Academic literature on the topic 'Oxidative state of protein'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxidative state of protein.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Oxidative state of protein"

1

Garavaglia, Maria Lisa, Daniela Giustarini, Graziano Colombo, Francesco Reggiani, Silvia Finazzi, Marta Calatroni, Lucia Landoni, et al. "Blood Thiol Redox State in Chronic Kidney Disease." International Journal of Molecular Sciences 23, no. 5 (March 5, 2022): 2853. http://dx.doi.org/10.3390/ijms23052853.

Full text
Abstract:
Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.
APA, Harvard, Vancouver, ISO, and other styles
2

Friguet, Bertrand. "Protein Repair and Degradation during Aging." Scientific World JOURNAL 2 (2002): 248–54. http://dx.doi.org/10.1100/tsw.2002.98.

Full text
Abstract:
Cellular aging is characterized by a build-up of oxidatively modified proteins. The steady-state level of oxidized proteins depends on the balance between the rate of protein oxidative damage and the rates of protein degradation and repair. Therefore, the accumulation of oxidized protein with age can be due to increased protein damage, decreased oxidized protein degradation and repair, or the combination of both mechanisms. The proteasomal system is the major intracellular proteolytic pathway implicated in the degradation of oxidized protein, and the peptide methionine sulfoxide reductase catalyzes the reduction of methionine sulfoxide (i.e., oxidized methionine) to methionine within proteins. A short summary on protein oxidative damage and oxidized protein degradation is given, and evidence for a decline of proteasome function with age is presented. Arguments for the implication of peptide methionine sulfoxide reductase in the age-related accumulation of oxidized protein are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Moilanen, Antti, and Lloyd W. Ruddock. "Non-native proteins inhibit the ER oxidoreductin 1 (Ero1)–protein disulfide-isomerase relay when protein folding capacity is exceeded." Journal of Biological Chemistry 295, no. 26 (February 26, 2020): 8647–55. http://dx.doi.org/10.1074/jbc.ra119.011766.

Full text
Abstract:
Protein maturation in the endoplasmic reticulum (ER) depends on a fine balance between oxidative protein folding and quality control mechanisms, which together ensure high-capacity export of properly folded proteins from the ER. Oxidative protein folding needs to be regulated to avoid hyperoxidation. The folding capacity of the ER is regulated by the unfolded protein response (UPR) and ER-associated degradation (ERAD). The UPR is triggered by unfolded protein stress and leads to up-regulation of cellular components such as chaperones and folding catalysts. These components relieve stress by increasing folding capacity and up-regulating ERAD components that remove non-native proteins. Although oxidative protein folding and the UPR/ERAD pathways each are well-understood, very little is known about any direct cross-talk between them. In this study, we carried out comprehensive in vitro activity and binding assays, indicating that the oxidative protein folding relay formed by ER oxidoreductin 1 (Ero1), and protein disulfide-isomerase can be inactivated by a feedback inhibition mechanism involving unfolded proteins and folding intermediates when their levels exceed the folding capacity of the system. This mechanism allows client proteins to remain mainly in the reduced state and thereby minimizes potential futile oxidation–reduction cycles and may also enhance ERAD, which requires reduced protein substrates. Relief from excess levels of non-native proteins by increasing the levels of folding factors removed the feedback inhibition. These results reveal regulatory cross-talk between the oxidative protein folding and UPR and ERAD pathways.
APA, Harvard, Vancouver, ISO, and other styles
4

Ghezzi, P. "Oxidoreduction of protein thiols in redox regulation." Biochemical Society Transactions 33, no. 6 (October 26, 2005): 1378–81. http://dx.doi.org/10.1042/bst0331378.

Full text
Abstract:
Protein cysteines can undergo various forms of oxidation, some of them reversible (disulphide formation, glutathionylation and S-nitrosylation). While in the past these were viewed as protein damage in the context of oxidative stress, there is growing interest in oxidoreduction of protein thiols/disulphides as a regulatory mechanism. This review discusses the evolution of the concept of redox regulation from that of oxidative stress and the redox state of protein cysteines in different cellular compartments.
APA, Harvard, Vancouver, ISO, and other styles
5

Tomin, Tamara, Matthias Schittmayer, Simon Sedej, Heiko Bugger, Johannes Gollmer, Sophie Honeder, Barbara Darnhofer, et al. "Mass Spectrometry-Based Redox and Protein Profiling of Failing Human Hearts." International Journal of Molecular Sciences 22, no. 4 (February 11, 2021): 1787. http://dx.doi.org/10.3390/ijms22041787.

Full text
Abstract:
Oxidative stress contributes to detrimental functional decline of the myocardium, leading to the impairment of the antioxidative defense, dysregulation of redox signaling, and protein damage. In order to precisely dissect the changes of the myocardial redox state correlated with oxidative stress and heart failure, we subjected left-ventricular tissue specimens collected from control or failing human hearts to comprehensive mass spectrometry-based redox and quantitative proteomics, as well as glutathione status analyses. As a result, we report that failing hearts have lower glutathione to glutathione disulfide ratios and increased oxidation of a number of different proteins, including constituents of the contractile machinery as well as glycolytic enzymes. Furthermore, quantitative proteomics of failing hearts revealed a higher abundance of proteins responsible for extracellular matrix remodeling and reduced abundance of several ion transporters, corroborating contractile impairment. Similar effects were recapitulated by an in vitro cell culture model under a controlled oxygen atmosphere. Together, this study provides to our knowledge the most comprehensive report integrating analyses of protein abundance and global and peptide-level redox state in end-stage failing human hearts as well as oxygen-dependent redox and global proteome profiles of cultured human cardiomyocytes.
APA, Harvard, Vancouver, ISO, and other styles
6

Christians, Elisabeth S., and Ivor J. Benjamin. "Proteostasis and REDOX state in the heart." American Journal of Physiology-Heart and Circulatory Physiology 302, no. 1 (January 2012): H24—H37. http://dx.doi.org/10.1152/ajpheart.00903.2011.

Full text
Abstract:
Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed “proteostasis.” Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans.
APA, Harvard, Vancouver, ISO, and other styles
7

Iossa, S., G. Liverini, and A. Barletta. "Effect of thyroid state and cold exposure on rat liver mitochondrial protein mass and function." Journal of Endocrinology 131, no. 1 (October 1991): 67–73. http://dx.doi.org/10.1677/joe.0.1310067.

Full text
Abstract:
ABSTRACT The effects of thyroid state on liver mitochondrial protein mass was investigated in rats at 24 and 4 °C, as was oxidative phosphorylation using substrates which represent the final catabolic products of the metabolic fuels. In rats at 24 °C, a significant increase in mitochondrial protein mass (about +40%) was observed only in hyperthyroid animals, while a significant increase due to cold exposure was found in hypothyroid (+ 45%) and euthyroid (+ 35%) rats. In rats at 24 °C, hypothyroidism significantly decreased the oxidation of glutamate and palmitoyl carnitine but not of pyruvate, while hyperthyroidism only increased the oxidation of palmitoyl carnitine. On the other hand, exposure to cold significantly increased the oxidation of glutamate and pyruvate only in the presence of tri-iodothyronine. Our results underline not only the fact that a simple and single hypothesis for thyroid effects cannot be adopted, but also that any study concerning oxidative metabolism should be carried out using different substrates and involving different pathways of oxidation. Journal of Endocrinology (1991) 131, 67–73
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Yi, Wen-Jia Zhang, Xin Zhao, Ren-Pei Yuan, Hui Jiang, and Xiao-Ping Pu. "PARK7 protein translocating into spermatozoa mitochondria in Chinese asthenozoospermia." REPRODUCTION 148, no. 3 (September 2014): 249–57. http://dx.doi.org/10.1530/rep-14-0222.

Full text
Abstract:
PARK7 (DJ1) is a multifunctional oxidative stress response protein that protects cells against reactive oxygen species (ROS) and mitochondrial damage. PARK7 defects are known to cause various physiological dysfunctions, including infertility. Asthenozoospermia (AS), i.e. low-motile spermatozoa in the ejaculate, is a common cause of human male infertility. In this study, we found that downregulation of PARK7 resulted in increased levels of lipid peroxide and ROS, decreased mitochondrial membrane potential, and reduced mitochondrial complex I enzyme activity in the spermatozoa from AS patients. Furthermore, it was observed that PARK7 was translocated into the mitochondria of damaged spermatozoa in AS. Finally, we examined the oxidative state of PARK7 and the results demonstrated the enhancement of oxidation, expressed by increased sulfonic acid residues, the highest form of oxidation, as the sperm motility decreased. Taken together, these results revealed that PARK7 deficiency may increase the oxidative stress damage to spermatozoa. Our present findings open new avenues of therapeutic intervention targeting PARK7 for the treatment of AS.
APA, Harvard, Vancouver, ISO, and other styles
9

HOLNESS, Mark J., Karen BULMER, Geoffrey F. GIBBONS, and Mary C. SUGDEN. "Up-regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) protein expression in oxidative skeletal muscle does not require the obligatory participation of peroxisome-proliferator-activated receptor α (PPARα)." Biochemical Journal 366, no. 3 (September 15, 2002): 839–46. http://dx.doi.org/10.1042/bj20020754.

Full text
Abstract:
In insulin deficiency, increased lipid delivery and oxidation suppress skeletal-muscle glucose oxidation by inhibiting pyruvate dehydrogenase complex (PDC) activity via enhanced protein expression of pyruvate dehydrogenase kinase (PDK) isoform 4, which phosphorylates (and inactivates) PDC. Signalling via peroxisome-proliferator-activated receptor α (PPARα) is an important component of the mechanism enhancing hepatic and renal PDK4 protein expression. Activation of PPARα in gastrocnemius, a predominantly fast glycolytic (FG) muscle, also increases PDK4 expression, an effect that, if extended to all muscles, would be predicted to drastically restrict whole-body glucose disposal. Paradoxically, chronic activation of PPARα by WY14,643 treatment improves glucose utilization by muscles of insulin-resistant high-fat-fed rats. In the resting state, oxidative skeletal muscles are quantitatively more important for glucose disposal than FG muscles. We evaluated the participation of PPARα in regulating PDK4 protein expression in slow oxidative (SO) skeletal muscle (soleus) and fast oxidative-glycolytic (FOG) skeletal muscle (anterior tibialis) containing a high proportion of oxidative fibres. In the fed state, acute (24h) activation of PPARα by WY14,643 in vivo failed to modify PDK4 protein expression in soleus, but modestly enhanced PDK4 protein expression in anterior tibialis. Starvation enhanced PDK4 protein expression in both muscles, with the greater response in anterior tibialis. WY14,643 treatment in vivo during starvation did not further enhance upregulation of PDK4 protein expression in either muscle type. Enhanced PDK4 protein expression after starvation was retained in SO and FOG skeletal muscles of PPARα-deficient mice. Our data indicate that PDK4 protein expression in oxidative skeletal muscle is regulated by a lipid-dependent mechanism that is not obligatorily dependent on signalling via PPARα.
APA, Harvard, Vancouver, ISO, and other styles
10

Weiner, Lev, and Israel Silman. "Oxidative stress transfers protein into “molten globule”-like state." Free Radical Biology and Medicine 15, no. 5 (November 1993): 524. http://dx.doi.org/10.1016/0891-5849(93)90386-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Oxidative state of protein"

1

Tokarew, Jacqueline M. "A Novel Role for the Parkinson Disease-Linked and Neuromelanin-Associated Parkin Protein as a Cysteine-Dependent Redox-State Regulator." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42389.

Full text
Abstract:
Parkinson disease (PD) is an incurable disease, second only to Alzheimer’s disease as the most common neurodegenerative disease in adults. Unfortunately, the course of disease is significantly longer for individuals diagnosed at an early age (20-40 years of age). Although early-onset, recessively inherited cases represent a small subset of individuals with PD (~5- 10%), their clinical presentation is unique, with symptoms being almost exclusively motor-related. The expressivity of early-onset PD is partially explained by post-mortem neuropathological findings, which demonstrate a specific loss of dopamine synthesizing cells in brainstem nuclei that also produce neuromelanin (i.e. Substantia nigra and Locus coeruleus). With the majority of early-onset PD cases being caused by homozygous and biallelic heterozygous mutations in the PRKN gene, its gene product, parkin, has been extensively studied. It is generally accepted that loss of its E3 ligase function leads to neurodegeneration by either one of the following two mechanisms: i) toxic substrate accumulation from the loss of target protein ubiquitination (and related degradation), or ii) accumulation of dysfunctional mitochondria due to impaired mitophagy initiation. However, whether these mechanisms lead to selective neuronal loss within the human brain remains unknown. This thesis represents a body of work that supports a novel role for parkin as a thiol-based anti-oxidant and redox homeostasis regulator, which helps explain the cell-specificity observed in recessive, PRKN-linked PD. These findings include: i) evidence that human brain parkin uniquely and natively undergoes age-associated aggregation beginning at 40 years of age (Chapter 2); ii) identification of multiple, reversible and irreversible oxidative modifications of parkin cysteines, both in cells and tissues, including dopamine-adduct conjugation on primate sequence-specific cysteine 95 (Chapter 2); iii) the demonstration that irreversible oxidation of parkin cysteines causes aggregate formation ii in cells and mice exposed to exogenous and/or endogenous sources of oxidative and dopamine stress (Chapter 2 and 3); iv) evidence that parkin functions as a thiol-dependent anti-oxidant similar to glutathione (Chapter 2), which lowers oxidation state in cells and tissues under native and stress conditions (Chapter 2 and 3); v) the demonstration that parkin cysteines, notably C95, directly bind glutathione and regulate glutathione redox homeostasis in cells and tissues in a dynamic fashion (Chapter 3); and vi) the development of novel, human-specific, anti-parkin monoclonal antibodies that preferentially detect oxidized and aggregated forms of parkin found associated with neuromelanin and lysosomal storage vesicles within neurons of human Substantia nigra (Chapter 2 and 4). Future studies focusing on further validation of in situ oxidative modifications of parkin cysteines and their effect on protein structure, notably the poorly studied linker region that contains C95, will provide insight into how these oxidative modifications affect the function of parkin in vivo, including in adult human brain. Also, identifying the bona fide intracellular redox partners of parkin will be crucial to understanding how this protein regulates cellular redox state. Of clinical importance, the findings presented here indicate a potential, human-specific link between parkin and neuromelanin formation, which deserves to be further explored, such as with parkin mouse models engineered to produce neuromelanin. Finally, designing clinical trials using anti-oxidants specifically in individuals affected by PRKN-associated PD represents a logical, translational treatment approach to explore.
APA, Harvard, Vancouver, ISO, and other styles
2

Lui, James Kwok Ching. "A fluorescent labelling technique to detect changes in the thiol redox state of proteins following mild oxidative stress." University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0056.

