Academic literature on the topic 'Otway Basin (Vic and S A )'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Otway Basin (Vic and S A ).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Otway Basin (Vic and S A )"

1

Luxton, C. W., S. T. Horan, D. L. Pickavance, and M. S. Durham. "THE LA BELLA AND MINERVA GAS DISCOVERIES, OFFSHORE OTWAY BASIN." APPEA Journal 35, no. 1 (1995): 405. http://dx.doi.org/10.1071/aj94026.

Full text
Abstract:
In the past 100 years of hydrocarbon exploration in the Otway Basin more than 170 exploration wells have been drilled. Prior to 1993, success was limited to small onshore gas fields. In early 1993, the La Bella-1 and Minerva-1 wells discovered significant volumes of gas in Late Cretaceous sandstones within permits VIC/P30 and VIC/P31 in the offshore Otway Basin. They are the largest discoveries to date in the basin and have enabled new markets to be considered for Otway Basin gas. These discoveries were the culmination of a regional evaluation of the Otway Basin by BHP Petroleum which highlighted the prospectivity of VIC/P30 and VIC/P31. Key factors in this evaluation were:geochemical studies that indicated the presence of source rocks with the potential to generate both oil and gas;the development of a new reservoir/seal model; andimproved seismic data quality through reprocessing and new acquisition.La Bella-1 tested the southern fault block of a faulted anticlinal structure in the southeast corner of VIC/P30. Gas was discovered in two Late Cretaceous sandstone intervals of the Shipwreck Group (informal BHP Petroleum nomenclature). Reservoirs are of moderate to good quality and are sealed vertically, and by cross-fault seal, by Late Cretaceous claystones of the Sherbrook Group. The gas is believed to have been sourced from coals and shales of the Early Cretaceous Eumeralla Formation and the structure appears to be filled to spill as currently mapped. RFT samples recovered dry gas with 13 moI-% CO2 and minor amounts of condensate.Minerva-1 tested the northern fault block of a faulted anticline in the northwest corner of VIC/ P31. Gas was discovered in three excellent quality reservoir horizons within the Shipwreck Group. Late Cretaceous Shipwreck Group silty claystones provide vertical and cross-fault seal. The hydrocarbon source is similar to that for the La Bella accumulation and the structure appears to be filled to spill. A production test was carried out in the lower sand unit and flowed at a rig limited rate of 28.8 MMCFGD (0.81 Mm3/D) through a one-inch choke. The gas is composed mainly of methane, with minor amounts of condensate and 1.9 mol-% C02. Minerva-2A was drilled later in 1993 as an appraisal well to test the southern fault block of the structure to prove up sufficient reserves to pursue entry into developing gas markets. It encountered a similar reservoir unit of excellent quality, with a gas-water contact common with that of the northern block of the structure.The La Bella and Minerva gas discoveries have greatly enhanced the prospectivity of the offshore portion of the Otway Basin. The extension of known hydrocarbon accumulations from the onshore Port Campbell embayment to the La Bella-1 well location, 55 km offshore, demonstrates the potential of this portion of the basin.
APA, Harvard, Vancouver, ISO, and other styles
2

Cowley, R., and G. W. O'Brien. "IDENTIFICATION AND INTERPRETATION OF LEAKING HYDROCARBONS USING SEISMIC DATA:A COMPARATIVE MONTAGE OF EXAMPLES FROM THE MAJOR FIELDS IN AUSTRALIA'S NORTHWEST SHELF AND GIPPSLAND BASIN." APPEA Journal 40, no. 1 (2000): 119. http://dx.doi.org/10.1071/aj99008.

Full text
Abstract:
An extensive volume of 3D seismic data over a number of oil and gas fields in Australia's North West Shelf and Gippsland Basin has been examined for evidence of the effects of hydrocarbon migration and/or leakage. For comparative purposes, 2D and 3D data have also been studied over a number of adjacent traps, including dry traps and partially to completely breached accumulations. Fields and traps investigated include Bayu-Undan, Jabiru, Skua, Swift and Tahbilk in the Bonaparte Basin, Cornea in the Browse Basin, North Rankin, Chinook, Macedon, Enfield and Zeewulf in the Carnarvon Basin, and Kingfish in the Gippsland Basin. The principal goal of the study is to provide representative case studies from known fields so that, in undrilled regions, the exploration uncertainties associated with the issues of hydrocarbon charge and trap integrity might be reduced.Direct indicators of hydrocarbon migration and/or leakage are relatively rare throughout the basins studied, though the discoveries themselves characteristically show seismic anomalies attributable to hydrocarbon leakage. The nature and intensity of these hydrocarbon-related seismic effects do, however, vary dramatically between the fields. Over traps such as Skua, Swift, Tahbilk and Macedon, they are intense, whereas over others, for example Chinook and North Rankin, they are quite subtle. Hydrocarbon-related diagenetic zones (HRDZs), which had been identified previously above the reservoir zones of leaky traps within the Bonaparte Basin, have also been recognised within the Browse, Carnarvon, Otway and Gippsland Basins. HRDZs are the most common leakage indicators found and are identified easily via a combination of high seismic amplitudes through the affected zone, time pull-up and degraded stack response of underlying reflectors. In some cases (the Skua and Macedon Fields), the HRDZs actually define the extent of the accumulations at depth.Anomalous, subtle to strong, seismic amplitude anomalies are associated with the majority of the major fields within the Carnarvon Basin. The strength and location of the anomalies are related to a complex interplay between trap type (in particular four-way dip-closed versus fault dependent), top seal capacity, fault seal integrity, and charge history. In some areas within the Carnarvon, Browse and Bonaparte Basins, shallow amplitude anomalies can be related directly to gas chimneys emanating from the reservoir zone itself. In other instances, the continuous migration of gas from the reservoir has produced an assortment of pockmarks, mounds and amplitude anomalies on the present day sea floor, which all provide evidence of hydrocarbon seepage. In the Browse Basin, strong evidence has been found that many of the modern carbonate banks and reefs in the region were initially located over hydrocarbon seeps on the palaeo-seafloor.The examples and processes presented demonstrate that the analysis of hydrocarbon leakage indicators on seismic data can help to better understand exploration risk and locate subtle hydrocarbon accumulations. In mature exploration provinces, this methodology may lead to the identification of subtle accumulations previously left undetected by more conventional methods. In frontier regions, it can help to identify the presence of a viable petroleum system, typically the principal exploration uncertainty in undrilled regions.
APA, Harvard, Vancouver, ISO, and other styles
3

Arditto, P. A. "THE EASTERN OTWAY BASIN WANGERRIP GROUP REVISITED USING AN INTEGRATED SEQUENCE STRATIGRAPHIC METHODOLOGY." APPEA Journal 35, no. 1 (1995): 372. http://dx.doi.org/10.1071/aj94024.

Full text
Abstract:
Recent exploration by BHP Petroleum in VIC/ P30 and VIC/P31, within the eastern Otway Basin, has contributed significantly to our understanding of the depositional history of the Paleocene to Eocene siliciclastic Wangerrip Group. The original lithostratigraphic definition of this group was based on outcrop description and subsequently applied to onshore and, more recently, offshore wells significantly basinward of the type sections. This resulted in confusing individual well lithostratigraphies which hampered traditional methods of subsurface correlation.A re-evaluation of the Wangerrip Group stratigraphy is presented based on the integration of outcrop, wireline well log, palynological and reflection seismic data. The Wangerrip Group can be divided into two distinct units based on seismic and well log character. A lower Paleocene succession rests conformably on the underlying Maastrichtian and older Sherbrook Group, and is separated from an overlying Late Paleocene to Eocene succession by a significant regional unconformity. This upper unit displays a highly progradational seismic character and is named here as the Wangerrip Megasequence.Regional seismic and well log correlation diagrams are used to illustrate a subdivision of the Wangerrip Megasequence into eight third-order sequences. This sequence stratigraphic subdivision of the Wangerrip Group is then used to construct a chronostratigraphic chart for the succession within this part of the Otway Basin.
APA, Harvard, Vancouver, ISO, and other styles
4

Cliff, D. C. B., S. C. Tye, and R. Taylor. "THE THYLACINE AND GEOGRAPHE GAS DISCOVERIES, OFFSHORE EASTERN OTWAY BASIN." APPEA Journal 44, no. 1 (2004): 441. http://dx.doi.org/10.1071/aj03017.

Full text
Abstract:
The Thylacine and Geographe gas fields were discovered in mid-2001 in the offshore Otway Basin, in permits T/30P and VIC/P43 respectively. Geographe is 55 km south of Port Campbell and Thylacine is a further 15 km offshore, in the depo-centre of the Shipwreck Trough, in water depths of 80 m to 100 m. The Thylacine–1 well intersected a 277 m gas column in Turonian to Santonian aged reservoirs. Geographe–1 intersected a 233 m gas column in a similar sedimentary section. Thylacine–2, 5.7 km west of Thylacine–1, confirmed the field extent, and flowed gas at 28 MMSCFD (0.79 Mm3/D). Critical to the discovery of these fields was the Investigator 3D seismic survey, which covered about 1,000 km2 of the central Shipwreck Trough. The pre-drill chance of success of both structures was high-graded as a result of excellent structural imaging and the conformance of amplitude and AVO anomalies to mapped closures. The interpretation of this survey and the subsequent drilling of the Thylacine and Geographe Fields have dramatically increased the understanding of the structure and stratigraphy of the offshore eastern Otway Basin particularly in relation to the Shipwreck Trough and the Sorell Fault Zone.Combined dry gas reserves at the proved and probable level stand at 0.85 TCF and condensate reserves at 10.7 MMBBL. The fields are undergoing integrated sub-surface, development and environmental studies with the aim of supplying the nearby southeastern Australian gas markets. The preferred development concept is a small jacket structure at Thylacine, followed by a subsea tie-in of the Geographe Field with onshore processing facilities near Port Campbell.
APA, Harvard, Vancouver, ISO, and other styles
5

Edwards, D. S., H. I. M. Struckmeyer, M. T. Bradshaw, and J. E. Skinner. "GEOCHEMICAL CHARACTERISTICS OF AUSTRALIA'S SOUTHERN MARGIN PETROLEUM SYSTEMS." APPEA Journal 39, no. 1 (1999): 297. http://dx.doi.org/10.1071/aj98017.

Full text
Abstract:
The hydrocarbons discovered to date on the southern margin of Australia have been assigned to the Austral Petroleum Supersystem based on the age of their source rocks and common tectonic history. Modelling of the source facies distribution within this supersystem using tectonic, climatic and geographic history of the southern margin basins, suggests the presence of a variety of source rocks deposited in saline playa lakes, fluvial, lacustrine, deltaic and anoxic marine environments.Testing of the palaeogeographic model using geochemical characteristics of liquid hydrocarbons confirms the three-fold subdivision (Al, A2 and A3) of the Austral Petroleum Supersystem.Bass Basin oils are assigned to the Austral 3, Eastern View Petroleum System. The presence of oleanane in the biomarker assemblages of these oils, together with their negatively sloping, heavy, isotopic profiles, indicate derivation from Upper Cretaceous-Tertiary fluvio–deltaic source facies.In the eastern Otway Basin, oils of the Austral 2, Eumeralla Petroleum System are sourced by Lower Cretaceous (Aptian–Albian) coaly facies. Oil shows reservoired in the Wigunda Formation at Greenly-1 in the Duntroon Basin are possibly sourced from the Borda Formation and are assigned to the Austral 2, Borda Petroleum System.In the western Otway, Duntroon and Bight basins, a lack of definitive oil-source rock correlations precludes the identification of individual Austral 1 petroleum systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Falvey, D. A., P. A. Symonds, J. B. Colwell, J. B. Willcox, J. F. Marshall, P. E. Williamson, and H. M. J. Stagg. "AUSTRALIA'S DEEPWATER FRONTIER PETROLEUM BASINS AND PLAY TYPES." APPEA Journal 30, no. 1 (1990): 239. http://dx.doi.org/10.1071/aj89015.

Full text
Abstract:
Vast areas of Australia's continental margin sedimentary basins lying seawards of the 200 m water depth line, or shelf edge, are under-explored for petroleum. Indeed, most are essentially unexplored. However, recent advances in drilling and production technology, as well as recent reconnaissance seismic, geochemical, geothermal and seabed sampling data collected by the Bureau of Mineral Resources' (BMR) Marine Division, may reduce the perceived economic risk of many of these deepwater basins relative to their shelf counterparts. Triassic reefs have been identified off the northern Exmouth Plateau and possibly in the deepwater Canning Basin, locally within a predicted oil window. In the deepwater North Perth Basin, major wrench structures have been identified. The deepwater areas of the Great Australian Bight and Otway Basin are actually the main depocentres of a major basin complex lying along the almost totally unexplored southern Australian continental margin. The Latrobe Group in the outer Gippsland Basin is likely to have similar geology to the well explored and productive shelf basin, but remains untested. The Queensland and Townsville troughs, in deepwater off northeast Australia, contain many significant structures typical of unbreached rift systems.All these areas have been risked relative to each other and their prospectivity assessed. The most attractive frontier areas in terms of relative risk may be the Otway and North Perth basins. The highest potential may occur in the deepwater rift troughs off northeast Australia, although the relative risk is very high. Triassic reefs of the Northwest Shelf may have the best prospectivity in the shorter term, given that they are known from drilling in a region with proven source potential and a substantial exploration infrastructure.
APA, Harvard, Vancouver, ISO, and other styles
7

Perincek, D., and C. D. Cockshell. "THE OTWAY BASIN: EARLY CRETACEOUS RIFTING TO NEOGENE INVERSION." APPEA Journal 35, no. 1 (1995): 451. http://dx.doi.org/10.1071/aj94029.

Full text
Abstract:
A regional seismic interpretation ot the on shore Otway Basin has been completed and used to determine the basin's structural history.Sedimentation commenced in the Tithonian-Berriasian with the deposition of the volcanogenic Casterton Formation and continued into the Berriasian-Barremian with the deposition in elongate half graben, of thick fluviolacustrine sediments of the Crayfish Group, typically thickening dramatically towards the bounding faults. The NW to W trend of Crayfish Group depocentres and their major bounding faults suggest that the initial extension direction was N-S to NE-SW in the Late Jurassic-Early Cretaceous. Dextral transtensional movement occurred along the Trumpet Fault in the west of the basin and was complemented by sinistral transtension on the major NNE striking faults of the Torquay Sub-basin in the east during this period.The dip direction of the pre-Barremian bounding faults changes a number of times along the northern margin of the basin. These changes occur across transfer/accommodation zones of complex faulting and folding, not over discrete transfer faults.Faulting and related uplift resulted in partial erosion of the Crayfish Group from a number of structural highs, prior to the Aptian. The half graben faults are overlain by Eumeralla Formation indicating that active rifting had ceased by the Aptian in the onshore Otway Basin. Further erosion occurred following post-Albian faulting and uplift prior to the Paleocene, in particular within the eastern part of the basin.During deposition of the Sherbrook Group in the Late Cretaceous, fault reactivation produced minor, shallow grabens within the older half graben systems. Major movement also continued along the Tartwaup Fault Zone, resulting in basin deepening toward the SW. This fault activity continued into the Paleocene-Early Eocene during deposition of the Wangerrip Group. In the Eocene, the Southern Ocean spreading rates changed from slow to fast, resulting in the late-Early Eocene deltaic sediment of the Upper Wangerrip Group covering some of the earlier extension faults. Compression, resulting in right-lateral wrenching and inversion of previous faults, occurred during the Miocene-Recent. Pliocene-Holocene volcanic activity occurred along zones of weakness related to these fault systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Hill, K. A., D. M. Finlayson, K. C. Hill, and G. T. Cooper. "MESOZOIC TECTONICS OF THE OTWAY BASIN REGION: THE LEGACY OF GONDWANA AND THE ACTVE PACIFIC MARGIN—A REVIEW AND ONGOING RESEARCH." APPEA Journal 35, no. 1 (1995): 467. http://dx.doi.org/10.1071/aj94030.

Full text
Abstract:
Mesozoic extension along Australia's southern margin and the evolution and architecture of the Otway Basin were probably controlled by three factors: 1) changes in global plate movements driven by mantle processes; 2) the structural grain of Palaeozoic basement; and, 3) changes in subduction along Gondwana's Pacific margin. Major plate realignments controlled the Jurassic onset of rifting, the mid-Cretaceous break-up and the Eocene onset of rapid spreading in the Southern Ocean.The initial southern margin rift site was influenced by the northern limit of Pacific margin (extensional) Jurassic dolerites and the rifting may have terminated dolerite emplacement. Changed conditions of Pacific margin subduction (e.g. ridge subduction) in the Aptian may have placed the Australia-Antarctic plates into minor compression, abating Neocomian southern margin rifting. It also produced vast amounts of volcanolithic sediment from the Pacific margin arc that was funnelled down the rift graben, causing additional regional subsidence due to loading. Albian orogenic collapse of the Pacific margin, related to collision with the Phoenix Plate, influenced mid-Cretaceous breakup propagating south of Tasmania and into the Tasman Sea.Major offsets of the spreading axis during breakup, at the Tasman and Spencer Fracture zones, were most likely controlled by the location of Palaeozoic terrane boundaries. The Tasman Fracture System was reactivated during break-up, with considerable uplift and denudation of the Bass failed rift to the east, which controlled Otway Basin facies distribution. Palaeozoic structures also had a significant effect in determining the half graben orientations within a general N-S extensional regime during early Cretaceous rifting. The late Cretaceous second stage of rifting, seaward of the Tartwaup, Timboon and Sorell fault zones, left a stable failed rift margin to the north, but the attenuated lithosphere of the Otway-Sorell microplate to the south records repeated extension that led to continental separation and may be part of an Antarctic upper plate.
APA, Harvard, Vancouver, ISO, and other styles
9

Aggarwal, S. P., P. K. Thakur, V. Garg, B. R. Nikam, A. Chouksey, P. Dhote, and T. Bhattacharya. "WATER RESOURCES STATUS AND AVAILABILITY ASSESSMENT IN CURRENT AND FUTURE CLIMATE CHANGE SCENARIOS FOR BEAS RIVER BASIN OF NORTH WESTERN HIMALAYA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8 (October 14, 2016): 1389–96. http://dx.doi.org/10.5194/isprs-archives-xli-b8-1389-2016.

Full text
Abstract:
The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m<sup>3</sup>/s from VIC and 50 to 1556 m<sup>3</sup>/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R<sup>2</sup> of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and daily surface wind speed. The GFDL model also gives validation phase scenarios from 2006 to 2015, which are used to test the overall model performance with current data. The current assessment made by hydrological water balance based approach has given reasonable good results in Beas river basin. The main limitation of this study is lack of full representation of glacier melt flow using fully energy balance model. This component will be addressed in coming time and it will be integrated with tradition hydrological and snowmelt runoff models. The other limitation of current study is dependence on NCEP or other reanalysis of climate forcing data for hydrological modelling, this leads to mismatch between actual and simulated water balance components. This problem can be addressed if more ground based and fine resolution grid based hydro meteorological data are used as input forcing data for hydrological modelling.
APA, Harvard, Vancouver, ISO, and other styles
10

Langhi, Laurent, Ernest Swierczek, Julian Strand, Louise Goldie Divko, David Whittam, and Andrew Ross. "Structural containment in the Port Campbell Embayment and on the Mussel Platform, Otway Basin, Victoria." APPEA Journal 61, no. 2 (2021): 646. http://dx.doi.org/10.1071/aj20124.

Full text
Abstract:
As part of the Victorian Gas Program, new geological modelling of the Cretaceous to recent deposits in the Port Campbell Embayment and the Mussel Platform was carried out to investigate fault seal and trap integrity. Structural characterisation of the Late Cretaceous to present-day sedimentary sequence highlights cross-cutting fault trends defining potential structural traps containing Waarre Formation reservoirs. The fault trends are primarily controlled by Cretaceous-Paleogene extension and are reactivated during the Paleogene. Seismic facies in the top seal suggest an N-S environmental shift from open-marine to proximal nearshore marine. The quantification of fault membrane seals suggests that while reservoir-on-reservoir juxtapositions may enable some degree of lateral flow, efficient trapping relying on juxtaposition seal against the Belfast or Skull Creek mudstones is widespread. Fault geomechanics suggests that NW-SE and E-W faults accommodated most of the extensional strain and could have been associated with increased vertical structural permeability; however, there are no leakage indicators to support widespread vertical migration. These results do not support previous assumptions that fault seal integrity and top seal bypass represent a critical and widespread issue within the nearshore Otway Basin.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Otway Basin (Vic and S A )"

1

Moss, Graham 1957. "The Oligocene of southern Australia : ecostratigraphy and taxic overturn in neritic foraminifera / Graham David Moss." 1995. http://hdl.handle.net/2440/18527.

Full text
Abstract:
Loose sheets comprise of profiles of the Oligocene.
Bibliography: leaves 89-158.
158, [60] leaves, [16] leaves of plates : ill., maps ; 30 cm. + seven charts (some folded)
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
This study investigates a late Eocene to Miocene succession of diverse mid-latitude assemblages of foraminifera from carbonates and calcareous muds and sands on the southern Australian margin. It contrasts foraminiferal profiles from the restricted St. Vincent and Murray Basins with the Otway Basin that is more exposed to oceanic conditions.
Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1995
APA, Harvard, Vancouver, ISO, and other styles
2

Moss, Graham 1957. "The Oligocene of southern Australia : ecostratigraphy and taxic overturn in neritic foraminifera / Graham David Moss." Thesis, 1995. http://hdl.handle.net/2440/18527.

Full text
Abstract:
Loose sheets comprise of profiles of the Oligocene.
Bibliography: leaves 89-158.
158, [60] leaves, [16] leaves of plates : ill., maps ; 30 cm. + seven charts (some folded)
This study investigates a late Eocene to Miocene succession of diverse mid-latitude assemblages of foraminifera from carbonates and calcareous muds and sands on the southern Australian margin. It contrasts foraminiferal profiles from the restricted St. Vincent and Murray Basins with the Otway Basin that is more exposed to oceanic conditions.
Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1995
APA, Harvard, Vancouver, ISO, and other styles
3

Lyon, Paul John. "A systematic assessment of fault seal risk to hydrocarbon exploration in the Penola Trough, Otway Basin, South Australia." 2008. http://hdl.handle.net/2440/49488.

Full text
Abstract:
A new depth-based method of seismic imaging is used to provide insights into the 3D structural geometry of faults, and to facilitate a detailed structural interpretation of the Penola Trough, Otway Basin, South Australia. The structural interpretation is used to assess fault kinematics through geological time and to evaluate across-fault juxtaposition, shale gouge and fault reactivation potential for three selected traps (Zema, Pyrus and Ladbroke Grove) thus providing a full and systematic assessment of fault seal risk for the area. Paper 1 demonstrates how a depth-conversion method was applied to two-way time seismic data in order to redisplay the seismic in a form more closely representative of true depth, here termed ‘pseudo-depth’. Some apparently listric faults in two-way time are demonstrated to be planar and easily distinguishable from genuine listric faults on pseudo-depth sections. The insights into fault geometry provided by pseudo-depth sections have had a significant impact on the new structural interpretation of the area. Paper 2 presents the new 3D structural interpretation of the area. The geometry of faulting is complex and reflects variable stress regimes throughout structural development and the strong influence of pre-existing basement fabrics. Some basement-rooted faults show evidence of continual reactivation throughout their structural history up to very recent times. Structural analysis of all the live and breached traps of the area demonstrate that traps associated with a basement rooted bounding fault host breached or partially breached accumulations, whereas non-basement rooted faults are associated with live hydrocarbon columns. Papers 3 and 4 demonstrate that for all the traps analysed (Zema, Pyrus and Ladbroke Grove), initial in-place seal integrity was good. The initial seal integrity was provided by a combination of both favourable across fault juxtaposition (Ladbroke Grove) and/or sufficiently well developed shale gouge over potential leaky sand on sand juxtaposition windows to retain significant hydrocarbon columns (Zema, Pyrus). The palaeocolumns observed at Zema and Pyrus indicate that there has been subsequent post-charge breach of seal integrity of these traps while Ladbroke Grove retains a live hydrocarbon column. Evidence of open, permeable fracture networks within the Zema Fault Zone suggest that it is likely to have recently reactivated, thus breaching the original hydrocarbon column. Analysis of the in-situ stress tensor and fault geometry demonstrates that most of the bounding faults to the selected traps are at or near optimal orientations for reactivation in the in-situ stress tensor. The main exception being the Ladbroke Grove Fault which has a NW-SE trending segment (associated with a relatively high risk of fault reactivation and possible leakage at the surface) and an E-W trending segment (associated with a relatively low risk of fault reactivation and a present day live column). The free water level of the Ladbroke Grove accumulation coincides with this change in fault orientation.
http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339545
Thesis (Ph.D.) - University of Adelaide, Australian School of Petroleum, 2008
APA, Harvard, Vancouver, ISO, and other styles
4

Lyon, Paul John. "A systematic assessment of fault seal risk to hydrocarbon exploration in the Penola Trough, Otway Basin, South Australia." Thesis, 2008. http://hdl.handle.net/2440/49488.

Full text
Abstract:
A new depth-based method of seismic imaging is used to provide insights into the 3D structural geometry of faults, and to facilitate a detailed structural interpretation of the Penola Trough, Otway Basin, South Australia. The structural interpretation is used to assess fault kinematics through geological time and to evaluate across-fault juxtaposition, shale gouge and fault reactivation potential for three selected traps (Zema, Pyrus and Ladbroke Grove) thus providing a full and systematic assessment of fault seal risk for the area. Paper 1 demonstrates how a depth-conversion method was applied to two-way time seismic data in order to redisplay the seismic in a form more closely representative of true depth, here termed ‘pseudo-depth’. Some apparently listric faults in two-way time are demonstrated to be planar and easily distinguishable from genuine listric faults on pseudo-depth sections. The insights into fault geometry provided by pseudo-depth sections have had a significant impact on the new structural interpretation of the area. Paper 2 presents the new 3D structural interpretation of the area. The geometry of faulting is complex and reflects variable stress regimes throughout structural development and the strong influence of pre-existing basement fabrics. Some basement-rooted faults show evidence of continual reactivation throughout their structural history up to very recent times. Structural analysis of all the live and breached traps of the area demonstrate that traps associated with a basement rooted bounding fault host breached or partially breached accumulations, whereas non-basement rooted faults are associated with live hydrocarbon columns. Papers 3 and 4 demonstrate that for all the traps analysed (Zema, Pyrus and Ladbroke Grove), initial in-place seal integrity was good. The initial seal integrity was provided by a combination of both favourable across fault juxtaposition (Ladbroke Grove) and/or sufficiently well developed shale gouge over potential leaky sand on sand juxtaposition windows to retain significant hydrocarbon columns (Zema, Pyrus). The palaeocolumns observed at Zema and Pyrus indicate that there has been subsequent post-charge breach of seal integrity of these traps while Ladbroke Grove retains a live hydrocarbon column. Evidence of open, permeable fracture networks within the Zema Fault Zone suggest that it is likely to have recently reactivated, thus breaching the original hydrocarbon column. Analysis of the in-situ stress tensor and fault geometry demonstrates that most of the bounding faults to the selected traps are at or near optimal orientations for reactivation in the in-situ stress tensor. The main exception being the Ladbroke Grove Fault which has a NW-SE trending segment (associated with a relatively high risk of fault reactivation and possible leakage at the surface) and an E-W trending segment (associated with a relatively low risk of fault reactivation and a present day live column). The free water level of the Ladbroke Grove accumulation coincides with this change in fault orientation.
Thesis (Ph.D.) - University of Adelaide, Australian School of Petroleum, 2008
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography