Academic literature on the topic 'Out-of-equilibrium quantum systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Out-of-equilibrium quantum systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Out-of-equilibrium quantum systems"

1

Eisert, J., M. Friesdorf, and C. Gogolin. "Quantum many-body systems out of equilibrium." Nature Physics 11, no. 2 (February 2015): 124–30. http://dx.doi.org/10.1038/nphys3215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garrido, Pedro L., Pablo Hurtado, Daniel Manzano, and Francisco de los Santos. "Quantum systems in and out of equilibrium." European Physical Journal Special Topics 227, no. 3-4 (September 2018): 201–2. http://dx.doi.org/10.1140/epjst/e2018-800100-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brunelli, M., A. Xuereb, A. Ferraro, G. De Chiara, N. Kiesel, and M. Paternostro. "Out-of-equilibrium thermodynamics of quantum optomechanical systems." New Journal of Physics 17, no. 3 (March 31, 2015): 035016. http://dx.doi.org/10.1088/1367-2630/17/3/035016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maisel, Lucas, and Rosa López. "Effective Equilibrium in Out-of-Equilibrium Interacting Coupled Nanoconductors." Entropy 22, no. 1 (December 19, 2019): 8. http://dx.doi.org/10.3390/e22010008.

Full text
Abstract:
In the present work, we study a mesoscopic system consisting of a double quantum dot in which both quantum dots or artificial atoms are electrostatically coupled. Each dot is additionally tunnel coupled to two electronic reservoirs and driven far from equilibrium by external voltage differences. Our objective is to find configurations of these biases such that the current through one of the dots vanishes. In this situation, the validity of the fluctuation–dissipation theorem and Onsager’s reciprocity relations has been established. In our analysis, we employ a master equation formalism for a minimum model of four charge states, and limit ourselves to the sequential tunneling regime. We numerically study those configurations far from equilibrium for which we obtain a stalling current. In this scenario, we explicitly verify the fluctuation–dissipation theorem, as well as Onsager’s reciprocity relations, which are originally formulated for systems in which quantum transport takes place in the linear regime.
APA, Harvard, Vancouver, ISO, and other styles
5

Calabrese, Pasquale, Fabian H. L. Essler, and Giuseppe Mussardo. "Introduction to ‘Quantum Integrability in Out of Equilibrium Systems’." Journal of Statistical Mechanics: Theory and Experiment 2016, no. 6 (June 27, 2016): 064001. http://dx.doi.org/10.1088/1742-5468/2016/06/064001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cugliandolo, Leticia F. "Out-of-equilibrium dynamics of classical and quantum complex systems." Comptes Rendus Physique 14, no. 8 (October 2013): 685–99. http://dx.doi.org/10.1016/j.crhy.2013.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bandyopadhyay, Souvik, Sourav Bhattacharjee, and Diptiman Sen. "Driven quantum many-body systems and out-of-equilibrium topology." Journal of Physics: Condensed Matter 33, no. 39 (July 22, 2021): 393001. http://dx.doi.org/10.1088/1361-648x/ac1151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khatami, Ehsan, Guido Pupillo, Mark Srednicki, and Marcos Rigol. "Fluctuation-dissipation theorem in isolated quantum systems out of equilibrium." Journal of Physics: Conference Series 510 (May 15, 2014): 012035. http://dx.doi.org/10.1088/1742-6596/510/1/012035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Acevedo, O. L., L. Quiroga, F. J. Rodríguez, and N. F. Johnson. "Robust quantum correlations in out-of-equilibrium matter–light systems." New Journal of Physics 17, no. 9 (September 9, 2015): 093005. http://dx.doi.org/10.1088/1367-2630/17/9/093005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hubeny, Veronika E., and Mukund Rangamani. "A Holographic View on Physics out of Equilibrium." Advances in High Energy Physics 2010 (2010): 1–84. http://dx.doi.org/10.1155/2010/297916.