Full text
Abstract:
There is increasing evidence that hydrogen peroxide (H2O2) can act as a signalling molecule capable of modulating a variety of biochemical and genetic systems. Using Jurkat T-lymphocytes, this study initially investigated the involvement of H2O2 in the activation of a specific signalling protein extracellular signal-regulated protein kinase (ERK). It was found that as a result of H2O2 treatment, mitochondrial complex activities decreased which led to subsequent increase of mitochondrial reactive oxygen species (ROS) production. The increase of ROS resulted in higher cellular H2O2 as well as increased ERK activation. This study demonstrated that in an oxidative stress setting, H2O2 production from the mitochondria was an essential component in maintaining the activation of a signalling protein. One way in which H2O2 could influence protein function is by the oxidation of susceptible thiol groups of cysteine residues. To further understand the variety of signalling pathways that H2O2 may be involved in, an improved proteomics technique was developed to globally identify proteins with susceptible thiol groups. The
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Liang. "Structural and functional studies of mitochondrial small Tim proteins." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/structural-and-functional-studies-of-mitochondrial-small-tim-proteins(03dde6fd-6692-4af5-9023-b85a33803fcd).html.

Full text
Abstract:
Most mitochondrial proteins are encoded by nuclear DNA, and synthesised in the cytosol, then imported into the different mitochondrial subcompartments. To reach their destination, mitochondrial inner membrane proteins require import across the outer mitochondrial membrane, and through the intermembrane space. This passage through the IMS is assisted by the small Tim proteins. This family is characterised by conserved cysteine residues arranged in a twin CX3C motif. They can form Tim9-Tim10 and Tim8-Tim13 complexes, while Tim12 appears to form part of a Tim9-Tim10-Tim12 complex that is associated with the inner membrane translocase TIM22 complex. Current models suggest that the biogenesis of small Tim proteins and their assembly into complexes is dependent on the redox states of the proteins. However, the role of the conserved cysteine residues, and the disulphide bonds formed by them, in small Tim biogenesis and complex formation is not clear. As there is no research about the structural characterisation of Tim12 and double cysteine mutants of Tim9, purification of these proteins was attempted using different methods. To investigate how cysteine mutants affect complex formation, the purified double cysteine mutants of Tim9 were studied using in vitro methods. It showed that the double cysteine mutants were partially folded, and they can form complexes with Tim10 with low affinities, suggesting disulphide bonds are important for the structures and complex formation of small Tim proteins. The effect of cysteine mutants on mitochondrial function was addressed using in vivo methods. It showed that cysteines of small Tim proteins were not equally essential for cell viability, and growth defect of the lethal cysteine mutant was caused by low level of protein. Thus, the conclusion of this study is that disulphide bond formation is highly important for correct Tim9- Tim10 complex formation, and yeast can survive with low levels of complex, but it results in instability of the individual proteins.
APA, Harvard, Vancouver, ISO, and other styles
4

Maxwell, Brian Andrew. "Multi-disciplinary Investigation of the Kinetics and Protein Conformational Dynamics of DNA Replication and Oxidative DNA Damage Bypass and Repair." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1405961617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mensah, Eric. "Creation of a Site-Directed Mutant of Hen Egg White Lysozyme Working Toward Site-Specific Oxidation as it Relates to Protein Structure." Connect to resource online, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1251756763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bilous, I. I. "The dynamics of the parameters of lipid peroxidation, the oxidative modification of proteins and the state of the blood antioxidant system 3 and 6 months after treating diabetic polyneuropathy." Thesis, БДМУ, 2017. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/17030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bilous, Iryna Ivanivna. "The dynamics of the parameters of lipid peroxidation, the oxidative modification of proteins and the state of the blood antioxidant system 3 and 6 months after treating diabetic polyneuropathy." Thesis, ВДНЗ України "Буковинський державний медичний уніврситет", 2017. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/14083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tuckey, Nicholas Pierre Lemieux. "Technologies for tissue preservation: the role of endogenous and exogenous antioxidants in preserving tissue function in chinook salmon, Oncorhynchus tshawytscha." Thesis, University of Canterbury. Biological Sciences, 2008. http://hdl.handle.net/10092/1510.

Full text
Abstract:
The seafood industry is of considerable importance to both the New Zealand and global economies and therefore tissue preservation technologies that increase product quality and/or prolong shelf life have the potential to add significant value. Technologies for maintaining the viability of isolated tissues also have a wide range of other medical and industrial applications. This thesis examines the relationship between metabolic function, oxidation and cell death and the resulting stability of the non-viable tissues during long term storage in chinook salmon (Oncorhynchus tshawytscha) red and white skeletal muscle tissue. This research also looks at the role of the aquatic anaesthetic AQUI-S™, in which the active ingredient is isoeugenol (a lipid soluble antioxidant), and other antioxidant compounds in preserving metabolic function in viable tissues and tissue stability in nonviable tissues. Perfusion of salmon tails at 15℃ over 5 or 10 hours with oxygen saturated saline resulted in significant increases in protein and lipid oxidation (protein carbonyl and TBARS concentrations respectively) in the red muscle, but not the white muscle. The introduction of ascorbic acid and uric acid into the saline did not reduce the oxidation in the red muscle despite significantly increasing their respective concentrations in the tissue. This indicates the difficulties associated with attempting to extend tissue viability by delivering free oxygen to the tissue and also highlights the difference in susceptibility of the two muscle types to oxidation. Tail fillets from salmon harvested in both rested and exhausted physiological states using AQUI-S™, and fillets from exhausted salmon harvested without AQUI-S™, were exposed to air at 15℃ for up to 96 hours. Protein carbonyls increased in a roughly linear fashion over the entire 96 hours in all three groups. Both lipid peroxides (TBARS) and uric acid concentrations began to increase in the exhausted group after 30 hours. In contrast, no significant increases in lipid peroxides or uric acid was seen in the fillets from either group harvested using AQUI-S™. Vitamin E concentrations reduced slowly but did not change significantly despite the oxidation that was evident in the tissue. These processes also occurred in salmon tail fillets during storage at 6℃. The measurement of ATP related compounds provides an effective indicator of both the metabolic state of the tissue post-harvest and the quality. The breakdown of these compounds is also associated with the production of ammonia and hydrogen peroxide. Fresh rested salmon fillets had high concentrations of ATP and creatine phosphate, which were both depleted after 12 hours storage at 15℃. This indicates that cell viability lasted a number of hours following harvesting. These metabolites were depleted in exhausted fillets and metabolic potential appeared to be immediately compromised. The concentration of the taste enhancing compound IMP was significantly reduced in fresh rested tissue, but increased during storage, and was significantly higher than in exhausted tissues following 12 hours of storage at 15℃. This indicates that some properties of rested tissues may improve with limited storage times. The accumulation of uric acid - the metabolic end point for ATP related compounds - was also significantly reduced in rested tissue and increases in K-value were slowed. AQUI-S™ showed an ability to preserve tissue function through its anaesthetic action allowing tissue to be harvested in a rested state, and to reduce late stage lipid oxidation in stored salmon tail fillets. The antioxidant action of isoeugenol in salmon fillets may be mediated through its ability to chelate transition metals released during tissue degradation. This research shows that during reperfusion and during fillet storage there is a significant level of oxidative stress, which needs to be minimized while maintaining basic tissue metabolism to prolong tissue and cellular viability. The development of future technologies to preserve tissue viability may depend on the development of a synthetic oxygen carrying compound with properties similar to red blood cells. This may allow more control over oxygen delivery, potentially reducing the oxidative stress associated with high concentrations of free oxygen in solution. However, preserving cell viability will also require the maintenance of endogenous antioxidant function and there is also the potential to use iron chelating compounds including plant derived flavonoids to preserve non-viable tissues. Future research in these areas is necessary.
APA, Harvard, Vancouver, ISO, and other styles
9

Du, Aiguo. "Prediction of oxidation states of cysteines and disulphide bridges in proteins." unrestricted, 2007. http://etd.gsu.edu/theses/available/etd-11272007-024411/.

