between gold and the support. For this reason the choice of the support is very important. The first part of this thesis concerns the controlled preparation of gold catalysts supported on reducible mesoporous oxides TiO₂, CeO₂ and Fe₂O₃ synthesized via two strategies Soft and Hard template using respectively. triblock copolymer (Pluronic 123) and mesoporous silica SBA-15 as template. This study clearly shows that the gold loading depends on the initial concentration of HAuCl₄, the method of preparation (DPU DP NaOH), theoretical gold content and the nature of the support. These results are to relate to the gold speciation which is a function of pH of the solution. The gold loading is higher on CeO₂ than on TiO₂ and Fe₂O₃ whatever the theoretical gold content. Very high gold dispersion is obtained (the gold particle size is 2 nm) on 1wt% and 2wt% Au/CeO₂ prepared by DPU and calcined at 400°C. The second part of this study concerns the toluene oxidation in the gas phase on Au/mesoporous oxide catalysts and the Fenton and photo-Fenton degradation of phenolic aqueous solutions by H₂O₂ on FeSBA-15 catalysts prepared following different synthesis routes, direct synthesis by adjusting pH at 3 and 6 and with post synthesis procedure. In the toluene oxidation in the gas phase Au/mesoporous oxide catalysts are totally selective for CO₂ and H₂O. The catalytic performances depend on the synthesis conditions of catalysts and the support; the 1wt% Au/CeO₂ catalyst is very active and exhibits a long-term stability. In the Fenton and photo-Fenton degradation of phenolic aqueous solutions the catalytic performances depend on the Si/Fe ratio and the particle size of the iron species, the particle size being directly related to the synthesis strategy of the catalysts. The catalyst FeSBA-15 (Si/Fe = 60) synthesized at pH = 6 is a potential candidate in the degradation of organic pollutants by Fenton and photo-Fenton process in neutral medium
م لخصمسقني لمعلا يف هذه ةحورطألا ىلإ نيئزج:OiT 2ب وا سطة OeC 2و , Fe2O ي خ تص الاول ال ق سم ب تح ض يرمح فزات من ال ذهبن وع من م يزوب ري ة ب مواد مدعم 3ان واع مخ ت لف ال تح ض ير. ت شخ يص ف ي ال م س ت عم لة ال ت ق ن يات مخ ت لفت ب ين ال مح ضرة ل مح فزات انال دعم ط ب ي عة ك ذا و ال مح فز ت ح ض ير وطري قة HAuCl ت ر سب معدل ي ت ع لق ل ذه با ت رك يز ع لى 4ي ع ضو جزيء و سطغازي enèuloT أك سدة ف ي ال مواد هذه ب تط ب يق ي ت ع لق ال ثان ي ال ق سم ف يال مح فز ت ح ض ير Ò طرق ك ذا و ل ت فاعل هذا ع لى ال مؤث رة ل عوامل ب درا سة ق م نا سال فا ال مذك ورة ل لمح فزات ال ف عال ية ع لان واع مخ ت لف ب وا سطة FeSBA- ي ع ضو جزيء lonehP ت فاعل ب وا سطة notneF سائ ل و سط ف ي وعمن 51 ن مح فزات ع لىوHp ال و سط Si/Fe قلعتي ةبسنب FeSBA- ريضحتلا.ادأء 1515FeSBA-15, Fenton, Phenol, Toluène, TiO و 2 CeO2, Fe2O3, SBA- ال ك لمات ال م ف تاح ية ׃م يزوب وري ة