Academic literature on the topic 'Oxide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Oxide"
She, Weiqing, Zhenzhen Xu, Lianjie Zhai, Junlin Zhang, Jie Huang, Weiqiang Pang, and Bozhou Wang. "Synthetic Methods Towards Energetic Heterocyclic N-Oxides via Several Cyclization Reactions." Crystals 12, no. 10 (September 25, 2022): 1354. http://dx.doi.org/10.3390/cryst12101354.
Full textMöhrle, H., and R. Nießen. "Reaktionen von Isochinolinium-Salzen mit Hydroxylamin-Derivaten, 2. Mitteilung N-(Alkyl)- und N-(Aryl)-substituierte Verbindungen / Reactions of Isoquinolinium Salts with Hydroxylamine Derivatives, 2nd Communication N-(Alkyl) and N-(Aryl) Substituted Compounds." Zeitschrift für Naturforschung B 54, no. 4 (April 1, 1999): 532–40. http://dx.doi.org/10.1515/znb-1999-0417.
Full textKim, Youngsun, Donghee Choi, Hosun Jang, Changsu Na, Moonhyeon Hwang, Joohyun Cho, Kyoungin Lee, Sunmin Kim, Byoungsik Pyo, and Daehwan Youn. "Effects of Acupuncture at ST41, BL60, GB38 on Changes of Nitric Oxide and Nitric Oxide Synthase in Rats." Korean Journal of Acupuncture 30, no. 2 (June 27, 2013): 97–103. http://dx.doi.org/10.14406/acu.2013.30.2.097.
Full textCha, Wu-Shin, Junsik Lee, Malkeshkumar Patel, Kibum Lee, and Joondong Kim. "Flexible and Transparent Heater with Oxide/Metal/Oxide Structure." Transactions of The Korean Institute of Electrical Engineers 72, no. 1 (January 31, 2023): 87–92. http://dx.doi.org/10.5370/kiee.2023.72.1.87.
Full textMajhi, Sanjit Manohar, Ali Mirzaei, Hyoun Woo Kim, and Sang Sub Kim. "Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview." Sensors 21, no. 4 (February 14, 2021): 1352. http://dx.doi.org/10.3390/s21041352.
Full textNovosyolov, A., I. Olianina, I. Novoselova, Y. Vasina, Y. Ershova, T. Loik, and Yu Kudelina. "RESEARCH OF THE POSSIBILITY OF REDUCING THE CIRCULATION OF SULFUR OXIDE IN THE PRODUCTION OF WHITE CEMENT." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 6, no. 7 (July 10, 2021): 89–98. http://dx.doi.org/10.34031/2071-7318-2021-6-7-89-98.
Full textLi, Huaying, and Aichun Zhao. "Pickling Behavior of Duplex Stainless Steel 2205 in Hydrochloric Acid Solution." Advances in Materials Science and Engineering 2019 (February 25, 2019): 1–6. http://dx.doi.org/10.1155/2019/9754528.
Full textPourroy, G., J. L. Guille, and P. Poix. "Reactivity of metal oxides copper(I) oxide, manganese(II) oxide, cobalt(II) oxide, nickel(II) oxide, copper(II) oxide and zinc oxide with indialite." Chemistry of Materials 2, no. 2 (March 1990): 101–5. http://dx.doi.org/10.1021/cm00008a007.
Full textRead, RW, and WP Norris. "The Nucleophilic Substitution Reactions of 5- and 7-Chloro-4,6-dinitrobenzofurazan 1-Oxide by Aromatic Amines." Australian Journal of Chemistry 38, no. 3 (1985): 435. http://dx.doi.org/10.1071/ch9850435.
Full textNavrotsky, Alexandra, and Anastasia Koryttseva. "Acid–Base Properties of Oxides Derived from Oxide Melt Solution Calorimetry." Molecules 28, no. 12 (June 7, 2023): 4623. http://dx.doi.org/10.3390/molecules28124623.
Full textDissertations / Theses on the topic "Oxide"
Gillispie, Meagen Anne. "Metal oxide-based transparent conducting oxides." [Ames, Iowa : Iowa State University], 2006.
Find full textField, Marianne Alice Louise. "Transition metal oxides and oxide-halides." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401833.
Full textBoltz, Janika [Verfasser]. "Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides / Janika Boltz." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1019850485/34.
Full textMessi, C. "Nanostructured catalytic metal oxides supported over oxide supports of various nature : the iron oxide system." Doctoral thesis, Università degli Studi di Milano, 2008. http://hdl.handle.net/2434/57081.
Full textSayle, D. C. "Computer simulation of heteroepitaxial oxide/oxide and metal/oxide interfaces." Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317429.
Full textLockyer, D. M. "Adsorption and reaction of cyanogen with copper oxide, chromium oxide and copper oxide-chromium oxide surfaces." Thesis, University of Bath, 1988. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383244.
Full textReeder, Askia Enrico. "STUDY OF THE STRUCTURE AND THE ELECTRONIC PROPERTIES OF THE OXIDE/OXIDE INTERFACES IN MIXED METAL OXIDES." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423844.
Full textUn ruolo molto importante è svolto dagli ossidi metallici in molti settori della chimica, fisica e scienza dei materiali. I metalli di transizione e le terre rare sono in grado di formare una grande diversità di composti ossidici che possono adottare un'ampia gamma di strutture atomiche ed proprieta’ elettroniche che possono esibire caratteristiche metalliche, semiconduttrici o isolanti. In applicazioni tecnologiche, gli ossidi metallici sono impiegati nella fabbricazione di componenti microelettronici, sensori, celle a combustibile, rivestimenti per proteggere le superfici dalla corrosione, e come catalizzatori. In questa tesi abbiamo deciso di studiare due noti materiali catalitici: gli ossidi misti di Zirconia-Titania Ceria-Titania. Per entrambi i materiali la bibliografia riguarda principalmente le polveri quindi, al fine di studiare meglio le loro interfacce, di cui uno studio più approfondito e’ tuttora neccessario, abbiamo deciso di depositare film sottili di ossido di zirconio e ossido di cerio su rutilo TiO2(110). Abbiamo prima studiato il sistema zirconia-titania depositando un film ultra-sottile di ossido di zirconio mediante un precursore metallo-organico: Zirconio Tetra tert-butossido. La deposizione è stata effettuata a tre diverse temperature del substrato 677. K, 738 K, 773 K in cinque fasi di un minuto ciascuno. La caratterizzazione mediante XPS ha mostrato una chimica interessante sulla superficie del substrato e abbiamo osservato la formazione di specie carboniose all'interfaccia. Lo zirconio sembrava essere nel suo piu’ alto stato di ossidazione mentre il titanio è stato visto gradualmente ridursi con ogni successive strato di deposito. Il rapporto dei segnali Zr/Ti ha mostrato che la zirconia non ha completamente coperto la superficie. Inoltre,tramite LEED non si e’ osservato nessun ordine a lungo raggio. Misure XPD ha mostrato che la zirconia non forma un ossido di sostituzione con la titania. Tuttavia, con l'ausilio di simulazione al computer abbiamo dedotto che la zirconia forma, molto probabilmente nanocatene sulla superficie di TiO2(110). Questa superficie è stato esposta a 100 L di pyridinina per testarne la acidita’. Nel caso di ceria, abbiamo depositato l'ossido su un substrato riscaldato di TiO2 (110) tramite evaporazione del metallo da un crogiolo Mo poiché il processo è piuttosto facile e fornisce depositi puliti. Durante la deposizione il substrato è stata mantenuto a 677 K in un ambiente di 5,2 • 10 -6 mbar di O2, e, al fine di ottenere una superficie omogenea e ordinata il campione è stato ulteriormente sottoposto a trattamento termico nello stesso ambiente a 900 K. Tramite la tecnica LEED sono state osservate differenti fasi dipendenti dalla storia del campione e dallo spessore del film. Tramite simulazione al computer queste fasi sono stati poi riferite rispetto al biossido di cerio per meglio comprendere le differenze rispetto alla fase massiva. Tutti i film hanno mostrato cerio presenti come Ce(III). La Spettroscopia Fotoelettronica a Ultravioletti ha mostrato le proprietà elettroniche del film che mostra uno spostamento in energia di legame e un popolamento degli stati Ce4f. Questo e’ dovuto alla stabilizzazione di Ce (III) da parte di TiO2 (110). Si e’ volute osservare la reattività del sistema ceria-titania nei confronti di metanolo ed etanolo. I risultati hanno mostrato che l'aggiunta di ceria ha aperto il percorso della deidrogenazione degli alcoli ad aldeidi. Abbiamo osservato che la pre-ossidazione con ossigeno del sistema CeOx-TiO2(110) ha avuto un impatto sulla sua selettività aprendo anche un percorso di disidratazione di metanolo ed etanolo rispettivamente a metano ed etilene. Questa via alternativa era valida solo per basse coperture di ossido di cerio avendo osservato che l’interazione con il substrato è stato necessario perche’ avvenga la disidratazione. La formazione di aldeidi fu osservata avvenire a temperature piuttosto (330 K) ed essere indipendente dallo spessore del film. Successivamente sono state caratterizzate tramite XPS delle polveri di ossidi misti di ceria e titania. Abbiamo osservato che per quantità crescenti di cerio l'elemento diventa gradualmente sempre piu’ presente al suo stato di ossidazione più alto Ce (IV). Con XPS abbiamo anche determinato la formazione di un composito molto intimo tra i due ossidi osservando l'aumento della larghezza a metà altezza del picco Ti2p per quantità crescenti di cerio. Inoltre, la determinazione della composizione ha mostrato che il cerio ha la tendenza di disperdersi all'interno delle particelle di titania. Questi dati hanno contribuito a scoprire una possibile buona ricetta per la formazione di cerio titanato; un composito con buona capacità di stoccaggio di ossigeno.
Burkardt, Sven. "Oxide and oxide supported nanoclusters on quasicrystals." Berlin Logos-Verl, 2009. http://d-nb.info/999419471/04.
Full textZhang, Huichun. "Metal oxide-facilitated oxidation of antibacterial agents." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-07072004-152317/unrestricted/zhang%5Fhuichun%5F200407%5Fphd.pdf.
Full textWine, Paul, Committee Member ; Pavlostathis, Spyros, Committee Member ; Mulholland, James, Committee Member ; Yiacoumi, Sotira, Committee Member ; Huang, Ching-Hua, Committee Chair. Includes bibliographical references.
Taujale, Saru. "INTERACTIONS BETWEEN METAL OXIDES AND/OR NATURAL ORGANIC MATTER AND THEIR INFLUENCE ON THE OXIDATIVE REACTIVITY OF MANGANESE DIOXIDE." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/347169.
Full textPh.D.
Mn oxides have high redox potentials and are known to be very reactive, rendering many contaminants susceptible to degradation via oxidation. Although Mn oxides typically occur as mixtures with other metal oxides (e.g., Fe, Al, and Si oxides) and natural organic matter (NOM) in soils and aquatic environments, most studies to date have studied the reactivity of Mn oxides as a single oxide system. This study, for the first time, examined the effect of representative metal oxides (Al2O3, SiO2, TiO2, and Fe oxides) and NOM or NOM-model compounds (Aldrich humic acid (AHA), Leonardite humic acid (LHA), pyromellitic acid (PA) and alginate) on the oxidative reactivity of MnO2, as quantified by the oxidation kinetics of triclosan (a widely used phenolic antibacterial agent) as a probe compound. The study also examined the effect of soluble metal ions released from the oxide surfaces on MnO2 reactivity. In binary oxide mixtures, Al2O3 decreased the reactivity of MnO2 as a result of both heteroaggregation and complexation of soluble Al ions with MnO2. At pH 5, the surface charge of MnO2 is negative while that of Al2O3 is positive resulting in intensive heteroaggregation between the two oxides. Up to 3.15 mM of soluble Al ions were detected in the supernatant of 10 g/L of Al2O3 at pH 5.0 whereas the soluble Al concentration was 0.76 mM in the mixed Al2O3 + MnO2 system at the same pH. The lower amount of soluble Al in the latter system is the result of Al ion adsorption by MnO2. The experiments with the addition of 0.001 to 0.1 mM Al3+ to MnO2 suspension indicated the triclosan oxidation rate constant decreased from 0.24 to 0.03 h-1 due to surface complexation. Fe oxides which are also negatively charged at pH 5 inhibited the reactivity of MnO2 through heteroaggregation. The concentration of soluble Fe(III) ions ( 4 mg-TOC/L or [alginate/PA] > 10 mg/L, a lower extent of heteroaggregation was also observed due to the negatively charged surfaces for all oxides. Similar effects on aggregation and MnO2 reactivity as discussed above were observed for ternary MnO2‒Al2O3‒NOM systems. HAs, particularly at high concentrations (2.0 to 12.5 mg-C/L), alleviated the effect of soluble Al ions on MnO2 reactivity as a result of the formation of soluble Al-HA complexes. Alginate and PA, however, did not form soluble complexes with Al ions so they did not affect the effect of Al ions on MnO2 reactivity. Despite the above observations, the amount of Al ions dissolved in MnO2+Al2O3+NOM mixtures was too low, as a result of NOMs adsorption on the surface to passivate oxide dissolution, to have a major impact on MnO2 reactivity. In conclusion, this study provided, for the first time, a systematical understanding of the redox activity of MnO2 in complex model systems. With this new knowledge, the gap between single oxide systems and complex environmental systems is much narrower so that it is possible to have a more accurate prediction of the fate of contaminants in the environment.
Temple University--Theses
Books on the topic "Oxide"
J, Dumin D., ed. Oxide reliability: A summary of silicon oxide wearout, breakdown, and reliability. [River Edge, NJ]: World Scientific, 2002.
Find full textMayer, Bernd, ed. Nitric Oxide. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3.
Full textHigashiwaki, Masataka, and Shizuo Fujita, eds. Gallium Oxide. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1.
Full textDimiev, Ayrat M., and Siegfried Eigler, eds. Graphene Oxide. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.
Full textKlingshirn, Claus F., Bruno K. Meyer, Andreas Waag, Axel Hoffmann, and Jean Geurts. Zinc Oxide. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10577-7.
Full textMcCarthy, Helen O., and Jonathan A. Coulter, eds. Nitric Oxide. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-964-2.
Full textGao, Wei, ed. Graphene Oxide. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15500-5.
Full textMengel, Alexander, and Christian Lindermayr, eds. Nitric Oxide. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7695-9.
Full textLester, Packer, ed. Nitric oxide. San Diego: Academic Press, 1996.
Find full textUnited States. Dept. of Labor, ed. Ethylene oxide. [Washington, D.C.?]: U.S. Dept. of Labor, 1995.
Find full textBook chapters on the topic "Oxide"
Keller, Kristin A., George Jefferson, and Ronald J. Kerans. "Oxide-Oxide Composites." In Ceramic Matrix Composites, 236–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118832998.ch8.
Full textStoneham, A. M., and P. W. Tasker. "Oxide Interfaces: Theory of Oxide-Oxide and Oxide-Metal Interfaces." In Ceramic Microstructures ’86, 155–65. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1933-7_16.
Full textMoncada, S. "Introduction." In Nitric Oxide, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_1.
Full textBalligand, J. L. "Regulation of Cardiac Function by Nitric Oxide." In Nitric Oxide, 207–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_10.
Full textMcNaughton, L., A. Radomski, G. Sawicki, and Marek W. Radomski. "Regulation of Platelet Function." In Nitric Oxide, 235–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_11.
Full textGarthwaite, J. "The Physiological Roles of Nitric Oxide in the Central Nervous System." In Nitric Oxide, 259–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_12.
Full textMartin, W. "The Role of Nitric Oxide in the Peripheral Nervous System." In Nitric Oxide, 277–313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_13.
Full textNavarra, P., A. Costa, and A. Grossman. "Nitric Oxide and Neuroendocrine Function." In Nitric Oxide, 315–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_14.
Full textHackenthal, E. "The Role of Nitric Oxide in Kidney Function." In Nitric Oxide, 329–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_15.
Full textKojda, G. "Therapeutic Importance of Nitrovasodilators." In Nitric Oxide, 365–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57077-3_16.
Full textConference papers on the topic "Oxide"
Jurf, Robert A., and Steven C. Butner. "Advances in Oxide-Oxide CMC." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-190.
Full textChiang, Steve, Roger Wang, Jacob Chen, Ken Hayes, John McCollum, Esmat Hamdy, and Chenming Hu. "oxide-Nitride-oxide Antifuse Reliability." In 28th International Reliability Physics Symposium. IEEE, 1990. http://dx.doi.org/10.1109/irps.1990.363520.
Full textVan de Walle, Chris G. "Doping of gallium oxide and aluminum gallium oxide alloys." In Oxide-based Materials and Devices XII, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2021. http://dx.doi.org/10.1117/12.2588459.
Full textRafitasari, Yeti, Haris Suhendar, Nurul Imani, Fitri Luciana, Hesti Radean, and Iman Santoso. "SINTESIS GRAPHENE OXIDE DAN REDUCED GRAPHENE OXIDE." In SEMINAR NASIONAL FISIKA 2016 UNJ. Pendidikan Fisika dan Fisika FMIPA UNJ, 2016. http://dx.doi.org/10.21009/0305020218.
Full textGrundmann, Marius. "Trigonal oxide semiconductor heterostructures." In Oxide-based Materials and Devices XIII, edited by Ferechteh H. Teherani and David J. Rogers. SPIE, 2022. http://dx.doi.org/10.1117/12.2617537.
Full textCao, Feng, Zhenyu Song, Yupeng An, Baojia Guo, Lei Li, and Yiding Wang. "Highly transparent and conductive Tantalum-doped ZnO films prepared by radio frequency sputtering." In Oxide-based Materials and Devices. SPIE, 2010. http://dx.doi.org/10.1117/12.841286.
Full textNagar, S., and S. Chakrabarti. "A detailed temperature dependent Hall study of As-doped ZnO thin films." In Oxide-based Materials and Devices. SPIE, 2010. http://dx.doi.org/10.1117/12.842013.
Full textOhtani, N., T. Katayama, H. Yamamoto, and H. Koyama. "Detection of Gate Oxide Defects Using Electrochemical Wet Etching in KOH:H2O Solution." In ISTFA 1997. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.istfa1997p0279.
Full textZhang, Dianyun, Pascal Meyer, and Anthony M. Waas. "Tensile Response of Oxide/Oxide Woven Ceramic Composites." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0464.
Full textFelsch, C., and E. Rosenbaum. "The relation between oxide degradation and oxide breakdown." In Proceedings of 1995 IEEE International Reliability Physics Symposium. IEEE, 1995. http://dx.doi.org/10.1109/relphy.1995.513667.
Full textReports on the topic "Oxide"
Lei, Ming, and Hassel Ledbetter. Oxides and oxide superconductors :. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.3980.
Full textLad, R. J. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6335383.
Full textLad, R. J. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6895283.
Full textLad, R. J. Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5766870.
Full textElliot R. Bernsteinq. Interactions of Neutral Vanadium Oxide & Titanium Oxide Clusters with Sufur Dioxides, Nitrogen Oxides and Water. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/890716.
Full textJackson, Jay Matthew, Marisa Jennifer Monreal, Kirk Ryan Weisbrod, David Anthony Tyler Rodriguez, and Michael F. Simpson. Electrolytic Oxide Reduction of Plutonium Oxide Surrogates. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1475332.
Full textEgami, Takeshi, and John M. Vohs. Utilizing metal-oxide and oxide-oxide interactions for improved automotive emissions control catalysts. Final report. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/810694.
Full textWagner, R. A. Novel Oxide-Oxide Fiber Reinforced Hot Gas Filter Development. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/419964.
Full textMetiu, Horia. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada409509.
Full textLad, Robert J. Structural, electronic and chemical properties of metal/oxide and oxide/oxide interfaces and thin film structures. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/758832.
Full text