Full text
Abstract:
Thesis (Ph. D.)--Georgia State University, 2007.
Title from file title page. Y. Pan, committee chair; G. Qin, A. Bourgeois, A. Zelikovski, committee members. Electronic text (124 p. : ill. (some col.)) : digital, PDF file. Description based on contents viewed June 3, 2008. Includes bibliographical references (p. 111-124).
APA, Harvard, Vancouver, ISO, and other styles
10

Harvey, Anna Ross. "Oxidative protein folding in Aspergillus niger." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523081.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Oxidative state of protein"

1

Oxidative folding of peptides and proteins. Cambridge, UK: Royal Society of Chemistry, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lantto, R. Protein cross-linking with oxidative enzymes and transglutaminase: Effects in meat protein systems. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Catala, Angel. Reactive oxygen species, lipid peroxidation, and protein oxidation. New York: Nova Publishers, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

The unfolded protein response und cellular stress. Amsterdam [etc.]: Elsevier, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Protein absorption: Development and present state of the subject. New York: Wiley-Liss, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Northey, Julian G. B. Protein folding determinants and transition state analysis of the Fyn SH3 domain. Ottawa: National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Local and state political campaign management. Commack, N.Y: Nova Science Publishers, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Penn State Symposium in Plant Physiology (6th 1991 Pennsylvania State University). Active oxygen/oxidative stress and plant metabolism: Proceedings, 6th annual Penn State Symposium in Plant Physiology, May 23-25, 1991. Rockville, Md: American Society of Plant Physiologists, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Th, Vanden Driessche, Guisset J. -L, and Petiau-de Vries G. M, eds. The redox state and circadian rhythms. Dordrecht: Kluwer Academic, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lavoie, Theresa I. The effects of an aversive noise stimulus on caloric consumption of various nutrient mixtures by wistar rats: Complex carbohydrate, fat, and protein in liquid and solid state. Sudbury, Ont: Laurentian University, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Oxidative state of protein"

1

Arrigo, André-Patrick, Catherine Paul, Cécile Ducasse, Olivier Sauvageot, and Carole Kretz-Remy. "Small Stress Proteins: Modulation of Intracellular Redox State and Protection Against Oxidative Stress." In Small Stress Proteins, 171–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56348-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pena, Liliana Beatriz, Claudia Elsa Azpilicueta, María Patricia Benavides, and Susana Mabel Gallego. "Protein Oxidative Modifications." In Metal Toxicity in Plants: Perception, Signaling and Remediation, 207–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22081-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mythri, Rajeswara Babu, Shireen Vali, and M. M. Srinivas Bharath. "Oxidative Stress, Protein Damage." In Encyclopedia of Systems Biology, 1619–20. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hougland, James L., Joseph Darling, and Susan Flynn. "Protein Posttranslational Modification." In Molecular Basis of Oxidative Stress, 71–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118355886.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barreiro, Esther. "Chronic Obstructive Pulmonary Disease and Oxidative Damage." In Protein Carbonylation, 241–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119374947.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Linares, María, Antonio Puyet, Amalia Diez, and José M. Bautista. "Oxidative Stress and Protein Carbonylation in Malaria." In Protein Carbonylation, 131–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119374947.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bernstein, Alison I., and Karen L. O’Malley. "Protein Oxidation Triggers the Unfolded Protein Response and Neuronal Injury in Chemically Induced Parkinson Disease." In Oxidative Neural Injury, 179–92. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-342-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nagarajan, Narayani, and Junichi Sadoshima. "Regulation of Protein Nitrosylation by Thioredoxin 1." In Biochemistry of Oxidative Stress, 163–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45865-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rossi-George, Alba, and Andrew Gow. "Nitric Oxide Biochemistry: Pathophysiology of Nitric Oxide-Mediated Protein Modifications." In Oxidative Neural Injury, 29–44. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-342-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lees, Watson J. "Oxidative Protein Folding with Small Molecules." In Folding of Disulfide Proteins, 109–32. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7273-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Oxidative state of protein"

1

Kadhim, Kadhim Abdul salam, Wasan N. Husain, and Rafah Razooq Hameed Al-Samarrai. "Evaluation the correlation between C-reactive protein and oxidative stress state in patients with COVID-19." In 1ST SAMARRA INTERNATIONAL CONFERENCE FOR PURE AND APPLIED SCIENCES (SICPS2021): SICPS2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0122223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Jing Yin, J. R. Knab, A. G. Markelz, and S. K. Gregurick. "Terahertz Dielectric Response Sensitivity to Protein Oxidation State." In LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting. IEEE, 2007. http://dx.doi.org/10.1109/leos.2007.4382355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Topunov, A. F., O. V. Kosmachevskaya, and E. I. Nasybullina. "EXPRESSED PLANT HEMOGLOBIN AS AN INGREDIENT FOR PRODUCTION OF «PLANT-BASED MEAT»." In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.242-244.

Full text
Abstract:
Escherichia coli cells with an embedded soybean leghemoglobin (Lb) gene produce this protein in a reduced oxygenated state. The cells synthesizing Lb turned out to be more sensitive to the action of oxidative and nitrosative stress inducers, than cells without Lb.
APA, Harvard, Vancouver, ISO, and other styles
4

Lamsal, Buddhi, and Md Mahfuzur Rahman. "Conventional and novel technologies for extraction of protein and their impact on structure and functionality as ingredient." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/dhxf1174.

Full text
Abstract:
Proteins possess their techno-functionalities by virtues of their state of being, i.e., their molecular makeup and structure, which in turn, is affected by the technologies employed to extract them from the matrices they belong to. This is true for both plant proteins and cell-based proteins. While pH-modulated solubility based aqueous extraction, followed by isolation, is the overwhelming method for plant protein preparations, other technologies, for example dry fractionation (separation based on density, air drag or electrostatic charges), enzyme-, microwave-, ultrasound-, pulsed electric energy- and high pressure-assisted extraction, subcritical water, reverse micelles extraction, and aqueous two-phase systems extraction have been researched for better yields and functionality. Physical separation or dry fractionation preserves the molecular structure and protein possesses better techno-functional and sensory properties than conventional alkaline and acid-based methods. However, dry fractionation can produce only protein concentrate, not isolate. Although alkaline and acid-based methods can prepare to isolate efficiently, subsequent acid precipitation and drying methods form insoluble aggregates and enhance oxidation, which in turn, affect solubility and related functional properties as well as contribute to off-flavor. This presentation will summarize such technologies for extraction, potential for sustainability and their impact on protein's structure and techno-functionalities such as solubility, foaming/emulsion, gelation etc. It will also present authors' recent research on ultrasound-assisted extraction of soy protein and changes in major isolate structure/ function.
APA, Harvard, Vancouver, ISO, and other styles
5

Sharifimehr, Shahrzad, Supratim Ghosh, and Ramaswami Sammynaiken. "Development of Protein–polyphenol Conjugates via Free Radical Grafting Method: Evaluation of Physicochemical and Functional Properties." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/bpzg5215.

Full text
Abstract:
Lipid oxidation is a common phenomenon in emulsions that can be controlled by different techniques. Since proteins are beneficial emulsifiers but with low antioxidant ability, they are used in combination with an antioxidant compound such as polyphenols. Strong interaction between the protein and the polyphenol makes this combination more effective. In this study, soluble fraction of faba protein concentrate (FPC) was conjugated with tannic acid via the free radical grafting, and the structural and functional characteristics of the conjugates were determined in comparison with the mixture of the protein and tannic acid, and the pure protein. After dialysis, the amount of protein and polyphenol from the conjugated materials was significantly reduced, indicating that the unreacted peptides and polyphenol left the solutions. The reduction of the free amino and thiol groups in the protein specified the establishment of a strong interaction between the protein and tannic acid remaining in the solution. Moreover, the conjugate showed high ABTS, hydroxyl radical scavenging activity and ferric reducing power than the protein alone. As the purpose of making the conjugate was to be used as a multilayer film around the oil droplets, the film formation ability of the conjugates was investigated using Langmuir-Blodgett technique. Depending on the size of the trough and the nature of the compounds being used, the concentration and surface pressure required to form a strong film will vary. All samples showed an extended gas state of the film that changed abruptly and directly into a solid state below a critical surface area. Such LB film of the protein-tannic acid conjugate will be used to test its free radical scavenging ability so that its ability to prevent lipid oxidation in emulsions can be predicted.
APA, Harvard, Vancouver, ISO, and other styles
6

Pelerin, Jennifer, BJ Bench, Madison Schaugaard, Jacob Swann, and Toniese Bailey. "Optimization of Oxidative Stress Indicator Workflows for Enhanced Quality Control of Rendered Meals and Fats Utilizing the CDR Foodlab Analyzer: Peroxide Value and Free Fatty Acids." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/wmzo3356.

Full text
Abstract:
In the United States, over 56 billion pounds of raw materials derived from animals are converted to approximately 9 and 10 billion pounds of rendered fats and protein meal, respectively. With this size and scope, quality control teams need methods that are reliable, accurate, intuitive, robust, and rapid are a necessity to keep up with the ever-growing demands to ensure finished product quality. Two primary indicators to evaluate oxidative stress of protein meals and fats are peroxide value (PV) and free fatty acid (FFA). Industry estimations due to no standardization of oxidative test methods costs the ingredient and food industries millions of dollars. Recently, leaders in various industries have come together to tackle these challenges through evaluating and validating new platforms. One such platform that was recognized is the CDR FoodLab analyzer, a pre-calibrated, easy to use photometer that can perform multiple oxidative stress analyses including PV and FFA in a variety of products. The rendering industry recognized the potential for this and industry leaders in conjunction with CDR FoodLab validated the equipment against the AOCS official methods Cd 8b-90 and Ca 5a-40, for PV and FFA, respectively.In this presentation, the innovative CDR FoodLab technology story will be presented that showcases how novel technologies can be validated and utilized by industries that need platforms that are reliable and intuitive. Included will be the data set from a major industry study where 75 mixed species protein meal samples were tested against the AOCS official method Cd 8b-90 with ether extraction as well as other rapid technologies. After that study, it was recognized that the technology could be exploited and standardized for other matrices with validations being presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Munch, Katharina, Claire Berton-Carabin, Karin Schroen, and Simeon Stoyanov. "Plant protein-stabilized emulsions: Implications of protein and non-protein components for lipid oxidation." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/zznf4565.

Full text
Abstract:
The use of plant proteins to stabilize oil-in-water (O/W) emulsions has been an increasing trend lately. The complexity of the available plant protein ingredients, along with the proteins’ physicochemical properties, require advanced processing that typically leads to substantial concentrations of non-protein components in the final isolates or concentrates. It is known that those components, such as polyphenols, phytic acid or phospholipids, can have a strong influence on the oxidative stability of emulsions. Thus, to understand the oxidative stability of plant protein-stabilized emulsions, the influence of the non-protein components also needs to be considered. Many food emulsions, such as mayonnaise or infant formula, are stabilized by not only proteins, but also phospholipids. Such an interfacial protein-phospholipid combination can also be found in oleosomes, natural lipid droplets which show a high oxidative stability. This stability has been attributed to their interfacial architecture in which oleosins and phospholipids form a tight physical barrier against pro-oxidant species. However, while the antioxidant properties of proteins are widely reported, the contribution of phospholipids to lipid oxidation in plant protein-based emulsions remains underexplored. In this work, we investigated how mixed interfacial plant proteins and phospholipids may be rationally used to control the oxidative stability of O/W emulsions. The interfacial composition was modulated by varying the ratio between pea proteins and sunflower phosphatidylcholine (PC) while keeping the total concentration of pea proteins constant. Increasing the phospholipid-to-protein ratio led to a monotonic decrease in the concentration of proteins and an increase of phospholipids at the interface, while the oxidative stability of those O/W emulsions changed in a non-monotonic pattern. The results were put in perspective by embedding them in a context of reviewing the potential implications of typical components in plant protein ingredients on lipid oxidation.
APA, Harvard, Vancouver, ISO, and other styles
8

Estevez, Mario, David Morcuende, and Teresa Antequera. "Interplay Between Lipid and Protein Carbonyls During Oxidative Reactions." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cingolani, Roberto. "Solid state protein devices." In 2006 IEEE Nanotechnology Materials and Devices Conference. IEEE, 2006. http://dx.doi.org/10.1109/nmdc.2006.4388867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mehrabi, Sharifeh, Yupha Vatcharapirjon, Tesfamariam Mehreteab, Gregory Adams, and Felix O. Aikhionbare. "Abstract 4508: Oxidative protein modifications in serous epithelia ovarian cancer tissues." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4508.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Oxidative state of protein"

1

Horwitz, Benjamin A., and Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7709885.bard.

Full text
Abstract:
Our project focused on genes for high affinity iron acquisition in Cochliobolus heterostrophus, a necrotrophic pathogen of maize, and their intertwined relationship to oxidative stress status and virulence of the fungus on the host. An intriguing question was why mutants lacking the nonribosomal peptide synthetase (NRPS) gene (NPS6) responsible for synthesis of the extracellular siderophore, coprogen, are sensitive to oxidative stress. Our overall objective was to understand the mechanistic connection between iron stress and oxidative stress as related to virulence of a plant pathogen to its host. The first objective was to examine the interface where small molecule peptide and reactive oxygen species (ROS) mechanisms overlap. The second objective was to determine if the molecular explanation for common function is common signal transduction pathways. These pathways, built around sensor kinases, response regulators, and transcription factors may link sequestering of iron, production of antioxidants, resistance to oxidative stress, and virulence. We tested these hypotheses by genetic manipulation of the pathogen, virulence assays on the host plant, and by following the expression of key fungal genes. An addition to the original program, made in the first year, was to develop, for fungi, a genetically encoded indicator of redox state based on the commercially available Gfp-based probe pHyper, designed for animal cell biology. We implemented several tools including a genetically encoded indicator of redox state, a procedure to grow iron-depleted plants, and constructed a number of new mutants in regulatory genes. Lack of the major Fe acquisition pathways results in an almost completely avirulent phenotype, showing how critical Fe acquisition is for the pathogen to cause disease. Mutants in conserved signaling pathways have normal ability to regulate NPS6 in response to Fe levels, as do mutants in Lae1 and Vel1, two master regulators of gene expression. Vel1 mutants are sensitive to oxidative stress, and the reason may be underexpression of a catalase gene. In nps6 mutants, CAT3 is also underexpressed, perhaps explaining the sensitivity to oxidative stress. We constructed a deletion mutant for the Fe sensor-regulator SreA and found that it is required for down regulation of NPS6 under Fe-replete conditions. Lack of SreA, though, did not make the fungus over-sensitive to ROS, though the mutant had a slow growth rate. This suggests that overproduction of siderophore under Fe-replete conditions is not very damaging. On the other hand, increasing Fe levels protected nps6 mutants from inhibition by ROS, implying that Fe-catalyzed Fenton reactions are not the main factor in its sensitivity to ROS. We have made some progress in understanding why siderophore mutants are sensitive to oxidative stress, and in doing so, defined some novel regulatory relationships. Catalase genes, which are not directly related to siderophore biosynthesis, are underexpressed in nps6 mutants, suggesting that the siderophore product (with or without bound Fe) may act as a signal. Siderophores, therefore, could be a target for intervention in the field, either by supplying an incorrect signal or blocking a signal normally provided during infection. We already know that nps6 mutants cause smaller lesions and have difficulty establishing invasive growth in the host. Lae1 and Vel1 are the first factors shown to regulate both super virulence conferred by T-toxin, and basic pathogenicity, due to unknown factors. The mutants are also altered in oxidative stress responses, key to success in the infection court, asexual and sexual development, essential for fungal dissemination in the field, aerial hyphal growth, and pigment biosynthesis, essential for survival in the field. Mutants in genes encoding NADPH oxidase (Nox) are compromised in development and virulence. Indeed the triple mutant, which should lack all Nox activity, was nearly avirulent. Again, gene expression experiments provided us with initial evidence that superoxide produced by the fungus may be most important as a signal. Blocking oxidant production by the pathogen may be a way to protect the plant host, in interactions with necrotrophs such as C. heterostrophus which seem to thrive in an oxidant environment.
APA, Harvard, Vancouver, ISO, and other styles
2

Madaeva, I. M., N. A. Kurashova, N. V. Semenova, E. B. Uhinov, S. I. Kolesnikov, and L. I. Kolesnikova. HSP70 HEAT SHOCK PROTEIN IN OXIDATIVE STRESS APNEA PATIENTS. Publishing house of the Russian Academy of Medical Sciences, 2020. http://dx.doi.org/10.18411/1695-1978-2020-62730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dickman, Martin B., and Oded Yarden. Modulation of the Redox Climate and Phosphatase Signaling in a Necrotroph: an Axis for Inter- and Intra-cellular Communication that Regulates Development and Pathogenicity. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7697112.bard.

Full text
Abstract:
The long-term goals of our research are to understand the regulation of sclerotial development and pathogenicity in S. sclerotiorum. The focus in this project is on the elucidation of the signaling events and environmental cues that contribute to broad pathogenic success of S. sclerotiorum. In this proposal, we have taken advantage of the recent conceptual (ROS/PPs signaling) and technical (genome sequence availability and gene inactivation possibilities) developments to address the following questions, as appear in our research goals stated below, specifically concerning the involvement of REDOX signaling and protein dephosphorylation in the regulation of hyphal/sclerotial development and pathogenicity of S. sclerotiorum. Our stated specific objectives were to progress our understanding of the following questions: (i) Which ROS species affect S. sclerotiorum development and pathogenicity? (ii) In what manner do PPs affect S. sclerotiorum development and pathogenicity? (iii) Are PPs affected by ROS production and does PP activity affect ROS production and SMK1? (iv) How does Sclerotinia modulate the redox environment in both host and pathogen? While addressing these questions, our main findings include the identification and characterization the NADPH oxidase (NOX) family in S. sclerotiorum. Silencing of Ssnox1 indicated a central role for this enzyme in both virulence and pathogenic (sclerotial) development, while inactivation of Ssnox2 resulted in limited sclerotial development but remained fully pathogenic. Interestingly, we found a consistent correlation with Ssnox1(involved with pathogenicity) and oxalate levels. This same observation was also noted with Sssod1. Thus, fungal enzymes involved in oxidative stress tolerance,when inactivated, also exhibit reduced OA levels. We have also shown that protein phosphatases (specifically PP2A and PTP1) are involved in morphogenesis and pathogenesis of S. sclerotiorum, demonstrating the regulatory role of these key proteins in the mentioned processes. While probing the redox environment and host-pathogen interactions we determined that oxalic acid is an elicitor of plant programmed cell death during S. sclerotiorum disease development and that oxalic acid suppresses host defense via manipulation of the host redox environment. During the course of this project we also contributed to the progress of understanding S. sclerotiorum function and the manipulation of this fungus by establishing an efficient gene replacement and direct hyphal transformation protocols in S. sclerotiorum. Lastly, both PIs were involved in thegenomic analysis of this necrotrophic fungal pathogen (along with Botrytis cinerea). Our results have been published in 11 papers (including joint papers and refereed reviews) and have set the basis for a continuum towards a better understanding and eventual control of this important pathogen (with implications to other fungal-host systems as well).
APA, Harvard, Vancouver, ISO, and other styles
4

Madaev, I. M., N. A. Kurashova, N. V. Semenova, E. B. Ukhinov, S. I. Kolesnikov, and L. I. Kolesnikova. Heat shock protein HSP70 for oxidative stress in patients with apnea. Federal State Budgetary Institution Scientific Center, 2020. http://dx.doi.org/10.18411/1695-2608-2020-62730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McHugh, Colleen A., Ralph F. Tammariello, Charles B. Millard, and John H. Carra. Improved Stability of a Protein Vaccine Through Elimination of a Partially Unfolded State. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada428734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ohad, Itzhak, and Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, December 1995. http://dx.doi.org/10.32747/1995.7613031.bard.

Full text
Abstract:
The aim of this research project was to obtain information on the role of the cytochrome b559 in the function of Photosystem-II (PSII) with special emphasis on the light induced photo inactivation of PSII and turnover of the photochemical reaction center II protein subunit RCII-D1. The major goals of this project were: 1) Isolation and sequencing of the Chlamydomonas chloroplast psbE and psbF genes encoding the cytochrome b559 a and b subunits respectively; 2) Generation of site directed mutants and testing the effect of such mutation on the function of PSII under various light conditions; 3) To obtain further information on the mechanism of the light induced degradation and replacement of the PSII core proteins. This information shall serve as a basis for the understanding of the role of the cytochrome b559 in the process of photoinhibition and recovery of photosynthetic activity as well as during low light induced turnover of the D1 protein. Unlike in other organisms in which the psbE and psbF genes encoding the a and b subunits of cytochrome b559, are part of an operon which also includes the psbL and psbJ genes, in Chlamydomonas these genes are transcribed from different regions of the chloroplast chromosome. The charge distribution of the derived amino-acid sequences of psbE and psbF gene products differs from that of the corresponding genes in other organisms as far as the rule of "positive charge in" is concerned relative to the process of the polypeptide insertion in the thylakoid membrane. However, the sum of the charges of both subunits corresponds to the above rule possibly indicating co-insertion of both subunits in the process of cytochrome b559 assembly. A plasmid designed for the introduction of site-specific mutations into the psbF gene of C. reinhardtii. was constructed. The vector consists of a DNA fragment from the chromosome of C. reinhardtii which spans the region of the psbF gene, upstream of which the spectinomycin-resistance-conferring aadA cassette was inserted. This vector was successfully used to transform wild type C. reinhardtii cells. The spectinomycin resistant strain thus obtained can grow autotrophically and does not show significant changes as compared to the wild-type strain in PSII activity. The following mutations have been introduced in the psbF gene: H23M; H23Y; W19L and W19. The replacement of H23 involved in the heme binding to M and Y was meant to permit heme binding but eventually alter some or all of the electron transport properties of the mutated cytochrome. Tryptophane W19, a strictly conserved residue, is proximal to the heme and may interact with the tetrapyrole ring. Therefore its replacement may effect the heme properties. A change to tyrosine may have a lesser affect on the potential or electron transfer rate while a replacement of W19 by leucine is meant to introduce a more prominent disturbance in these parameters. Two of the mutants, FW19L and FH23M have segregated already and are homoplasmic. The rest are still grown under selection conditions until complete segregation will be obtained. All mutants contain assembled and functional PSII exhibiting an increased sensitivity of PSII to the light. Work is still in progress for the detailed characterization of the mutants PSII properties. A tobacco mutant, S6, obtained by Maliga and coworkers harboring the F26S mutation in the b subunit was made available to us and was characterized. Measurements of PSII charge separation and recombination, polypeptide content and electron flow indicates that this mutation indeed results in light sensitivity. Presently further work is in progress in the detailed characterization of the properties of all the above mutants. Information was obtained demonstrating that photoinactivation of PSII in vivo initiates a series of progressive changes in the properties of RCII which result in an irreversible modification of the RCII-D1 protein leading to its degradation and replacement. The cleavage process of the modified RCII-D1 protein is regulated by the occupancy of the QB site of RCII by plastoquinone. Newly synthesized D1 protein is not accumulated in a stable form unless integrated in reassembled RCII. Thus the degradation of the irreversibly modified RCII-D1 protein is essential for the recovery process. The light induced degradation of the RCII-D1 protein is rapid in mutants lacking the pD1 processing protease such as in the LF-1 mutant of the unicellular alga Scenedesmus obliquus. In this case the Mn binding site of PSII is abolished, the water oxidation process is inhibited and harmful cation radicals are formed following light induced electron flow in PSII. In such mutants photo-inactivation of PSII is rapid, it is not protected by ligands binding at the QB site and the degradation of the inactivated RCII-D1 occurs rapidly also in the dark. Furthermore the degraded D1 protein can be replaced in the dark in absence of light driven redox controlled reactions. The replacement of the RCII-D1 protein involves the de novo synthesis of the precursor protein, pD1, and its processing at the C-terminus end by an unknown processing protease. In the frame of this work, a gene previously isolated and sequenced by Dr. Pakrasi's group has been identified as encoding the RCII-pD1 C-terminus processing protease in the cyanobacterium Synechocystis sp. PCC 6803. The deduced sequence of the ctpA protein shows significant similarity to the bovine, human and insect interphotoreceptor retinoid-binding proteins. Results obtained using C. reinhardtii cells exposes to low light or series of single turnover light flashes have been also obtained indicating that the process of RCII-D1 protein turnover under non-photoinactivating conditions (low light) may be related to charge recombination in RCII due to back electron flow from the semiquinone QB- to the oxidised S2,3 states of the Mn cluster involved in the water oxidation process.
APA, Harvard, Vancouver, ISO, and other styles
7

Droby, Samir, Michael Wisniewski, Ron Porat, and Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7594390.bard.

Full text
Abstract:
To elucidate the role of ROS in the tri-trophic interactions in postharvest biocontrol systems a detailed molecular and biochemical investigation was undertaken. The application of the yeast biocontrol agent Metschnikowia fructicola, microarray analysis was performed on grapefruit surface wounds using an Affymetrix Citrus GeneChip. the data indicated that 1007 putative unigenes showed significant expression changes following wounding and yeast application relative to wounded controls. The expression of the genes encoding Respiratory burst oxidase (Rbo), mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK), G-proteins, chitinase (CHI), phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and 4-coumarate-CoA ligase (4CL). In contrast, three genes, peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), were down-regulated in grapefruit peel tissue treated with yeast cells. The yeast antagonists, Metschnikowia fructicola (strain 277) and Candida oleophila (strain 182) generate relatively high levels of super oxide anion (O2−) following its interaction with wounded fruit surface. Using laser scanning confocal microscopy we observed that the application of M. fructicola and C. oleophila into citrus and apple fruit wounds correlated with an increase in H2O2 accumulation in host tissue. The present data, together with our earlier discovery of the importance of H₂O₂ production in the defense response of citrus flavedo to postharvest pathogens, indicate that the yeast-induced oxidative response in fruit exocarp may be associated with the ability of specific yeast species to serve as biocontrol agents for the management of postharvest diseases. Effect of ROS on yeast cells was also studied. Pretreatment of the yeast, Candida oleophila, with 5 mM H₂O₂ for 30 min (sublethal) increased yeast tolerance to subsequent lethal levels of oxidative stress (50 mM H₂O₂), high temperature (40 °C), and low pH (pH 4). Suppression subtractive hybridization analysis was used to identify genes expressed in yeast in response to sublethal oxidative stress. Transcript levels were confirmed using semi quantitative reverse transcription-PCR. Seven antioxidant genes were up regulated. Pretreatment of the yeast antagonist Candida oleophila with glycine betaine (GB) increases oxidative stress tolerance in the microenvironment of apple wounds. ROS production is greater when yeast antagonists used as biocontrol agents are applied in the wounds. Compared to untreated control yeast cells, GB-treated cells recovered from the oxidative stress environment of apple wounds exhibited less accumulation of ROS and lower levels of oxidative damage to cellular proteins and lipids. Additionally, GB-treated yeast exhibited greater biocontrol activity against Penicillium expansum and Botrytis cinerea, and faster growth in wounds of apple fruits compared to untreated yeast. The expression of major antioxidant genes, including peroxisomal catalase, peroxiredoxin TSA1, and glutathione peroxidase was elevated in the yeast by GB treatment. A mild heat shock (HS) pretreatment (30 min at 40 1C) improved the tolerance of M. fructicola to subsequent high temperature (45 1C, 20–30 min) and oxidative stress (0.4 mol-¹) hydrogen peroxide, 20–60 min). HS-treated yeast cells showed less accumulation of reactive oxygen species (ROS) than non-treated cells in response to both stresses. Additionally, HS-treated yeast exhibited significantly greater (P≥0.0001) biocontrol activity against Penicillium expansum and a significantly faster (Po0.0001) growth rate in wounds of apple fruits stored at 25 1C compared with the performance of untreated yeast cells. Transcription of a trehalose-6-phosphate synthase gene (TPS1) was up regulated in response to HS and trehalose content also increased.
APA, Harvard, Vancouver, ISO, and other styles
8

Brice, Jeremy. Investment, power and protein in sub-Saharan Africa. Edited by Tara Garnett. TABLE, October 2022. http://dx.doi.org/10.56661/d8817170.

Full text
Abstract:
The place of protein in sub-Saharan Africa’s food system is changing rapidly, raising complex international development, global health and environmental sustainability issues. Despite substantial growth in the region’s livestock agriculture sector, protein consumption per capita remains low, and high levels of undernourishment persist. Meanwhile sub-Saharan Africa’s population is growing and urbanising rapidly, creating expectations that demand for protein will increase rapidly over the coming decades and triggering calls for further investment in the expansion and intensification of the region’s meat and dairy sector. However, growing disquiet over the environmental impacts of further expansion in livestock numbers, and growing sales of alternative protein products in the Global North, has raised questions about the future place of plant-based, insect and lab-grown proteins in African diets and food systems. This report examines financial investment in protein production in sub-Saharan Africa. It begins from the position that investors play an important role in shaping the development of diets and food systems because they are able to mobilise the financial resources required to develop new protein products, infrastructures and value chains, or to prevent their development by withholding investment. It therefore investigates which actors are financing the production in sub-Saharan Africa of: a) animal proteins such as meat, fish, eggs and dairy products; b) ‘protein crops’ such as beans, pulses and legumes; and c) processed ‘alternative proteins’ derived from plants, insects, microbes or animal cells grown in a tissue culture. Through analysing investment by state, philanthropic and private sector organisations – as well as multilateral financial institutions such as development banks – it aims to establish which protein sources and stages of the value chain are financed by different groups of investors and to explore the values and goals which shape their investment decisions. To this end, the report examines four questions: 1. Who is currently investing in protein production in sub-Saharan Africa? 2. What goals do these investors aim to achieve (or what sort of future do they seek to bring about) through making these investments? 3. Which protein sources and protein production systems do they finance? 4. What theory of change links their investment strategy to these goals? In addressing these questions, this report explores what sorts of protein production and provisioning systems different investor groups might be helping to bring into being in sub-Saharan Africa. It also considers what alternative possibilities might be marginalised due to a lack of investment. It thus seeks to understand whose priorities, preferences and visions for the future of food might be informing the changing place of protein in the region’s diets, economies and food systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Avni, Adi, and Gitta L. Coaker. Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600030.bard.

Full text
Abstract:
Maximizing food production with minimal negative effects on the environment remains a long-term challenge for sustainable food production. Microbial pathogens cause devastating diseases, minimizing crop losses by controlling plant diseases can contribute significantly to this goal. All plants possess an innate immune system that is activated after recognition of microbial-derived molecules. The fungal protein Eix induces defense responses in tomato and tobacco. Plants recognize Eix through a leucine-rich-repeat receptor- like-protein (LRR-RLP) termed LeEix. Despite the knowledge obtained from studies on tomato, relatively little is known about signaling initiated by RLP-type immune receptors. The focus of this grant proposal is to generate a foundational understanding of how the tomato xylanase receptor LeEix2 signals to confer defense responses. LeEix2 recognition results in pattern triggered immunity (PTI). The grant has two main aims: (1) Isolate the LeEix2 protein complex in an active and resting state; (2) Examine the biological function of the identified proteins in relation to LeEix2 signaling upon perception of the xylanase elicitor Eix. We used two separate approaches to isolate receptor interacting proteins. Transgenic tomato plants expressing LeEix2 fused to the GFP tag were used to identify complex components at a resting and activated state. LeEix2 complexes were purified by mass spectrometry and associated proteins identified by mass spectrometry. We identified novel proteins that interact with LeEix receptor by proteomics analysis. We identified two dynamin related proteins (DRPs), a coiled coil – nucleotide binding site leucine rich repeat (SlNRC4a) protein. In the second approach we used the split ubiquitin yeast two hybrid (Y2H) screen system to identified receptor-like protein kinase At5g24010-like (SlRLK-like) (Solyc01g094920.2.1) as an interactor of LeEIX2. We examined the role of SlNRC4a in plant immunity. Co-immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR-mediated responses. SlNRC4a overexpression enhances defense responses while silencing SlNRC4 reduces plant immunity. We propose that SlNRC4a acts as a non-canonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perception. SlDRP2A localizes at the plasma membrane. Overexpression of SlDRP2A increases the sub-population of LeEIX2 inVHAa1 endosomes, and enhances LeEIX2- and FLS2-mediated defense. The effect of SlDRP2A on induction of plant immunity highlights the importance of endomembrane components and endocytosis in signal propagation during plant immune . The interaction of LeEIX2 with SlRLK-like was verified using co- immunoprecipitation and a bimolecular fluorescence complementation assay. The defence responses induced by EIX were markedly reduced when SlRLK-like was over-expressed, and mutation of slrlk-likeusing CRISPR/Cas9 increased EIX- induced ethylene production and SlACSgene expression in tomato. Co-expression of SlRLK-like with different RLPs and RLKs led to their degradation, apparently through an endoplasmic reticulum-associated degradation process. We provided new knowledge and expertise relevant to expression of specific be exploited to enhance immunity in crops enabling the development of novel environmentally friendly disease control strategies.
APA, Harvard, Vancouver, ISO, and other styles
10

Horwitz, Benjamin, and Barbara Gillian Turgeon. Secondary Metabolites, Stress, and Signaling: Roles and Regulation of Peptides Produced by Non-ribosomal Peptide Synthetases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696522.bard.

Full text
Abstract:
Fungal pathogens of plants produce a diverse array of small molecules. Often referred to as secondary metabolites because they were thought to be dispensable for basic functions, they may indeed have central roles as signals for the fungal cell, and in interactions with the host. We have identified more than a dozen genes encoding nonribosomal peptide synthetases (NPS) in Cochliobolusheterostrophus, the agent of southern corn leaf blight. The aim of this project was to identify roles of these genes in stress responses and signaling. The first objective was to test a complete collection of C. heterostrophus nonribosomal peptide synthetase (NRPS)-encoding gene deletion mutant and wildtype (WT) strains for sensitivity to various agents of oxidative (ROS) and nitrosative (RNOS) stress, in vitro. The second objective and next step in this part of the project was to study the relevance of sensitivity to ROS and RNOS in the host pathogen interaction, by measuring the production of ROS and RNOS in planta, when plants are inoculated with wild type and mutant strains. A third objective was to study expression of any genes shown to be involved in sensitivity to ROS or RNOS, in vitro and in planta. Another objective was to determine if any of the genes involved in oxidative or nitrosative stress responses are regulated by components of signal transduction pathways (STP) that we have identified and to determine where mechanisms overlap. Study of the collection of nps mutants identified phenotypes relevant for virulence, development and oxidative stress resistance for two of the genes, NPS2 and NPS6. Mutants in genes related to RNOS stress have no virulence phenotypes, while some of those related to ROS stress have reduced virulence as well as developmental phenotypes, so we focused primarily on ROS stress pathways. Furthermore, the identification of NPS2 and NPS6 as encoding for NRPS responsible for siderophore biosynthesis lent a new focus to the project, regulation by Fe. We have not yet developed good methods to image ROS in planta and work in this direction is continuing. We found that NPS6 expression is repressed by Fe, responding over the physiological Fe concentration range. Studying our collection of mutants, we found that conserved MAPK and G protein signal transduction pathways are dispensable for Fe regulation of NPS6, and initiated work to identify other pathways. The transcription factor SreA is one candidate, and is responsible for part, but not all, of the control of NPS6 expression. The results of this project show that the pathogen contends with oxidative stress through several signaling pathways. Loss of the siderophore produced by Nps6 makes the fungus sensitive to oxidative stress, and decreases virulence, suggesting a central role of the ability to sequester and take up extracellular iron in the host-pathogen interaction. Siderophores, and manipulation of Fe levels, could be targets for new strategies to deal with fungal pathogens of maize and other plants.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography