Journal articles on the topic 'Oseen problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Oseen problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Medková, Dagmar, Mariya Ptashnyk, and Werner Varnhorn. "Generalized Darcy-Oseen resolvent problem." Mathematical Methods in the Applied Sciences 39, no. 6 (February 29, 2016): 1621–30. http://dx.doi.org/10.1002/mma.3872.
Full textWang, Lei, Jian Li, and Pengzhan Huang. "An efficient iterative algorithm for the natural convection equations based on finite element method." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 3 (March 5, 2018): 584–605. http://dx.doi.org/10.1108/hff-03-2017-0101.
Full textDallmann, Helene, Daniel Arndt, and Gert Lube. "Local projection stabilization for the Oseen problem." IMA Journal of Numerical Analysis 36, no. 2 (July 7, 2015): 796–823. http://dx.doi.org/10.1093/imanum/drv032.
Full textHamilton, Steven, Michele Benzi, and Eldad Haber. "New multigrid smoothers for the Oseen problem." Numerical Linear Algebra with Applications 17, no. 2-3 (February 9, 2010): 557–76. http://dx.doi.org/10.1002/nla.707.
Full textur Rehman, M., C. Vuik, and G. Segal. "SIMPLE-type preconditioners for the Oseen problem." International Journal for Numerical Methods in Fluids 61, no. 4 (October 10, 2009): 432–52. http://dx.doi.org/10.1002/fld.1957.
Full textMedková, Dagmar. "OSEEN SYSTEM WITH CORIOLIS TERM." International Journal of Mathematics, Statistics and Operations Research 2, no. 1 (2022): 29–41. http://dx.doi.org/10.47509/ijmsor.2022.v02i01.03.
Full textWang, Aiwen, Xin Zhao, Peihua Qin, and Dongxiu Xie. "An Oseen Two-Level Stabilized Mixed Finite-Element Method for the 2D/3D Stationary Navier-Stokes Equations." Abstract and Applied Analysis 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/520818.
Full textErvin, Vincent J., Hyesuk K. Lee, and Louis N. Ntasin. "Analysis of the Oseen-viscoelastic fluid flow problem." Journal of Non-Newtonian Fluid Mechanics 127, no. 2-3 (May 2005): 157–68. http://dx.doi.org/10.1016/j.jnnfm.2005.03.006.
Full textFarhloul, Mohamed. "Mixed finite element methods for the Oseen problem." Numerical Algorithms 84, no. 4 (January 24, 2020): 1431–42. http://dx.doi.org/10.1007/s11075-020-00879-9.
Full textWabro, Markus. "Coupled algebraic multigrid methods for the Oseen problem." Computing and Visualization in Science 7, no. 3-4 (October 2004): 141–51. http://dx.doi.org/10.1007/s00791-004-0138-z.
Full textFarwig, R., Antonín Novotný, and M. Pokorný. "The Fundamental Solution of a Modified Oseen Problem." Zeitschrift für Analysis und ihre Anwendungen 19, no. 3 (2000): 713–28. http://dx.doi.org/10.4171/zaa/976.
Full textAmrouche, Chérif, and Ulrich Razafison. "Weighted estimates for the Oseen problem in R3." Applied Mathematics Letters 19, no. 1 (January 2006): 56–62. http://dx.doi.org/10.1016/j.aml.2005.01.005.
Full textKračmar, S., D. Medková, Š. Nečasová, and W. Varnhorn. "A maximum modulus theorem for the Oseen problem." Annali di Matematica Pura ed Applicata 192, no. 6 (February 21, 2012): 1059–76. http://dx.doi.org/10.1007/s10231-012-0258-x.
Full textMedková, Dagmar, Emma Skopin, and Werner Varnhorn. "The Robin problem for the scalar Oseen equation." Mathematical Methods in the Applied Sciences 36, no. 16 (February 27, 2013): 2237–42. http://dx.doi.org/10.1002/mma.2749.
Full textAMROUCHE, CHÉRIF, and ULRICH RAZAFISON. "ON THE OSEEN PROBLEM IN THREE-DIMENSIONAL EXTERIOR DOMAINS." Analysis and Applications 04, no. 02 (April 2006): 133–62. http://dx.doi.org/10.1142/s0219530506000735.
Full textHussain, Shahid, and Sajid Hussain. "STABILIZED NUMERICAL METHODS FOR THE TWO KINDS OF PROBLEMS OF INCOMPRESSIBLE FLUID FLOWS." Journal of Mountain Area Research 6 (September 9, 2021): 25. http://dx.doi.org/10.53874/jmar.v6i0.90.
Full textLi, Yuan, and Rong An. "Two-Level Iteration Penalty Methods for the Navier-Stokes Equations with Friction Boundary Conditions." Abstract and Applied Analysis 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/125139.
Full textFeistauer, M., and C. Schwab. "Coupling of an Interior Navier—Stokes Problem with an Exterior Oseen Problem." Journal of Mathematical Fluid Mechanics 3, no. 1 (March 2001): 1–17. http://dx.doi.org/10.1007/pl00000961.
Full textDeuring, Paul, Stanislav Kračmar, and Šárka Nečasová. "NOTE ON THE PROBLEM OF MOTION OF VISCOUS FLUID AROUND A ROTATING AND TRANSLATING RIGID BODY." Acta Polytechnica 61, SI (February 10, 2021): 5–13. http://dx.doi.org/10.14311/ap.2021.61.0005.
Full textBoulmezaoud, T. Z., and U. Razafison. "On the steady Oseen problem in the whole space." Hiroshima Mathematical Journal 35, no. 3 (November 2005): 371–401. http://dx.doi.org/10.32917/hmj/1150998318.
Full textBenzi, Michele, and Maxim A. Olshanskii. "An Augmented Lagrangian‐Based Approach to the Oseen Problem." SIAM Journal on Scientific Computing 28, no. 6 (January 2006): 2095–113. http://dx.doi.org/10.1137/050646421.
Full textOlshanskii, Maxim A., and Yuri V. Vassilevski. "Pressure Schur Complement Preconditioners for the Discrete Oseen Problem." SIAM Journal on Scientific Computing 29, no. 6 (January 2007): 2686–704. http://dx.doi.org/10.1137/070679776.
Full textBorne, Sabine Le. "Preconditioned Nullspace Method for the Two-Dimensional Oseen Problem." SIAM Journal on Scientific Computing 31, no. 4 (January 2009): 2494–509. http://dx.doi.org/10.1137/070691577.
Full textBraack, M., E. Burman, V. John, and G. Lube. "Stabilized finite element methods for the generalized Oseen problem." Computer Methods in Applied Mechanics and Engineering 196, no. 4-6 (January 2007): 853–66. http://dx.doi.org/10.1016/j.cma.2006.07.011.
Full textKress, Rainer, and Sascha Meyer. "An inverse boundary value problem for the Oseen equation." Mathematical Methods in the Applied Sciences 23, no. 2 (January 25, 2000): 103–20. http://dx.doi.org/10.1002/(sici)1099-1476(20000125)23:2<103::aid-mma106>3.0.co;2-4.
Full textLUBE, GERT, and GERD RAPIN. "RESIDUAL-BASED STABILIZED HIGHER-ORDER FEM FOR A GENERALIZED OSEEN PROBLEM." Mathematical Models and Methods in Applied Sciences 16, no. 07 (July 2006): 949–66. http://dx.doi.org/10.1142/s0218202506001418.
Full textAmrouche, Chérif, and Ulrich Razafison. "Anisotropically weighted Poincaré-type inequalities; Application to the Oseen problem." Mathematische Nachrichten 279, no. 9-10 (July 2006): 931–47. http://dx.doi.org/10.1002/mana.200310403.
Full textMedková, Dagmar. "Weak solutions of the Robin problem for the Oseen system." Journal of Elliptic and Parabolic Equations 5, no. 1 (May 7, 2019): 189–213. http://dx.doi.org/10.1007/s41808-019-00038-9.
Full textMehaddi, R., F. Candelier, and B. Mehlig. "Inertial drag on a sphere settling in a stratified fluid." Journal of Fluid Mechanics 855 (September 24, 2018): 1074–87. http://dx.doi.org/10.1017/jfm.2018.661.
Full textBiswas, Rahul, Asha K. Dond, and Thirupathi Gudi. "Edge Patch-Wise Local Projection Stabilized Nonconforming FEM for the Oseen Problem." Computational Methods in Applied Mathematics 19, no. 2 (April 1, 2019): 189–214. http://dx.doi.org/10.1515/cmam-2018-0020.
Full textZhang, Qihui, and Yueqiang Shang. "An Oseen-Type Post-Processed Finite Element Method Based on a Subgrid Model for the Time-Dependent Navier–Stokes Equations." International Journal of Computational Methods 17, no. 04 (November 29, 2019): 1950002. http://dx.doi.org/10.1142/s0219876219500026.
Full textBeirão da Veiga, L., F. Dassi, and G. Vacca. "Vorticity-stabilized virtual elements for the Oseen equation." Mathematical Models and Methods in Applied Sciences 31, no. 14 (December 30, 2021): 3009–52. http://dx.doi.org/10.1142/s0218202521500688.
Full textYan, Wenjing, and Jiangyong Hou. "Shape Identification for Stokes-Oseen Problem Based on Domain Derivative Method." Journal of Applied Mathematics and Physics 03, no. 12 (2015): 1662–70. http://dx.doi.org/10.4236/jamp.2015.312191.
Full textHillairet, Matthieu, and Peter Wittwer. "On the vorticity of the Oseen problem in a half plane." Physica D: Nonlinear Phenomena 237, no. 10-12 (July 2008): 1388–421. http://dx.doi.org/10.1016/j.physd.2008.03.006.
Full textAghili, Joubine, and Daniele A. Di Pietro. "An Advection-Robust Hybrid High-Order Method for the Oseen Problem." Journal of Scientific Computing 77, no. 3 (March 7, 2018): 1310–38. http://dx.doi.org/10.1007/s10915-018-0681-2.
Full textMassing, A., B. Schott, and W. A. Wall. "A stabilized Nitsche cut finite element method for the Oseen problem." Computer Methods in Applied Mechanics and Engineering 328 (January 2018): 262–300. http://dx.doi.org/10.1016/j.cma.2017.09.003.
Full textMedková, Dagmar. "L q -solution of the Robin Problem for the Oseen System." Acta Applicandae Mathematicae 142, no. 1 (March 13, 2015): 61–79. http://dx.doi.org/10.1007/s10440-015-0014-5.
Full textGuenther, Ronald B., and Enrique A. Thomann. "Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions." Journal of Mathematical Fluid Mechanics 9, no. 4 (September 19, 2006): 489–505. http://dx.doi.org/10.1007/s00021-005-0209-z.
Full textFeng, Minfu, Yinnian He, and Ruiting Ren. "Computer Implementation of a Coupled Boundary and Finite Element Methods for the Steady Exterior Oseen Problem." Mathematical Problems in Engineering 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/845984.
Full textEmmrich, Etienne, and Volker Mehrmann. "Operator Differential-Algebraic Equations Arising in Fluid Dynamics." Computational Methods in Applied Mathematics 13, no. 4 (October 1, 2013): 443–70. http://dx.doi.org/10.1515/cmam-2013-0018.
Full textNokka, Marjaana, and Sergey Repin. "A Posteriori Error Bounds for Approximations of the Oseen Problem and Applications to the Uzawa Iteration Algorithm." Computational Methods in Applied Mathematics 14, no. 3 (July 1, 2014): 373–83. http://dx.doi.org/10.1515/cmam-2014-0010.
Full textRukavishnikov, Viktor A., and Alexey V. Rukavishnikov. "New Numerical Method for the Rotation form of the Oseen Problem with Corner Singularity." Symmetry 11, no. 1 (January 5, 2019): 54. http://dx.doi.org/10.3390/sym11010054.
Full textDay, Stuart, and Arghir Dani Zarnescu. "Sphere-valued harmonic maps with surface energy and the K13 problem." Advances in Calculus of Variations 12, no. 4 (October 1, 2019): 363–92. http://dx.doi.org/10.1515/acv-2016-0033.
Full textBarrenechea, Gabriel R., and Andreas Wachtel. "Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 1 (January 2018): 99–122. http://dx.doi.org/10.1051/m2an/2017031.
Full textHe, Yinnian. "Coupling boundary integral and finite element methods for the Oseen coupled problem." Computers & Mathematics with Applications 44, no. 10-11 (November 2002): 1413–29. http://dx.doi.org/10.1016/s0898-1221(02)00266-3.
Full textApel, Thomas, Tobias Knopp, and Gert Lube. "Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem." Applied Numerical Mathematics 58, no. 12 (December 2008): 1830–43. http://dx.doi.org/10.1016/j.apnum.2007.11.016.
Full textAraya, Rodolfo, Manuel Solano, and Patrick Vega. "A posteriori error analysis of an HDG method for the Oseen problem." Applied Numerical Mathematics 146 (December 2019): 291–308. http://dx.doi.org/10.1016/j.apnum.2019.07.017.
Full textRepin, S. I. "Estimates of Deviations from the Exact Solution of a Generalized Oseen Problem." Journal of Mathematical Sciences 195, no. 1 (October 17, 2013): 64–75. http://dx.doi.org/10.1007/s10958-013-1564-6.
Full textFranz, Sebastian, Katharina Höhne, and Gunar Matthies. "Grad-div stabilized discretizations on S-type meshes for the Oseen problem." IMA Journal of Numerical Analysis 38, no. 1 (March 27, 2017): 299–329. http://dx.doi.org/10.1093/imanum/drw069.
Full textXu, Chao, Dongyang Shi, and Xin Liao. "A new streamline diffusion finite element method for the generalized Oseen problem." Applied Mathematics and Mechanics 39, no. 2 (October 10, 2017): 291–304. http://dx.doi.org/10.1007/s10483-018-2296-6.
Full text