Academic literature on the topic 'Oxidative arylation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oxidative arylation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Oxidative arylation":

1

Zhou, Yao, Ya Wang, Zhiyi Song, Tamaki Nakano, and Qiuling Song. "Cu-catalyzed C–N bond cleavage of 3-aminoindazoles for the C–H arylation of enamines." Organic Chemistry Frontiers 7, no. 1 (2020): 25–29. http://dx.doi.org/10.1039/c9qo01177c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wei, Xiao-Hong, Gang-Wei Wang, and Shang-Dong Yang. "Enantioselective synthesis of arylglycine derivatives by direct C–H oxidative cross-coupling." Chemical Communications 51, no. 5 (2015): 832–35. http://dx.doi.org/10.1039/c4cc07361d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A new method for the synthesis of chiral α-amino acid derivatives by enantioselective C–H arylation of N-aryl glycine esters with aryl boric acids by direct C–H oxidative cross-coupling has been performed. This work successfully integrates the direct C–H oxidation with asymmetric arylation and exhibits excellent enantioselectivity.
3

Park, Soo J., Jason R. Price, and Matthew H. Todd. "Oxidative Arylation of Isochroman." Journal of Organic Chemistry 77, no. 2 (December 29, 2011): 949–55. http://dx.doi.org/10.1021/jo2021373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Congjun, and Frederic W. Patureau. "Regioselective Oxidative Arylation of Fluorophenols." Angewandte Chemie International Edition 58, no. 51 (October 31, 2019): 18530–34. http://dx.doi.org/10.1002/anie.201910352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, Keisham. "Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts." Catalysts 9, no. 2 (February 12, 2019): 173. http://dx.doi.org/10.3390/catal9020173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The past decades have witnessed rapid development in organic synthesis via catalysis, particularly the reactions through C–H bond functionalization. Transition metals such as Pd, Rh and Ru constitute a crucial catalyst in these C–H bond functionalization reactions. This process is highly attractive not only because it saves reaction time and reduces waste,but also, more importantly, it allows the reaction to be performed in a highly region specific manner. Indeed, several organic compounds could be readily accessed via C–H bond functionalization with transition metals. In the recent past, tremendous progress has been made on C–H bond functionalization via ruthenium catalysis, including less expensive but more stable ruthenium(II) catalysts. The ruthenium-catalysed C–H bond functionalization, viz. arylation, alkenylation, annulation, oxygenation, and halogenation involving C–C, C–O, C–N, and C–X bond forming reactions, has been described and presented in numerous reviews. This review discusses the recent development of C–H bond functionalization with various ruthenium-based catalysts. The first section of the review presents arylation reactions covering arylation directed by N–Heteroaryl groups, oxidative arylation, dehydrative arylation and arylation involving decarboxylative and sp3-C–H bond functionalization. Subsequently, the ruthenium-catalysed alkenylation, alkylation, allylation including oxidative alkenylation and meta-selective C–H bond alkylation has been presented. Finally, the oxidative annulation of various arenes with alkynes involving C–H/O–H or C–H/N–H bond cleavage reactions has been discussed.
6

Hata, Kazuhiro, Hideto Ito, Yasutomo Segawa, and Kenichiro Itami. "Pyridylidene ligand facilitates gold-catalyzed oxidative C–H arylation of heterocycles." Beilstein Journal of Organic Chemistry 11 (December 28, 2015): 2737–46. http://dx.doi.org/10.3762/bjoc.11.295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Triaryl-2-pyridylidene effectively facilitates the gold-catalyzed oxidative C–H arylation of heteroarenes with arylsilanes as a unique electron-donating ligand on gold. The employment of the 2-pyridylidene ligand, which is one of the strongest electron-donating N-heterocyclic carbenes, resulted in the rate acceleration of the C–H arylation reaction of heterocycles over conventional ligands such as triphenylphosphine and a classical N-heterocyclic carbene. In situ observation and isolation of the 2-pyridylidene-gold(III) species, as well as a DFT study, indicated unusual stability of gold(III) species stabilized by strong electron donation from the 2-pyridylidene ligand. Thus, the gold(I)-to-gold(III) oxidation process is thought to be facilitated by the highly electron-donating 2-pyridylidene ligand.
7

Chen, Wei W., Nahiane Pipaon Fernández, Marta Díaz Baranda, Anton Cunillera, Laura G. Rodríguez, Alexandr Shafir, and Ana B. Cuenca. "Exploring benzylic gem-C(sp3)–boron–silicon and boron–tin centers as a synthetic platform." Chemical Science 12, no. 31 (2021): 10514–21. http://dx.doi.org/10.1039/d1sc01741a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This work explores divergent reactivity of the benzylic gem-boron–silicon and boron–tin double nucleophiles, including the arylation of the C–B bond with Ar–Cl, along with a complementary oxidative λ3-iodane-guided arylation of the C–Si/Sn moiety.
8

Ho, Nga Kim T., Beate Neumann, Hans-Georg Stammler, Vitor H. Menezes da Silva, Daniel G. Watanabe, Ataualpa A. C. Braga, and Rajendra S. Ghadwal. "Nickel-catalysed direct C2-arylation of N-heterocyclic carbenes." Dalton Transactions 46, no. 36 (2017): 12027–31. http://dx.doi.org/10.1039/c7dt03099a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Direct C2-arylation of NHCs to C2-arylated imidazolium salts (III) is achieved using Ni-catalysis. The dinuclear Ni(i) species I undergoes oxidative addition with ArX to give the Ni(ii) intermediate II. Reductive elimination delivers the arylation product III and regenerates the catalyst I.
9