Full text
Abstract:
We review the recent developments in applying holographic methods to understand nonequilibrium physics in strongly coupled field theories. The emphasis will be on elucidating the relation between evolution of quantum field theories perturbed away from equilibrium and the dual picture of dynamics of classical fields in black hole backgrounds. In particular, we discuss the linear response regime, the hydrodynamic regime, and finally the nonlinear regime of interacting quantum systems. We also describe how the duality might be used to learn some salient aspects of black hole physics in terms of field theory observables.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Out-of-equilibrium quantum systems"

1

Kasztelan, Christian. "Strongly Interacting Quantum Systems out of Equilibrium." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-124827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GAMBETTA, FILIPPO MARIA. "Out-of-equilibrium dynamics of one-dimensional integrable quantum systems." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goihl, Marcel [Verfasser]. "Emergence of Thermodynamics For Quantum Systems Out Of Equilibrium / Marcel Goihl." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1203129017/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Friesdorf, Mathis [Verfasser]. "Closed quantum many-body systems out of equilibrium : A quantum information perspective / Mathis Friesdorf." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1099282829/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buchhold, Michael. "Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-181786.

Full text
Abstract:
Thermalization, the evolution of an interacting many-body system towards a thermal Gibbs ensemble after initialization in an arbitrary non-equilibrium state, is currently a phenomenon of great interest, both in theory and experiment. As the time evolution of a quantum system is unitary, the proposed mechanism of thermalization in quantum many-body systems corresponds to the so-called eigenstate thermalization hypothesis (ETH) and the typicality of eigenstates. Although this formally solves the contradiction of thermalizing but unitary dynamics in a closed quantum many-body system, it does neither make any statement on the dynamical process of thermalization itself nor in which way the coupling of the system to an environment can hinder or modify the relaxation dynamics. In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the presence of drive and dissipation, introduced by coupling the intra-cavity radiation field to the photon vacuum outside the cavity via lossy mirrors, the quantum glass state is modified in a universal manner. For frequencies below the photon loss rate, the dissipation takes over and the system shows the universal behavior of a dissipative spin glass, with a characteristic spectral density $\\mathcal{A}(\\omega)\\sim\\sqrt{\\omega}$. On the other hand, for frequencies above the loss rate, the system retains the universal behavior of a zero temperature, quantum spin glass. Remarkably, at the glass transition, the two subsystems of spins and photons thermalize to a joint effective temperature, even in the presence of photon loss. This thermalization is a consequence of the strong spin-photon interactions, which favor detailed balance in the system and detain photons from escaping the cavity. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description, which, due to its large degree of universality, is of intense theoretical and experimental interest. A set of recent experiments in research groups in Vienna, Innsbruck and Munich have probed the non-equilibrium time-evolution of one-dimensional quantum fluids for different experimental realizations and are pushing into a time regime, where thermalization is expected. From a theoretical point of view, one-dimensional quantum fluids are particular interesting, as Luttinger Liquids are integrable and therefore, due to an infinite number of constants of motion, do not thermalize. The leading order correction to the quadratic theory is irrelevant in the sense of the renormalization group and does therefore not modify static correlation functions, however, it breaks integrability and will therefore, even if irrelevant, induce a completely different non-equilibrium dynamics as the quadratic Luttinger theory alone. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermi\'s golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate $\\sigma^R=\\mbox\\Sigma^R$, determined by the self-energy at equilibrium. However, for long times $\\tau$, it also reveals the presence of dynamical slow modes, which are the consequence of exactly energy conserving dynamics and lead to an algebraic decay $\\sim\\tau^$ with $\\eta_D=0.58$. The presence of these dynamical slow modes is not contained in the equilibrium Matsubara formalism, while they emerge naturally in the non-equilibrium formalism developed in this thesis. In order to initialize a one-dimensional quantum fluid out of equilibrium, we consider an interaction quench in a model of interacting, dispersive fermions in Chap.~\\ref. In this scenario, the fermionic interaction is suddenly changed at time $t=0$, such that for $t>0$ the system is not in an eigenstate and therefore undergoes a non-trivial time evolution. For the quadratic theory, the stationary state in the limit $t\\rightarrow\\infty$ is a non-thermal, or prethermal, state, described by a generalized Gibbs ensemble (GGE). The GGE takes into account for the conservation of all integrals of motion, formed by the eigenmodes of the Hamiltonian. On the other hand, in the presence of non-linearities, the final state for $t\\rightarrow\\infty$ is a thermal state with a finite temperature $T>0$. . The spatio-temporal, dynamical thermalization process can be decomposed into three regimes: A prequench regime on the largest distances, which is determined by the initial state, a prethermal plateau for intermediate distances, which is determined by the metastable fixed point of the quadratic theory and a thermal region on the shortest distances. The latter spreads sub-ballistically $\\sim t^$ in space with $0<\\alpha<1$ depending on the quench. Until complete thermalization (i.e. for times $t<\\infty$), the thermal region contains more energy than the prethermal and prequench region, which is expressed in a larger temperature $T_{t}>T_$, decreasing towards its final value $T_$. As the system has achieved local detailed balance in the thermalized region, energy transport to the non-thermal region can only be performed by the macroscopic dynamical slow modes and the decay of the temperature $T_{t}-T_\\sim t^$ again witnesses the presence of these slow modes. The very slow spreading of thermalization is consistent with recent experiments performed in Vienna, which observe a metastable, prethermal state after a quench and only observe the onset of thermalization on much larger time scales. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. For this quench scenario, the step in the Fermi distribution at the Fermi momentum $k\\sub$ decays to zero algebraically in the absence of a non-linearity but as a stretched exponential (the exponent being proportional to the non-linearity) in the presence of a finite non-linearity. This can serve as a proof for the presence or absence of the non-linearity even on time-scales for which thermalization can not yet be observed. Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system\'s $U(1)$-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate $\\partial_tn_q\\sim\\gamma |q|$. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to $x_t\\sim t^{4/5}$. For larger distances, the system is described by an non-equilibrium phonon distribution $n_q\\sim |q|$, which leads to a new, non-equilibrium behavior of large distance observables. For instance, the phonon decay rate scales universally as $\\gamma_q\\sim |q|^{5/3}$, with a new non-equilibrium exponent $\\eta=5/3$, which differs from equilibrium. This new, universal behavior is guaranteed by the $U(1)$ invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, $\\eta=5/3$ and for the spreading of thermalization $\\eta_T=4/5$. Remarkably, even in the presence of this strong external drive, the interactions and their aim to achieve detailed balance are strong enough to establish a locally emerging and spatially spreading thermal region. The physical setups in this thesis do not only reveal interesting and new dynamical features in the out-of-equilibrium time evolution of interacting systems, but they also strongly underline the high degree of universality of thermalization for the classes of models studied here. May it be a system of coupled spins and photons, where the photons are pulled away from a thermal state by Markovian photon decay caused by a leaky cavity, a one-dimensional fermionic quantum fluid, which has been initialized in an out-of-equilibrium state by a quantum quench or a one-dimensional bosonic quantum fluid, which is driven away from equilibrium by continuous, external heating, all of these systems at the end establish a local thermal equilibrium, which spreads in space and leads to global thermalization for $t\\rightarrow\\infty$. This underpins the importance of thermalizing collisions and endorses the standard approach of equilibrium statistical mechanics, describing a physical system in its steady state by a thermal Gibbs ensemble.
APA, Harvard, Vancouver, ISO, and other styles
6

Henriet, Loïc. "Non-equilibrium dynamics of many body quantum systems." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX036/document.

Full text
Abstract:
Cette thèse porte sur l'étude de propriétés dynamiques de modèles quantiques portés hors équilibre. Nous introduisons en particulier des modèles généraux de type spin-boson, qui décrivent par exemple l'interaction lumière-matière ou certains phénomènes de dissipation. Nous contribuons au développement d'une approche stochastique exacte permettant de d'écrire la dynamique hors équilibre du spin dans ces modèles. Dans ce contexte, l'effet de l'environnement bosonique est pris en compte par l'intermédiaire des degrés de liberté stochastiques supplémentaires, dont les corrélations temporelles dépendent des propriétés spectrales de l'environnement bosonique. Nous appliquons cette approche à l'étude de phénomènes à N-corps, comme par exemple la transition de phase dissipative induite par un environnement bosonique de type ohmique. Des phénomènes de synchronisation spontanée, et de transition de phase topologique sont aussi identifiés. Des progrès sont aussi réalisés dans l'étude de la dynamique dans les réseaux de systèmes lumière-matière couplés. Ces développements théoriques sont motivés par les progrès expérimentaux récents, qui permettent d'envisager une étude approfondie de ces phénomènes. Cela inclut notamment les systèmes d'atomes ultra-froids, d'ions piégés, et les plateformes d'électrodynamique en cavité et en circuit. Nous intéressons aussi à la physique des systèmes hybrides comprenant des dispositifs à points quantiques mésoscopiques couplés à un résonateur électromagnétique. L'avènement de ces systèmes permet de mesures de la formation d'états à N-corps de type Kondo grâce au résonateur; et d'envisager des dispositifs thermoélectriques
This thesis deals with the study of dynamical properties of out-of-equilibrium quantum systems. We introduce in particular a general class of Spin-Boson models, which describe for example light-matter interaction or dissipative phenomena. We contribute to the development of a stochastic approach to describe the spin dynamics in these models. In this context, the effect of the bosonic environment is encapsulated into additional stochastic degrees of freedom whose time-correlations are determined by spectral properties of the bosonic environment. We use this approach to study many-body phenomena such as the dissipative quantum phase transition induced by an ohmic bosonic environment. Synchronization phenomena as well as dissipative topological transitions are identified. We also progress in the study of arrays of interacting light-matter systems. These theoretical developments follow recent experimental achievements, which could ensure a quantitative study of these phenomena. This notably includes ultra-cold atoms, trapped ions and cavity and circuit electrodynamics setups. We also investigate hybrid systems comprising electronic quantum dots coupled to electromagnetic resonators, which enable us to provide a spectroscopic analysis of many-body phenomena linked to the Kondo effect. We also introducethermoelectric applications in these devices
APA, Harvard, Vancouver, ISO, and other styles
7

Cevolani, Lorenzo. "Out-Of-Equilibrium Dynamics and Locality in Long-Range Many-Body Quantum Systems." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLO011/document.

Full text
Abstract:
Cette thèse présente une étude des propagations des corrélations dans les systèmes avec interaction de longue portée. La dynamique des observables locales ne peut pas être décrite avec les méthodes utilisées pour la physique statistique à l’équilibre et les approches complètement nouvelles doivent être développées. Différentes bornes sur l’évolution temporelle des corrélations ont été dérivées, mais la dynamique réelle trouvée dans des données expérimentales et numériques est beaucoup plus compliquée avec différents régimes de propagation. Une approche plus spécifique est donc nécessaire pour comprendre ces phénomènes. Nous présentons une méthode analytique pour décrire l’évolution temporelle d’observables génériques dans des systèmes décrits par des hamiltoniens quadratiques avec interactions de courte et longue portée. Grâce ces expressions, la propagation des observables peut être interprétée comme la propagation des excitations du système. Nous appliquons cette méthode générique à un modèle de spins et on obtient trois régimes différents. Ils peuvent être directement expliqués qualitativement et quantitativement par les divergences du spectre des excitations. Le résultat le plus important est le fait que la propagation, là où elle n’est pas instantanée, est au plus balistique, voir plus lente, alors les bornes permettent une propagation significativement plus rapide. On applique les mêmes expressions analytiques à un système de bosons sur un réseau avec interaction de longue et courte portée. Nous étudions les corrélations à deux corps qui ont un comportement toujours balistique et les corrélations à un corps qui ont un comportement plus riche. Cet effet peut être expliqué en calculant la contribution aux deux observables des différentes excitations qui déterminent les parties du spectre contribuant à l’observable. Ces résultats démontrent que la propagation des observables n’est pas déterminée uniquement par le spectre des excitations mais également par des quantités qui dépendent de l’observable et qui peuvent changer complètement le régime de propagation
In this thesis we present our results on the propagation of correlations in long-range interacting quantum systems. The dynamics of local observables in these systems cannot be described with the standard methods used in equilibrium statistical physics and completely new methods have to be developed. Several bounds on the time evolution of correlations have been derived for these systems. However the propagation found in experimental and numerical results is completely different and several regimes are present depending on the long-range character of the interactions. Here we present analytical expressions to describe the time evolution of generic observables in systems where the Hamiltonian takes a quadratic form with long- and short-range interactions. These expressions describe the spreading of local observables as the spreading of the fundamental excitations of the system. We apply these expressions to a spin model finding three different propagation regimes. They can be described qualitatively et quantitatively by the divergences in the energy spectrum. The most important result is that the propagation is at most ballistic, but it can be also significantly slower, where the general bounds predict a propagation faster than ballistic. This points out that the bounds are not able to describe properly the propagation, but a more specific approach is needed. We then move to a system of lattice bosons interacting via long-range interactions. In this case we study two different observables finding completely different results for the same interactions: the spreading of two-body correlations is always ballistic while the one of the one-body correlations ranges from faster-than-ballistic to ballistic. Using our general analytic expressions we find that different parts of the spectrum contribute differently to different observables determining the previous differences. This points out that an observable-dependent notion of locality, missing in the general bounds, have to be developed to correctly describe the time evolution
APA, Harvard, Vancouver, ISO, and other styles
8

Hild, Sebastian [Verfasser], and Immanuel [Akademischer Betreuer] Bloch. "Microscopy of quantum many-body systems out of equilibrium / Sebastian Hild ; Betreuer: Immanuel Bloch." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/111747416X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Minganti, Fabrizio. "Out-of-Equilibrium Phase Transitions in Nonlinear Optical Systems." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC004/document.

Full text
Abstract:
Dans cette thèse nous étudions théoriquement de systèmes dissipatifs pompés,décrits par une équation maîtresse de Lindblad. En particulier, nous adressons les problématiques liés à l’émergence de phénomènes critiques. Nous présentons une théorie générale reliant les transitions de phase du premier et deuxième ordres aux propriétés spectrales du superopérateur liouvillien. Dans la région critique, nous déterminons la forme générale de l’état stationnaire et de la matrice propre du liouvillien associée à son gap spectral. Nous discutons aussi l’utilisation de trajectoires quantiques individuelles afin de révéler l’apparition des transitions de phase. En ayant dérivé une théorie générale, nous étudions le modèle de Kerr en présence de pompage à un photon (cohérent) et à deux photons (paramétrique) ainsi que de dissipation. Nous explorons les propriétés dynamiques d’une transition de phase du premier ordre dans un modèle de Bose-Hubbard dissipatif et d’une de second ordre dans un modèle XYZ dissipatif d’Heisenberg. Enfin, nous avons considéré la physique des cavités soumises à de la dissipation à un et deux photons ainsi qu’un pompage à deux photons, obtenu par ingénierie de réservoirs. Nous avons démontré que l’état stationnaire unique est un mélange statistique de deux états chats de Schrödinger, malgré de fortes pertes à un photon.Nous proposons et étudions un protocole de rétroaction pour la génération d’états chat purs
In this thesis we theoretically study driven-dissipative nonlinear systems, whosedynamics is capture by a Lindblad master equation. In particular, we investigate theemergence of criticality in out-of-equilibrium dissipative systems. We present a generaland model-independent spectral theory relating first- and second-order dissipative phasetransitions to the spectral properties of the Liouvillian superoperator. In the critical region,we determine the general form of the steady-state density matrix and of the Liouvillianeigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We discuss the relevanceof individual quantum trajectories to unveil phase transitions. After these general results,we analyse the inset of criticality in several models. First, a nonlinear Kerr resonator in thepresence of both coherent (one-photon) and parametric (two-photon) driving and dissipation.We then explore the dynamical properties of the coherently-driven Bose-Hubbard and of thedissipative XYZ Heisenberg model presenting a first-order and a second-order dissipativephase transition, respectively. Finally, we investigate the physics of photonic Schrödingercat states in driven-dissipative resonators subject to engineered two-photon processes andone-photon losses. We propose and study a feedback protocol to generate a pure cat-likesteady state
APA, Harvard, Vancouver, ISO, and other styles
10

Leyton, Ortega Vicente Ancelmo [Verfasser], and Michael [Akademischer Betreuer] Thorwart. "Quantum noise in nonlinear nanoscale systems out of equilibrium / Vicente Ancelmo Leyton Ortega. Betreuer: Michael Thorwart." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/1030366446/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Out-of-equilibrium quantum systems"

1

Giamarchi, Thierry, Andrew J. Millis, Olivier Parcollet, Hubert Saleur, and Leticia F. Cugliandolo, eds. Strongly Interacting Quantum Systems out of Equilibrium. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198768166.001.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strongly Interacting Quantum Systems out of Equilibrium : Lecture Notes of the Les Houches Summer School: Volume 99, August 2012. Oxford University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Out-of-equilibrium quantum systems"

1

Langen, Tim. "Isolated Quantum Systems Out of Equilibrium." In Springer Theses, 67–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18564-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ashida, Yuto. "Out-of-Equilibrium Quantum Dynamics." In Quantum Many-Body Physics in Open Systems: Measurement and Strong Correlations, 87–143. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2580-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Balzer, Karsten, and Michael Bonitz. "Quantum Many-Particle Systems out of Equilibrium." In Nonequilibrium Green's Functions Approach to Inhomogeneous Systems, 3–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35082-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arrigoni, Enrico, and Antonius Dorda. "Master Equations Versus Keldysh Green’s Functions for Correlated Quantum Systems Out of Equilibrium." In Out-of-Equilibrium Physics of Correlated Electron Systems, 121–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94956-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nier, F., and M. Patel. "Nonlinear Asymptotics for Quantum Out-of-Equilibrium 1D Systems: Reduced Models and Algorithms." In Multiscale Methods in Quantum Mechanics, 99–111. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8202-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Altman, Ehud. "Nonequilibrium quantum dynamics in ultracold quantum gases." In Strongly Interacting Quantum Systems out of Equilibrium, 3–68. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198768166.003.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Špička, Václav, Bedřich Velický, and Anděla Kalvová. "Electron Systems Out of Equilibrium: Nonequilibrium Green's Function Approach." In Quantum Foundations and Open Quantum Systems, 83–192. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814616737_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andrei, Natan, Deepak Iyer, and Huijie Guan. "Quench dynamics in integrable systems." In Strongly Interacting Quantum Systems out of Equilibrium, 383–418. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198768166.003.0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paruch, Patrycja. "Ferroic domain walls as model disordered elastic systems." In Strongly Interacting Quantum Systems out of Equilibrium, 483–528. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198768166.003.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berges, Jürgen. "Nonequilibrium quantum fields: from cold atoms to cosmology." In Strongly Interacting Quantum Systems out of Equilibrium, 69–206. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198768166.003.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Out-of-equilibrium quantum systems"

1

von Spakovsky, Michael R., Charles E. Smith, and Vittorio Verda. "Quantum Thermodynamics for the Modeling of Hydrogen Storage on a Carbon Nanotube." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67424.

Full text
Abstract:
A typical approach for modeling systems at a nanoscale in states of non-equilibrium undergoing an irreversible process is to use an ad hoc mixture of molecular dynamics (linear and nonlinear), i.e. classical mechanics, coupled to assumptions of stable equilibrium which allow one via analogy to incorporate equilibrium thermodynamic state information such as temperature and pressure into the modeling process. However, such an approach cannot describe the actual thermodynamic evolution in state which occurs in these systems since the equation of motion used (Newton’s second law) can only describe the evolution in state from one mechanical state to another. To capture the actual thermodynamic evolution, a more general equation of motion is needed. Such an equation has been proposed, i.e. the Beretta equation of motion, as part of a general theory, which unifies (not simply bridges as is the case in statistical thermodynamics) quantum mechanics and thermodynamics. It is called the unified quantum theory of mechanics and thermodynamics or quantum thermodynamics. This equation, which strictly satisfies all of the implications of the laws of thermodynamics, including the second law, as well as of quantum mechanics, describes the thermodynamic evolution in state of a system in non-equilibrium regardless of whether or not the system is in a state far from or close to stable equilibrium. This theory and its dynamical postulate are used here to model the storage of hydrogen in an isolated box modeled in 1D and 2D with a carbon atom at one end of the box in 1D and a carbon nanotube in the middle of the box in 2D. The system is prepared in a state with the hydrogen molecules initially far from stable equilibrium, after which the system is allowed to relax (evolve) to a state of stable equilibrium. The so-called energy eigenvalue problem is used to determine the energy eigenlevels and eigenstates of the system, while the nonlinear Beretta equation of motion is used to determine the evolution of the thermodynamic state of the system as well as the spatial distributions of the hydrogen molecules in time. The results of our initial simulations show in detail the trajectory of the state of the system as the hydrogen molecules, which are initially arranged to be far from the carbon atom or the carbon nanotube, are seen to spread out in the container and eventually become more concentrated near the carbon atom or atoms.
APA, Harvard, Vancouver, ISO, and other styles
2

Saeta, P., R. J. Fischer, B. I. Greene, R. C. Spitzer, and B. A. Wilson. "Interlayer Transport of Photoexcited Electrons in Type II Gallium-Arsenide/Aluminum-Arsenide Multi-Quantum Well Structures." In Quantum Wells for Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qwoe.1989.mb3.

Full text
Abstract:
Optical pump-probe experiments on bulk GaAs and conventional type I GaAs/GaAlAs multi­quantum well structures (MQWS) have determined the time scales on which photoexcited carriers (1) attain thermal equilibrium among themselves, (2) scatter out of the zone-center Γ-valley to accessible X- or L-valleys, (3) relax their excess energy to the lattice, and (4) recombine.(1-3) In most cases, carrier thermalization (via carrier-carrier collisions) and intervalley scattering occur in less than 100 fs, lattice heating in picoseconds, and recombination in nanoseconds to microseconds and longer. In these direct gap systems, photoexcited electrons and holes remain in the same layer or region of the crystal. In type II structures, the highest valence band occurs in one layer and the lowest conduction band in the other; excited carriers spatially segregate, one carrier remaining in the narrower bandgap material, the other transferring to the lower energy states occurring in the adjacent layer. We have determined that in a type II GaAs/AIAs MQWS having 8 monolayers of GaAs alternating with 25 monolayers of AlAs photoexcited electrons transfer from the Γ-valley of the GaAs layers to the X-valley of adjacent AlAs layers within 100 fs.
APA, Harvard, Vancouver, ISO, and other styles
3

Anastopoulos, C., S. Shresta, and B. L. Hu. "Quantum Entanglement under Non-Markovian Dynamics of Two Qubits Interacting with a Common Electromagnetic Field*." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs2.

Full text
Abstract:
We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance r and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assumption, but no Born or Markov approximation. We derived a non-Markovian master equation for the evolution of the reduced density matrix of the two-qubit system after integrating out the electromagnetic field modes. It contains a Markovian part with a Lindblad type operator and a nonMarkovian contribution, the physics of which is the main focus of this study. We use the concurrence function as a measure of quantum entanglement between the two qubits. Two classes of states are studied in detail: Class A is a one parameter family of states which are the superposition of the highest energy |I〉 ≡ |11〉 and lowest energy |O〉 ≡ |00〉 states, υiz, |A〉≡p|I〉+(1−p)|O〉, with 0 ≤ p ≤ 1; and Class B states |B〉 are linear combinations of the symmetric |+〉=12(|01〉+|10〉) and the antisymmetric |−〉=12(|01〉−|10〉) Bell states.
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, S. "Theoretical Investigation of Ballistic Electron Transport in Au and Ag Nanoribbons." In Functional Materials and Applied Physics. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901878-5.

Full text
Abstract:
Abstract. We have systematically investigated the ballistic electron transport in gold and silver nanoribbons using first principle methods. The electronic structure calculation is carried out using the “density functional theory” (DFT) within the “SIESTA” code. While the electronic transport is studied using the “non-equilibrium Green’s function” (NEGF) method combined with the “Landauer-Buttiker” (LB) approach. We have explored the transport along both the armchair (AC) and zigzag (ZZ) directions. Interestingly, both elements turn semiconducting in the AC-configuration, and their band gap oscillates with increasing width of the nanoribbon. On the other hand, nanoribbons retain metallic character in the ZZ-configuration, with a quantized electrical conductance 4G0 for sufficiently small width and temperatures as high as nearly 200 K; G0=2e2/h, is the elementary quanta of electrical conductance. At zero bias, electronic thermal conductance in each system increases non-linearly with temperature. More is the width of nanoribbons, more is the electronic contribution to heat transport. Further, to assess the utility of nanoribbons in thermoelectric devices, we have calculated the room-temperature Seebeck coefficient S. It is found to evince an oscillatory structure as a function of electrochemical potential μ of electrodes, with pronounced peaks (nearly -118 μV/K in the narrowest gold nanoribbon considered) in the AC-configuration. The maximum S achieved is seen to be comparable to the atomic chains of these elements in linear, ladder and zigzag topologies, suggesting practical importance of nanoribbons as thermoelectric sensors in nanoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography