Academic literature on the topic 'Orthogonal time of flight'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Orthogonal time of flight.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Orthogonal time of flight"
Dawson, J. H. J., and M. Guilhaus. "Orthogonal-acceleration time-of-flight mass spectrometer." Rapid Communications in Mass Spectrometry 3, no. 5 (May 1989): 155–59. http://dx.doi.org/10.1002/rcm.1290030511.
Full textGuilhaus, M., D. Selby, and V. Mlynski. "Orthogonal acceleration time-of-flight mass spectrometry." Mass Spectrometry Reviews 19, no. 2 (2000): 65–107. http://dx.doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e.
Full textBimurzaev, Seitkerim, Nakhypbek Aldiyarov, Yerkin Yerzhigitov, Akmaral Tlenshiyeva, and Ruslan Kassym. "Improving the resolution and sensitivity of an orthogonal time-of-flight mass spectrometer with orthogonal ion injection." Eastern-European Journal of Enterprise Technologies 6, no. 5 (126) (December 28, 2023): 43–54. http://dx.doi.org/10.15587/1729-4061.2023.290649.
Full textBelov, Mikhail E., Michael A. Buschbach, David C. Prior, Keqi Tang, and Richard D. Smith. "Multiplexed Ion Mobility Spectrometry-Orthogonal Time-of-Flight Mass Spectrometry." Analytical Chemistry 79, no. 6 (March 2007): 2451–62. http://dx.doi.org/10.1021/ac0617316.
Full textHuang, Rongfu, Bochao Zhang, Dongxuan Zou, Wei Hang, Jian He, and Benli Huang. "Elemental Imaging via Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry." Analytical Chemistry 83, no. 3 (February 2011): 1102–7. http://dx.doi.org/10.1021/ac1029693.
Full textIbrahim, Yehia, Mikhail E. Belov, Aleksey V. Tolmachev, David C. Prior, and Richard D. Smith. "Ion Funnel Trap Interface for Orthogonal Time-of-Flight Mass Spectrometry." Analytical Chemistry 79, no. 20 (October 2007): 7845–52. http://dx.doi.org/10.1021/ac071091m.
Full textDodonov, A. F., V. I. Kozlovski, I. V. Soulimenkov, V. V. Raznikov, A. V. Loboda, Zhou Zhen, T. Horwath, and H. Wollnik. "High-Resolution Electrospray Ionization Orthogonal-Injection Time-of-Flight Mass Spectrometer." European Journal of Mass Spectrometry 6, no. 6 (December 2000): 481–90. http://dx.doi.org/10.1255/ejms.378.
Full textHuang, Rongfu, Yiming Lin, Lingfeng Li, Wei Hang, Jian He, and Benli Huang. "Two-Dimensional Separation in Laser Ionization Orthogonal Time-of-Flight Mass Spectrometry." Analytical Chemistry 82, no. 7 (April 2010): 3077–80. http://dx.doi.org/10.1021/ac902981j.
Full textClowers, Brian H., Mikhail E. Belov, David C. Prior, William F. Danielson, Yehia Ibrahim, and Richard D. Smith. "Pseudorandom Sequence Modifications for Ion Mobility Orthogonal Time-of-Flight Mass Spectrometry." Analytical Chemistry 80, no. 7 (April 2008): 2464–73. http://dx.doi.org/10.1021/ac7022712.
Full textHashimoto, Yuichiro, Izumi Waki, Kiyomi Yoshinari, Tsukasa Shishika, and Yasushi Terui. "Orthogonal trap time-of-flight mass spectrometer using a collisional damping chamber." Rapid Communications in Mass Spectrometry 19, no. 2 (2005): 221–26. http://dx.doi.org/10.1002/rcm.1781.
Full textDissertations / Theses on the topic "Orthogonal time of flight"
Papanastasiou, Dimitris. "Space velocity correlation in orthogonal time-of-flight mass spectrometry." Thesis, Manchester Metropolitan University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423073.
Full textSelby, David Sean School of Chemical Sciences UNSW. "Matrix assisted laser desorption/ionization orthogonal acceleration time-of-flight mass spectrometry: development and characterization of a new instrument." Awarded by:University of New South Wales. School of Chemical Sciences, 2002. http://handle.unsw.edu.au/1959.4/18784.
Full textWilliams, C. M. "Development of an orthogonal acceleration time-of-flight mass spectrometer : structural and quantitative applications in mass spectrometry." Thesis, Swansea University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636619.
Full textRuotolo, Brandon Thomas. "Development of matrix assisted laser desorption ionization-ion mobility-orthogonal time-of-flight mass spectrometry as a tool for proteomics." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2203.
Full textPaxton, Thanai. "Ultra-high sensitivity unambiguous sequencing on a novel geometry quadrupole orthogonal-acceleration time of flight mass spectrometer, the Q-TOF." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322004.
Full textWestberg, Michael. "Time of Flight Based Teat Detection." Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19292.
Full textTime of flight is an imaging technique with uses depth information to capture 3D information in a scene. Recent developments in the technology have made ToF cameras more widely available and practical to work with. The cameras now enable real time 3D imaging and positioning in a compact unit, making the technology suitable for variety of object recognition tasks
An object recognition system for locating teats is at the center of the DeLaval VMS, which is a fully automated system for milking cows. By implementing ToF technology as part of the visual detection procedure, it would be possible to locate and track all four teat’s positions in real time and potentially provide an improvement compared with the current system.
The developed algorithm for teat detection is able to locate teat shaped objects in scenes and extract information of their position, width and orientation. These parameters are determined with an accuracy of millimeters. The algorithm also shows promising results when tested on real cows. Although detecting many false positives the algorithm was able to correctly detected 171 out of 232 visible teats in a test set of real cow images. This result is a satisfying proof of concept and shows the potential of ToF technology in the field of automated milking.
Le, Sellier Francois 1974. "Discrete real-time flight plan optimization." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/50629.
Full textIncludes bibliographical references (leaves 117-118).
Worldwide, the continuously growing air traffic induces a need for new ATM concepts to be defined. One possibility is using a more decentralized system predicated mainly around free routings (Free Flight), for a more flexible management of airspace. The present study first highlights the discrepancies and inefficiencies of the current best flightplan optimizing software that use the Cost Index concept before departure. It then investigates techniques to perform enhanced flight-plan optimizations en-route, with algorithms that are less complex than using the Cost Index. The long-haul flight leg that is considered through the simulations is London (UK) - Boston (MA, USA), flown on a constant flight level. This study shows that running another optimization at the Top of Climb point reduces the average delay at destination from 6.9 minutes to 5.0 minutes. Then, the more futuristic method of considering discrete flight-plan optimizations, while en-route using updated weather forecasts, provides results that are more interesting. If the weather forecasts and the optimizations are done simultaneously every 3-hour or 1.5-hour, the average delay respectively becomes 2.6 minutes or 2.0 minutes. The second part of this work investigates ways of performing a Linear Program to fly a route close to a 4D-trajectory. This study provides ways of determining the exact weight values for the different state variables used in the cost function to minimize.
by Francois Le Sellier.
S.M.
Pettersson, Lucas. "Localization with Time-of-Flight cameras." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273788.
Full textTime-of-flight (ToF)-kameror blir en allt vanligare sensor i mobiltelefoner. Dessa sensorer kan producera djupmätningar i ett rutnät med relativt hög frekvens. Med hjälp av dessa djupmätningar kan ett punktmoln som representerar den fångade scenen produceras. Tidigare forskning har gjorts med hjälp av ToF- eller LIDAR-bilder för att lokalisera kameran. Här undersöks flera metoder för att lokalisera kameran med hjälp av ett punktmoln och en triangulering av en modell. Algoritmerna bestod till största delen av ICP-varianter samt en relativt ny metod som heter Corrective Gradient Refinement (CGR). Resultaten som erhållits från genererade data indikerar att vissa av metoderna är lämplig för realtidsapplikationer och felet på positioneringen är jämförbart med dem som hittades i tidigare resultat.
Tran, Le Chung. "Complex orthogonal space-time processing in wireless communications." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060726.133841/index.html.
Full textBouziane, R. "Real-time optical orthogonal frequency division multiplexing transceivers." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1383794/.
Full textBooks on the topic "Orthogonal time of flight"
Liang, Guan Yong, and Tjhung Tjeng Thiang, eds. Quasi-orthogonal space-time block code. London: Distributed by World Scientific, 2007.
Find full textAllāh, Imilī Naṣr. Flight against time. Charlottetown, P.E.I: Ragweed Press, 1987.
Find full textAllāh, Imilī Naṣr. Flight against time. Charlottetown, P.E.I: Ragweed Press, 1987.
Find full textAllāh, Imilī Naṣr. Flight against time. Austin, Tex: Center for Middle Eastern Studies, University of Texas at Austin, 1997.
Find full textLe Tran, Chung, Tadeusz A. Wysocki, Alfred Mertins, and Jennifer Seberry. Complex Orthogonal Space-Time Processing in Wireless Communications. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29544-2.
Full textTran, Le Chung. Complex orthogonal space-time processing in wireless communications. New York: Springer, 2011.
Find full textHansard, Miles, Seungkyu Lee, Ouk Choi, and Radu Horaud. Time-of-Flight Cameras. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4658-2.
Full textKunstmuseum, Bergen, and Listasfn Reykjavikur, eds. Time: Suspend your flight. Bergen: Bergen Kunstmuseum, 2000.
Find full textKight, Pat. The flight of time. Corvallis, Or: printed by Cascade Printing, 1988.
Find full textCotter, Robert J., ed. Time-of-Flight Mass Spectrometry. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1994-0549.
Full textBook chapters on the topic "Orthogonal time of flight"
Fjeldsted, John C. "Accurate Mass Measurements With Orthogonal Axis Time-of-Flight Mass Spectrometry." In Liquid Chromatography Time-of-Flight Mass Spectrometry, 1–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470429969.ch1.
Full textKrutchinsky, A. N., I. V. Chernushevich, A. V. Loboda, W. Ens, and K. G. Standing. "Measurements of Protein Structure and Noncovalent Interactions by Time-of-Flight Mass Spectrometry with Orthogonal Ion Injection." In Mass Spectrometry in Biology & Medicine, 17–30. Totowa, NJ: Humana Press, 2000. http://dx.doi.org/10.1007/978-1-59259-719-2_2.
Full textTolimieri, Richard, and Myoung An. "Orthogonal projection theorem." In Time-Frequency Representations, 135–39. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4152-2_9.
Full textDewilde, Patrick, and Alle-Jan van der Veen. "Orthogonal Embedding." In Time-Varying Systems and Computations, 337–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2817-0_12.
Full textSchwab, Manfred. "Time of Flight." In Encyclopedia of Cancer, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_5818-2.
Full textShekhar, Shashi, and Hui Xiong. "Time of Flight." In Encyclopedia of GIS, 1156. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_1384.
Full textGómez, Víctor. "Orthogonal Projection." In Multivariate Time Series With Linear State Space Structure, 1–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28599-3_1.
Full textKim, Seong-Eun, and Dennis L. Parker. "Time-of-Flight Angiography." In Magnetic Resonance Angiography, 39–50. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1686-0_2.
Full textBronger, Torsten. "Time-of-Flight Analysis." In Advanced Characterization Techniques for Thin Film Solar Cells, 203–29. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636280.ch9.
Full textLechner, Ruep E. "Time-of-Flight Spectrometry." In Neutrons in Soft Matter, 203–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470933886.ch8.
Full textConference papers on the topic "Orthogonal time of flight"
Zollars, Michael D., and Richard G. Cobb. "Simplex Methods for Optimal Control of Unmanned Aircraft Flight Trajectories." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5031.
Full textvan Paridon, Andrew, Marko Bacic, and Peter T. Ireland. "Kalman Filter Development for Real Time Proper Orthogonal Decomposition Disc Temperature Model." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56330.
Full textPrince, Jerry L. "Tomographic Imaging of Vector Fields." In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/srs.1995.rtua1.
Full textRaman, Deepa Anantha, Bruno Comesaña Cuervo, Viktória Jurcáková, Arnau Busom Vidal, Estelle Crouzet, Antoni Eritja Olivella, Juan Gracia García-Lisbon, et al. "A 3-axis stabilisation platform to improve experiment conditions in parabolic flights." In Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.132.
Full textLesoinne, Michel, and Charbel Farhat. "Re-Engineering of an Aeroelastic Code for Solving Eigen Problems in All Flight Regimes." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0171.
Full textHollberg, L., Steven Chu, John E. Bjorkholm, Alex Cable, and A. Ashkin. "Laser cooling and confining of atoms." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.wv2.
Full textMORELLI, EUGENE. "Nonlinear aerodynamic modeling using multivariate orthogonal functions." In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3636.
Full textPashilkar, A., and S. Pradeep. "Unsteady aerodynamic modelling using multivariate orthogonal polynomials." In 24th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4014.
Full textChavez, Octavio V., Sezsy Y. Yusuf, and Mohammad M. Lone. "Application of Multivariate Orthogonal Functions to Identify Aircraft Flutter Modes." In AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0695.
Full textMorelli, Eugene A. "Transfer Function Identification using Orthogonal Fourier Transform Modeling Functions." In AIAA Atmospheric Flight Mechanics (AFM) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-4749.
Full textReports on the topic "Orthogonal time of flight"
Copley, John R. D. Neutron time-of-flight spectroscopy. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6205.
Full textDietrick, Robert A. Hypersonic Flight: Time To Go Operational. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ad1018856.
Full textZare, Richard N., Matthew D. Robbins, Griffin K. Barbula, and Richard Perry. Hadamard Transform Time-of-Flight Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada564594.
Full textChiang, I.-Hung, Adam Rusek, and M. Sivertz. Time of Flight of NSRL Beams. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/1775544.
Full textWatson, Thomas B. Proton Transfer Time-of-Flight Mass Spectrometer. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1251396.
Full textZare, Richard N., Matthew D. Robbins, Griffin K. Barbula, and Richard Perry. Hadamard Transform Time-of-Flight Mass Spectrometry. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada589689.
Full textKponou, A., A. Hershcovitch, D. McCafferty, and F. Usack. A TIME-OF-FLIGHT SPECTROMETER FOR SuperEBIS. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/1151297.
Full textYip, K. Polarization with various Time-of-Flight cuts. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/1157488.
Full textH. FUNSTEN. IMAGING TIME-OF-FLIGHT ION MASS SPECTROGRAPH. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/768176.
Full textCandy, James, and Karl Fisher. Time-of-Flight Estimation for Nondestructive Evaluation. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1762882.
Full text