Chen, Kai, Xin Li, Shuo-Qing Zhang, and Bing-Feng Shi. "Palladium-catalyzed C(sp3)–H arylation of lactic acid: efficient synthesis of chiral β-aryl-α-hydroxy acids." Organic Chemistry Frontiers 3, no. 2 (2016): 204–8. http://dx.doi.org/10.1039/c5qo00319a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Querard, Pierre, Inna Perepichka, Eli Zysman-Colman, and Chao-Jun Li. "Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst." Beilstein Journal of Organic Chemistry 12 (December 6, 2016): 2636–43. http://dx.doi.org/10.3762/bjoc.12.260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This report describes a highly enantioselective oxidative sp3 C–H arylation of N-aryltetrahydroisoquinolines (THIQs) through a dual catalysis platform. The combination of the photoredox catalyst, [Ir(ppy)2(dtbbpy)]PF6, and chiral copper catalysts provide a mild and highly effective sp3 C–H asymmetric arylation of THIQs.

Dissertations / Theses on the topic "Oxidative arylation":

1

Persson, Andreas K. Å. "Palladium(II)-Catalyzed Oxidative Cyclization Strategies : Selective Formation of New C-C and C-N Bonds." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-75435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The main focus of this thesis has been directed towards preparation and oxidative carbocyclization of en-, dien- and aza-enallenes. In the first part of this thesis, a stereoselective oxidative carbocyclization of dienallenes was realized. By employing cheap and readily available palladium trifluoroacetate we were able to efficiently cyclize a variety of dienallenes into hydroxylated carbocycles in high yield and high selectivity. This oxidative process was compatible with two different reoxidation protocols: one relying on p-benzoquinone (BQ) as the oxidant and the other employing molecular oxygen as the oxidant. In the second part of the thesis the carbocyclization methodology was extended to include carbocyclization of aza-enallenes. This was achieved in two distinct steps. First, a copper-catalyzed coupling of allylic sulfonamides with bromoallenes was developed, giving access to the corresponding aza-enallenes. Subjecting these substrates to catalytic amounts of palladium acetate, along with BQ as the oxidant, rendered N-heterocycles in good yield. The reactivity of these N-heterocycles towards activated dienophiles was later exploited in a tandem (aerobic) oxidative carbocyclization/Diels-Alder reaction. The third topic involves efficient oxidative arylative/borylative carbocyclization of enallenes. These reactions, catalyzed by palladium acetate, relies on transmetallation of a (σ-alkyl)palladium(II) intermediate with diboranes or arylboronic acids. With this novel methodology we were able to obtain an array of arylated or borylated carbocycles, as single diastereomers, in high yield. Finally, we developed a palladium(II)-catalyzed cyclization of allylic carbamates. This mild, operationally simple, and scalable catalytic reaction opens up access to an array of oxazolidinones in high yield and excellent diastereoselectivity.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.

2

Jiang, Tuo. "Palladium(II)-Catalyzed Oxidative Carbocyclization : Stereoselective Formation of C–C and C–B Bonds." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-108669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Transition metal catalysis has emerged as one of the most versatile methods for the selective formation of carbon–carbon and carbon–heteroatom bonds. In particular, oxidative carbon–carbon bond forming reactions have been widely studied due to their atom economic feature. This thesis has been focused on the development of new palladium(II)-catalyzed carbocyclization reactions under oxidative conditions. The first part of the thesis describes the palladium(II)-catalyzed oxidative carbocyclization-borylation and -arylation of enallenes. In these reactions, the (σ-alkyl)palladium(II) intermediate, which was shown previously to undergo β-hydride elimination, could be trapped in situ by organoboron reagents (B2pin2 and arylboronic acids) to form new carbon–boron and carbon–carbon bonds. Through these two protocols, a range of borylated and arylated carbocycles were obtained as single diastereomers in high yields. The second part deals with a palladium(II)-catalyzed oxidative diarylative carbocyclization of enynes. The reaction was proposed to start with a syn-arylpalladation of an alkyne, followed by insertion of the coordinated alkene. Subsequent arylation afforded a series of valuable diarylated tetrahydrofuran and tetrahydropyran products. The final part of the thesis advances the previously developed palladium(II)-catalyzed oxidative carbocyclization-borylation of enallenes in an enantioselective manner. C2-symmetric chiral phosphoric acids were used as the novel co-catalyst to trigger the enantioselective formation of intramolecular carbon–carbon bonds. By using this chiral anion strategy, a number of enallenes were converted to the borylated carbocycles with high to excellent enantioselectivity.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

3

Zeineddine, Abdallah. "Harnessing the reactivity of gold via ligand design : stabilization of reactive intermediates and development of new Au(I)/Au(III) catalytic pathways." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30308/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ce travail de thèse porte sur la chimie organométallique des complexes d'or(I) et sur l'étude de leurs réactivités. Plus particulièrement, le travail présenté ici dans ce manuscrit avait pour objectif d'approfondir nos connaissances sur l'impact des ligands utilisés sur la réactivité de l'or vis-à-vis (i) de l'addition oxydante intermoléculaire et (ii) la possibilité de stabiliser des intermédiaires d'or(I) hautement réactifs. Dans la première partie de ce manuscrit, l'addition oxydante intermoléculaire des halogénures d'aryle (iodure et bromure) à des complexes moléculaires d'or(I) a été étudiée en détails. Nous avons pu montrer que cette étape élémentaire de la chimie organométallique, considéré comme impossible avec l'or, était en fait un processus favorable lorsqu'un ligand adéquat est employé, et deux stratégies différentes ont été élaborées. La première consiste à utiliser un ligand bis-phosphine bidenté qui impose une géométrie coudée autour de l'or, tandis que la deuxième stratégie implique l'utilisation d'un ligand hémi-labile bidenté avec des groupements donneurs doux et dur. Les deux stratégies ont été fructueuses, et les complexes d'or(III) issus des réactions d'addition oxydante ont été caractérisés spectroscopiquement et structuralement. Dans la deuxième partie, ayant à notre disposition deux complexes d'or(I) capable d'effectuer l'addition oxydante, nous voulions aller au-delà de cette étape élémentaire. Dans cet objectif, nous avons construit un nouveau cycle catalytique Au(I)/Au(III) impliquant une séquence d'addition oxydante Csp2-X, de Csp2-H auration et d'élimination réductrice, illustrant le premier exemple d'arylation directe d'arènes avec des halogénures d'aryle catalysée à l'or. Enfin, dans la dernière partie, nous avons tenté de stabiliser et de caractériser des intermédiaires d'or(I) très instables, comme le a-oxo carbène d'or(I). Cette espèce hautement électrophile est proposée comme un intermédiaire clés dans des nombreuses transformations catalytiques, mais n'a jamais été isolé ou caractérisé (en solution ou à l'état solide). L'utilisation d'un ligand bis-phosphine bidenté nous a permis de caractériser spectroscopiquement et structuralement le carbène a-oxo d'or(I) pour la première fois. Nous avons ensuite étudié sa réactivité vis-à-vis des réactions d'insertion et de cyclopropanation
The present work is an organometallic study concerning the chemistry of gold(I) complexes and their reactivity. Of particular interest was to gain further knowledge on the impact of the ligands employed on the reactivity of gold towards (i) the intermolecular oxidative addition of aryl halides and (ii) the possibility of stabilizing high reactive gold(I) intermediates. In the first part of the manuscript, the intermolecular oxidative addition of aryl halides (iodide and bromide) with molecular gold(I) complexes was investigated in detail. We showed that this organometallic elementary step, usually considered to be impossible for gold, is actually a favorable process when an adequate ligand is employed and two different strategies have been elaborated. The first one consists in the use of a bis-phosphine bidentate ligand that forces a bent geometry around gold, whereas the second strategy implicates the use of a hemi-labile bidentate ligand bearing a soft and a hard donor group. Both strategies were found fruitful, and the gold(III) complexes stemming from oxidative addition reactions were characterized by spectroscopic and structural means. In the second part, having in hands two gold(I) complexes that undergo the oxidative addition reaction, we wanted to go beyond this elementary step. In that objective, we constructed a new Au(I)/Au(III) catalytic cycle involving a sequence of Csp2-X oxidative addition, Csp2-H auration and reductive elimination, allowing the first example of gold-catalyzed direct arylation of arenes with aryl halides. Finally, in the last part, we attempted to stabilize and characterize high reactive gold(I) intermediates, like the a-oxo gold(I) carbenes. This electrophilic species is proposed in many catalytic transformations as key intermediates, but has never been isolated or characterized (in solution or in solid state). The use of a bidentate diphosphine ligand allowed the characterization of the a-oxo gold(I) carbene for the first time by means of multinuclear NMR spectroscopy, X-ray diffraction analysis and high resolution mass spectroscopy (ESI+). We then investigated the reactivity of the a-oxo gold(I) carbene towards insertion and cyclopropanation reactions. Interestingly, the reactivity of the generated gold(I) carbenes can be modulated depending on the electronic properties of the aryl ethyl diazoacetate used
4

Nassiri, Sarah. "Fonctionnalisations régiosélectives de N-oxyde de pyrazolopyridines via des réactions de C-H activation pallado-catalysées." Electronic Thesis or Diss., Orléans, 2024. https://theses.univ-orleans.fr/prive/accesESR/2024ORLE1007_va.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les réactions de C-H activation représentent aujourd’hui une approche attrayante pour l’élaboration de nouveaux systèmes hétérocycliques pouvant avoir des applications dans divers domaines notamment en biologie et en pharmacie. L’objectif de cette thèse est le développement de nouvelles stratégies permettant de fonctionnaliser sélectivement des hétérocycles azotés par des réactions de C-H activation au moyen de la catalyse à base de métaux de transition.Dans la première partie, nous avons mis au point une méthodologie de synthèse, permettant la fonctionnalisation régiosélective en ortho de la fonction N-oxyde des dérivés de 7-azaindazole par une réaction d’arylation oxydative, en utilisant divers arènes et hétéroarènes comme partenaires de couplage. Cette stratégie permet de contrôler la position de la fonctionnalisation, en utilisant des conditions réactionnelles optimisées, ce qui est essentiel pour la conception de nouveaux composésavec des propriétés améliorées quelque soit les domaines d'application.Dans la deuxième partie, nous avons réalisé une série d'expériences visant à effectuer une alcénylationoxydative régiosélective sur le cycle pyridinique des 4-azaindazoles et 7-azaindazoles, en utilisant la fonction N-oxyde comme groupe ortho-directeur, permettant ainsi de contrôler la position de la fonctionnalisation.Dans la dernière partie, une réaction d'arylation directe sur divers analogues du noyau 7-azaindazolea été étudiée. L’utilisation de la fonction N-oxyde associé à l’optimisation des conditions réactionnelles a permis une régiosélectivité de la réaction vers la position C6
The activation of C-H bonds has emerged as an attractive approach for advancing the synthesis of novel heterocyclic systems with potential applications across diverse fields, particularly in biology and pharmacy.The primary aim of this PhD thesis was to develop innovative strategies for the selective functionalization of nitrogen-containing heterocycles through C-H activation reactions, employing transition metal catalysis.In the first part, we developed a synthesis methodology enabling the regioselective functionalization at the ortho position of the N-oxide function in 7-azaindazole derivatives. The reaction goes through anoxidative arylation reaction, with various arenes and heteroarenes as coupling partners. This approachenables precise control over the position of functionalization through optimized reaction conditions, which is crucial to design new compounds with enhanced properties whatever the domains of application.In the second part of our research, we conducted a series of experiments to perform a regioselectiveoxidative alkenylation on the pyridine moiety of 4-azaindazole and 7-azaindazole. Using the N-oxidefunction as an ortho directing group allowed us to exert control over the position of functionalization.In the last part, we presented our work aimed at establishing optimal conditions for a direct arylation reaction on various 7-azaindazole analogues. The use of the N-oxide function favoured the regioselectivity of the reaction towards the C6 position
5

Jalalian, Nazli. "Development and Applications of Hypervalent Iodine Compounds : Powerful Arylation and Oxidation Reagents." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-75810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The first part of this thesis describes the efficient synthesis of several hypervalent iodine(III) compounds. Electron-rich diaryliodonium salts have been synthesized in a one-pot procedure, employing mCPBA as the oxidant. Both symmetric and unsymmetric diaryliodonium tosylates can be isolated in high yields. An in situ anion exchange also enables the synthesis of previously unobtainable diaryliodonium triflates. A large-scale protocol for the synthesis of a derivative of Koser’s reagent, that is an isolable intermediate in the diaryliodonium tosylate synthesis, is furthermore described. The large-scale synthesis is performed in neat TFE, which can be recovered and recycled. This is very desirable from an environmental point of view. One of the few described syntheses of enantiopure diaryliodonium salts is discussed. Three different enantiopure diaryliodonium salts bearing electron-rich substituents are synthesized in moderate to high yields. The synthesis of these three salts shows the challenge in the preparation of electron-rich substituted unsymmetric salts. The second part of the thesis describes the application of both symmetric and unsymmetric diaryliodonium salts in organic synthesis. A metal-free efficient and fast method for the synthesis of diaryl ethers from diaryliodonium salts has been developed. The substrate scope is wide as both the phenol and the diaryliodonium salt can be varied. Products such as halogenated ethers, ortho-substituted ethers and bulky ethers, that are difficult to obtain with metal-catalyzed procedures, are readily prepared. The mild protocol allows arylation of racemization-prone a-amino acid derivatives without loss of enantiomeric excess. A chemoselectivity investigation was conducted, in which unsymmetric diaryliodonium salts were employed in the arylation of three different nucleophiles in order to understand the different factors that influence which aryl moiety that is transferred to the nucleophile.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted. Paper 5: Submitted. Paper 6: Manuscript.

6

Blons, Charlie. "Complexes organométalliques d'or(III) et de cuivre(III) et leur réactivité vis-à-vis des substrats π." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30248/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse porte sur la synthèse de composés d'Au(III) et de Cu(III) ainsi que sur l'étude de leur stabilité et de leur réactivité vis-à-vis de substrats p. Une approche conjointe expérimentale et théorique a été exploitée afin d'accéder à des complexes capables d'induire des processus d'insertion migratoire. Le premier chapitre aborde de manière globale la chimie organométallique de l'or et du cuivre sur le plan bibliographique. L'importance du degré d'oxydation +III est mis en évidence par la description des principaux exemples ayant contribué à la compréhension des processus associés à l'accès et la réactivité des complexes d'Au(III) et de Cu(III). Le second chapitre traite de la synthèse de deux complexes p-arènes d'Au(III) par insertion migratoire d'oléfines dans la liaison Au-C(sp)2 d'un composé (P,C) cyclométallé. Les interactions entre les systèmes aromatiques et l'or ont été mises en évidence par RMN, DFT et DRX pour un des complexes. Sur la base de cette réactivité, un processus d'arylation directe de l'éthylène a été mis en évidence. Le chapitre trois a pour objet la mise au point d'une réaction d'hydroarylation intermoléculaire d'alcynes catalysée par des complexes de type [(P,C)Au(III)(OAcF)2]. Ces derniers se sont avérés très actifs et robustes en présence d'acide trifluoroacétique. La réaction a pu être généralisée à un large panel de substrats et une étude comparative, notamment avec des complexes (N,C) cyclométallés, a mis en évidence la supériorité des complexes (P,C) pour l'hydroarylation des alcynes. Le quatrième chapitre expose la stratégie envisagée pour le développer d'un processus d'oligomérisation de l'éthylène catalysé par le cuivre. Une approche prédictive basée sur les calculs DFT a permis de mettre en évidence des insertions migratoires plus aisées dans les liaisons Cu(III)-C que dans les Cu(I)-C. Deux stratégies d'accès aux complexes de Cu(III) par addition oxydante de liaisons C-I sur des précurseurs de Cu(I) ont été évaluées théoriquement. Les calculs les plus favorables ont orienté le choix des modèles de ligands envisagés dans les chapitres cinq et six. Le cinquième chapitre aborde l'étude expérimentale associée à la première stratégie d'accès au Cu(III) : l'addition oxydante intramoléculaire dirigée par des ligands naphthylphosphine et naphthylamine peri-iodées. [...]
The present work deals with the synthesis of Au(III) and Cu(III) compounds and the study of their stability and reactivity toward p substrates. An experimental and theoretical approach has been used in order to access complexes capable of undergoing migratory insertion processes. The first chapter delivers a bibliographic overview of the organometallic chemistry of gold and copper. The importance of the high oxidation state +III is highlighted by the description of important examples having contributed to the understanding of processes associated to the access and reactivity of Au(III) and Cu(III) complexes. The second chapter describes the synthesis of two p-arene Au(III) complexes by migratory insertion of olefins in the Au-C(sp)2 bond of a (P,C) cyclometallated complex. Interactions between the metallic center and the aromatic systems have been characterized by NMR, DFT and XRD for one of the complexes. Based on this insertion reactivity, a process of direct arylation of ethylene has been evidenced. The third chapter concerns the development of an intermolecular hydroarylation of alkynes process, catalyzed by [(P,C)Au(III)(OAcF)2] complexes. These have shown great activity and robustness in presence of trifluoroacetic acid. The reaction has been generalized to a broad substrate scope and a comparative study has been carried on, especially with (N,C) cyclometallated complexes, showing the superiority of (P,C) complexes for the hydroarylation of alkynes. The fourth chapter presents the envisioned strategy to develop a copper-catalyzed oligomerization of ethylene process. A predictive approach based on DFT calculations permitted to evidence easier migratory insertions in the Cu(III)-C bond than in the Cu(I)-C bond. Two strategies for the access to Cu(III) species have been theoretically evaluated. The most favourable calculations have oriented the choice of ligand models used in chapters five and six. The fifth chapter deals with the experimental study related to the first strategy of access to Cu(III) species: the directed intramolecular oxidative addition by peri-iodo napthylphosphine and naphthylamine ligands. [...]
7

Sawalha, Ansam Feras. "Species susceptibility to nephrotoxicity by hydroquinone and hydroquinone-glutathione conjugates : role of oxidation, specific cytochrome P450 isoforms, and tissue arylation /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Batail, Nelly. "La catalyse au palladium pour l'obtention d'indoles fonctionnalisés : application à une synthèse monotope d'indoloquinones par catalyse hétérogène." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00713118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Depuis le début des années 1990, l'hétéroannélation de Larock est apparue comme une méthode de choix pour obtenir, en une seule étape, des indoles 2,3-disubstitués. Cependant, bien qu'efficace, certains inconvénients restaient associés à cette stratégie comme l'utilisation d'un système catalytique homogène associé à l'emploi de sels. Pour cette raison, nous avons développé une nouvelle méthodologie sans sels ou additifs par catalyse hétérogène. Différents catalyseurs commerciaux ou faciles d'accès (Pd/C ou [Pd]/NaY) ainsi que de nouveaux complexes au palladium immobilisés sur SBA-15 ont été testés. De façon surprenante, ces nouvelles conditions ont permis une activation de 2-bromoanilines et ce, sans l'emploi d'additifs. Une autre méthode d'obtention de ces hétérocycles a émergé ces dernières années et se pose comme une alternative aux couplages traditionnels : l'arylation d'indoles. Malgré de nombreuses améliorations, aucun travail ne décrivait une procédure permettant une arylation complémentaire C2 ou C3 d'indoles libres avec un système catalytique unique. Nous avons développé un tel système, basé sur une pallado-catalyse dans l'eau. Cette stratégie permet d'atteindre des sélectivités C2/C3 ou C3/C2 élevées avec de bons rendements isolés par un simple contrôle du couple {base/halogénure d'aryle}.Enfin, dans le cadre de nos travaux visant la synthèse par catalyse hétérogène de produits à haute valeur ajoutée, nous avons initié des études sur l'obtention de pyrroloiminoquinones. La méthode consistant en une catalyse hétérogène monotope en seulement deux grandes étapes devrait permettre un accès rapide à de nombreux dérivés bioactifs isolés d'organismes marins.

Book chapters on the topic "Oxidative arylation":

1

Thomas, R. D. "By Oxidative Arylation off Ln(I) Halides by Arylmercurials." In Inorganic Reactions and Methods, 196. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145241.ch79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hopkinson, M. N., and V. Gouverneur. "Oxidative Arylation with Arylsilanes Using Selectfluor." In Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au), 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-103-00065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hopkinson, M. N., and V. Gouverneur. "Oxidative Arylation with Arylboronic Acids Using Selectfluor." In Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au), 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-103-00061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taber, Douglass F. "Functionalization and Homologation of Alkenes." In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Masahito Ochiai developed (Org. Highlights, March 24, 2008) the iodosobenzene-mediated cleavage of alkenes to keto aldehydes. Thottumkara K. Vinod of Western Illinois University described (Org. Lett. 2010, 12, 5640) a modified protocol that delivered the keto acid 2. Chi-Ming Che of the University of Hong Kong established (J. Am. Chem. Soc. 2010, 132, 13229) a method for the preparative scale Fe-catalyzed cis dihydroxylation of an alkene 3. Ilhyong Ryu of Osaka Prefecture University devised (Synlett 2010, 2014) a practical procedure for the free radical addition of HBr to an alkene 5. Tetsuo Ohta of Doshisha University showed (Tetrahedron Lett. 2010, 51, 2806) that a Ru catalyst could add an aromatic acid to the internal carbon of a terminal alkene 7. Noriki Kutsumura and Takao Saito of the Tokyo University of Science found (Org. Lett. 2010, 12, 3316) conditions for bromination/dehydrobromination to convert 10 to 11. Tsuyoshi Taniguchi of Kanazawa University oxidized (J. Org. Chem. 2010, 75, 8126) the alkene 12 to the nitro alkene 13. Professor Taniguchi added (Angew. Chem. Int. Ed. 2010, 49, 10154) methyl carbazate to 14 to give the β-hydroxy ester 15. Philippe Renaud of the University of Bern effected (J. Am. Chem. Soc. 2010, 132, 17511) the free radical homologation of 16 to the azide 18. Daniel P. Becker of Loyola University described (Tetrahedron Lett. 2010, 51, 3514) the elegant diastereoselective Pd-catalyzed bis-methoxycarbonylation of 19 to the diester 20. Matthew S. Sigman of the University of Utah established (J. Am. Chem. Soc. 2010, 132, 13981) the oxidative Heck arylation of 21 to 23. F. Dean Toste of the University of California, Berkeley, found (Org. Lett. 2010, 12, 4728) that the intermediate in the gold-catalyzed alkoxylation of 24 could couple to an aryl silane 25 to give 26. Chun-Yu Ho of the Chinese University of Hong Kong used (Angew. Chem. Int. Ed. 2010, 49, 9182) a Ni catalyst to add styrene 27 to the alkene 24. Masahiro Miura of Osaka University effected (J. Org. Chem. 2010, 75, 5421) the oxidative coupling of 29 with styrene 27 to give the linear product 30.
5

Seibel, Zara M., and Tristan H. Lambert. "Construction of Alkylated Stereocenters." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Hirohisa Ohmiya and Masaya Sawamura at Hokkaido University reported (Angew. Chem. Int. Ed. 2013, 52, 5350) the copper-catalyzed, γ-selective allylation of terminal alkyne 1 to produce the chiral skipped enyne 3 with high ee. A method to synthe­size asymmetric skipped diene 6 via copper-catalyzed allylic allylation of diene 4 was developed (Chem. Commun. 2013, 49, 3309) by Ben L. Feringa at the University of Groningen. Prof. Feringa also disclosed (J. Am. Chem. Soc. 2013, 135, 2140) the regi­oselective and enantioselective allyl–allyl coupling of bromide 7 with allyl Grignard under Cu catalysis in the presence of phosphoramidite 8. James P. Morken of Boston College reported (Org. Lett. 2013, 15, 1432) the cross-coupling of allylboronate 11 with a mixture of alkenes 10a,b under palladium catalysis to produce diene 13 with high ee. Jian Liao at the Chengdu Institute of Biology Chinese Academy of Sciences and the University of Chinese Academy of Sciences reported (Angew. Chem. Int. Ed. 2013, 52, 4207) the palladium-catalyzed allylic alkylation of indole using the chi­ral bis(sulfoxide) phosphine ligand 15. Yi-Xia Jia at the Zhejiang University of Technology reported (J. Am. Chem. Soc. 2013, 135, 2983) the enantioselective alkyl­ation of indole to produce the trifluoromethyl adduct 19 using nickel catalysis in the presence of bisoxazoline ligand 18. Sarah E. Reisman at the California Institute of Technology disclosed (J. Am. Chem. Soc. 2013, 135, 7442) the reductive cross-coupling of acid chloride 20 and benzyl chloride 21 using a nickel complex with bisoxazoline ligand 22 and manganese(0) as reductant. Ilan Marek at the Technion-Israel Institute of Technology reported (Angew. Chem. Int. Ed. 2013, 52, 5333) a method for the construction of all-carbon quaternary stereocenters, such as the one present in aldehyde 25, using a diastereoselective car­bometallation of cyclopropene 24 followed by oxidation and ring opening. Switching from methyl Grignard and copper iodide to MeCuCNLi reverses the diastereoselec­tivity of the carbometallation and allows access to the opposite enantiomer. Matthew S. Sigman at the University of Utah reported (J. Am. Chem. Soc. 2013, 135, 6830) the redox–relay oxidative Heck arylation of alkenyl alcohol 27 with boronic acid 26 using a palladium catalyst and pyridine oxazole ligand 28 to produce the γ-substituted aldehyde 29.
6

Taber, Douglass F. "Selective Functionalization of C–H Bonds." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Jianhui Huang and Kang Zhao of Tianjin University devised (Chem. Commun. 2013, 49, 1211) a protocol for the oxidation of a terminal alkene 1 to the valuable four-carbon synthon 2. M. Christina White of the University of Illinois effected (J. Am. Chem. Soc. 2013, 135, 7831) the oxidation of the terminal alkene 3 to the enone 4. Miquel Costas of the Universitat de Girona developed (J. Org. Chem. 2013, 78, 1421; Chem. Eur. J. 2013, 19, 1908) a family of Fe catalysts for the oxidation of methylenes to ketones. Depending on the catalyst, any of the three ketones from the oxidation of 5, including 6, could be made the dominant product. Yumei Xiao and Zhaohai Qin of China Agricultural University optimized (Synthesis 2013, 45, 615) the Co-catalyzed oxidation of the methyl group of 7 to give the aldehyde 8. Thanh Binh Nguyen of CNRS Gif-sur-Yvette established (J. Am. Chem. Soc. 2013, 135, 118) a protocol (not illustrated) for the oxidation of methyl groups on heteroaromatics. Shunsuke Chiba of Nanyang Technological University cyclized (Org. Lett. 2013, 15, 212, 3214) the amidine 9 to 10, and the hydrazone 11 to 12. These cyclizations proceeded by sequential C–H abstraction followed by recombination, and so were racemizing. In contrast, the conversion of 13 to 14, developed (Science 2013, 340, 591) by Theodore A. Betley of Harvard University, proceeded with substantial reten­tion of absolute configuration. Tsutomu Katsuki of Kyushu University designed (Angew. Chem. Int. Ed. 2013, 52, 1739) a Ru catalyst that was selective for the allylic position of the E-alkene 15 to give 16. Amination was highly regioselective, and proceeded with excellent ee. Ilhyong Ryu of Osaka Prefecture University and Maurizio Fagnoni of the University of Pavia reported (Org. Lett. 2013, 15, 2554) the direct carbonylation of 17 to the amide 18. David W. C. MacMillan of Princeton University devised (Science 2013, 339, 1593) a protocol for the β- arylation of an aldehyde 19 to give 20. Directed palladation of distal C–H bonds continues to be developed. Srinivasarao Arulananda Babu of the Indian Institute of Science Education and Research effected (Org. Lett. 2013, 15, 3238) diastereoselective arylation of the cyclopropane 21 with 22 to give 23.
7

Taber, Douglass F. "C–H Functionalization: The Ono/Kato/Dairi Synthesis of Fusiocca-1,10(14)-diene-3,8β,16-triol." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Theodore A. Betley of Harvard University devised (J. Am. Chem. Soc. 2011, 133, 4917) an iron catalyst for inserting the nitrene from 2 into the C–H of 1 to give 3. Bernhard Breit of the Freiburg Institute for Advanced Studies uncovered (J. Am. Chem. Soc. 2011, 133, 2386) a Rh catalyst that effected the intriguing hydration of a terminal alkyne 4 to the allylic ester 5. Yian Shi of Colorado State University specifically oxidized (Org. Lett. 2011, 13, 1548) one of the two allylic sites of 6 to give 7. Kálmán J. Szabó of Stockholm University optimized (J. Org. Chem. 2011, 76, 1503) the allylic oxidation of 9 to 10, using the inexpensive sodium perborate. Masayuki Inoue of the University of Tokyo specifically carbamoylated (Tetrahedron Lett. 2011, 52, 2885) the acetonide 12 to give 14. Stephen Caddick of University College London added (Tetrahedron Lett. 2011, 52, 1067) the formyl radical from 15 to 16 to give 17. Ilhyong Ryu of Osaka Prefecture University and Maurizio Fagnoni of the University of Pavia employed (Angew. Chem. Int. Ed. 2011, 50, 1869) a related strategy to effect the net transformation of 18 to 20. There are many examples of the oxidation of ethers and amines to reactive intermediates that can go on to carbon–carbon bond formation. Ram A. Vishwakarma of the Indian Institute of Integrative Medicine observed (Chem. Commun. 2011, 47, 5852) that with an iron catalyst, the aryl Grignard 22 smoothly coupled with THF 21 to give 23. Gong Chen of Pennsylvania State University effected (Angew. Chem. Int. Ed. 2011, 50, 5192) specific remote C–H arylation of 24, leading to 26. Takahiko Akiyama of Gakushuin University established (J. Am. Chem. Soc. 2011, 133, 2424) conditions for intramolecular hydride abstraction, effecting the conversion of 27 to 28. C–H functionalization in nature is often mediated by cytochrome P450 oxidation. Zhi Li of the National University of Singapore showed (Chem. Commun. 2011, 47, 3284) that a particular cytochrome P450 selectively oxidized 29 to the alcohol 30, leaving the chemically more reactive benzylic position intact.
8

Taber, Douglass F. "C–H Functionalization: The Shaw Synthesis of E-δ-Viniferin." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thomas Lectka of Johns Hopkins University reported (J. Org. Chem. 2014, 79, 8895) a simple protocol for free radical monofluorination, exemplified by the conversion of 1 to 2. Michael K. Hilinski of the University of Virginia used (Org. Lett. 2014, 16, 6504) a catalytic amount of the ketone 4 to mediate the oxidation of 3 to 5. Oxidation of 3 with DMDO gave the regioisomeric tertiary alcohol (not illustrated). Jeung Gon Kim and Sukbok Chang of KAIST used (Chem. Commun. 2014, 50, 12073) an Ir catalyst to convert 6 selectively to the primary sulfonamide 7. Paul J. Chirik of Princeton University employed (J. Am. Chem. Soc. 2014, 136, 12108) a Co catalyst to effect the migration of the internal alkene of 8 to the terminal alkene, that then underwent dehydrogenative silylation with 9 to deliver the allyl silane 10. Jiang Cheng of Changzhou University developed (J. Org. Chem. 2014, 79, 9847) conditions for the aminoalkylation of cyclohexane 11 with 12 to give 13. Ilhyong Ryu of Osaka Prefecture University and Maurizio Fagnoni of the University of Pavia observed (Chem. Sci. 2014, 5, 2893) high selectivity in the addition of 14 to 15. Of the five possible regioisomers, 16 dominated. In another light-mediated transformation, Shin Kamijo of Yamaguchi University and Masayuki Inoue of the University of Tokyo added (Chem. Sci. 2014, 5, 4339) 17 to 18 to give 19. Huw M. L. Davies of Emory University established (J. Am. Chem. Soc. 2014, 136, 17718) conditions for the enantioselective alkylation of a methyl ether 21 with 20 to give the ester 22. Selective methyl insertion was observed even with much more complex substrates. The trichloroethyl ester was critical for this transformation. James A. Bull of Imperial College London effected (Org. Lett. 2014, 16, 4956) selec­tive cis-arylation of the proline-derived amide 23 with 24 to give 25. E. Peter Kündig of the University of Geneva coupled (Chem. Eur. J. 2014, 20, 15021) the amine 27 with 26, then cyclized that product to the indoline 28. The enantiomeric Pd cata­lyst delivered the regioisomeric C–H insertion product.
9

Lambert, Tristan H. "Flow Chemistry." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Although photocatalytic chemistry has been the subject of intense interest recently, the rate of these reactions is often slow due to the limited penetration of light into typical reaction media. Peter H. Seeberger at the Max-Planck Institute for Colloids and Surfaces in Potsdam and the Free University of Berlin showed (Chem. Sci. 2012, 3, 1612) that Ru(bpy)32+-catalyzed reactions such as the reduction of azide 1 to 2 can be achieved in as little as 1 min residence time using continuous flow, as opposed to the 2 h batch reaction time previously reported. The benefits of flow on a number of strategic photocatalytic reactions, including the coupling of 3 and 4 to produce 5, was also demonstrated (Angew. Chem. Int. Ed. 2012, 51, 4144) by Corey R.J. Stephenson at Boston University and Timothy F. Jamison at MIT. In this case, a reaction throughput of 0.914 mmol/h compares favorably with 0.327 mmol/h for the batch reaction. Professor Seeberger has also reported (Angew. Chem. Int. Ed. 2012, 51, 1706) a continuous-flow synthesis of Artemisinin 7, a highly effective antimalarial drug, starting from dihydroartemisinic acid 6. The conversion occurs by a sequence of photochemical oxidation with singlet oxygen, acidic Hock cleavage of the O–O bond, and oxidation with triplet oxygen, a process calculated to be capable of furnishing up to 200 g/day per reactor. A scalable intramolecular [2 + 2] photocycloaddition of 8 to produce 9 was reported (Tetrahedron Lett. 2012, 53, 1363) by Matthias Nettekoven of Hoffmann-La Roche in Basel, Switzerland. Stephen L. Buchwald at MIT developed (Angew. Chem. Int. Ed. 2012, 51, 5355) a flow process for the enantioselective β-arylation of ketones that involved lithiation of aryl bromide 10, borylation, and rhodium-catalyzed conjugate addition to cycloheptenone. For continuous flow production of enantioenriched alcohols such as 14, Miquel A. Pericás of the Institute of Chemical Research of Catalonia developed (Org. Lett. 2012, 14, 1816) the robust polystyrene-supported aminoalcohol 13 for diethylzinc addition to aldehydes. Professor Jamison found (Org. Lett. 2012, 14, 568) that flow chemistry provides a convenient and reliable solution to the reduction of esters to aldehydes with DIBALH (e.g., 15 to 16) that occurs rapidly and without the usual problem of overreduction.
10

Taber, Douglass F. "C–H Functionalization: The Snyder Synthesis of (+)-Scholarisine A." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thomas R. Hoye of the University of Minnesota devised (Nature 2013, 501, 531) the reagent 2, that cyclized to a benzyne that in turn dehydrogenated the alkane 1 to the alkene 3, and 4. Abigail G. Doyle of Princeton University developed (J. Am. Chem. Soc. 2013, 135, 12990) a reagent combination for the allylic fluorination of a terminal alkene 5 to the branched product 6. Yan Zhang and Jianbo Wang of Peking University oxidized (Angew. Chem. Int. Ed. 2013, 52, 10573) the methyl group of 7 to give the nitrile 8. Hanmin Huang of the Lanzhou Institute of Chemical Physics found (Org. Lett. 2013, 15, 3370) conditions for the carbonylation of the benzylic site of 9, leading to coupling with 10 to form the amide 11. Yu Rao of Tsinghua University effected (Angew. Chem. Int. Ed. 2013, 52, 13606) the direct methoxylation of 12, to give 13. Pd-mediated methoxylation had previously been described (Chem. Sci. 2013, 4, 4187) by Bing-Feng Shi of Zhejiang University. M. Christina White of the University of Illinois, Urbana found (J. Am. Chem. Soc. 2013, 135, 14052) that with variant ligands on the Fe catalyst, the oxidation of 14 could be directed selectively to either 15 or 16. C–H bonds can also be converted to C–N bonds. Sukbok Chang of KAIST oxi­dized (J. Am. Chem. Soc. 2013, 135, 12861) the unsaturated ester 17 with 18 to form the enamide 18. Gong Chen of Pennsylvania State University cyclized (Angew. Chem. Int. Ed. 2013, 52, 11124) the amide 20 to the γ-lactam 21. Professor Shi reported (Angew. Chem. Int. Ed. 2013, 52, 13588) a related approach to β-lactams. Ethers are easily oxidized. Taking advantage of this, Yun Liang of Hunan Normal University coupled (Synthesis 2013, 45, 3137) the bromoalkyne 23 with tetrahydro­furan 22 to give 24. Guangbin Dong of the University of Texas, Austin devised (J. Am. Chem. Soc. 2013, 135, 17747) a protocol for the β-arylation of ketones, includ­ing the preparation of 27 by the coupling of 25 with 26.

To the bibliography