Academic literature on the topic 'Orogenic gold deposits'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Orogenic gold deposits.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Orogenic gold deposits"

1

Cui, Jun Hao, and Tao Ren. "A Tentative Study of Relationship between Mantle Plumes, Supercontinents and Orogenic Gold Deposits." Advanced Materials Research 734-737 (August 2013): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.265.

Full text
Abstract:
On the basis of predecessors study, this paper found that outbreak frequency of mantle plume is increase, while scale is reduce. The mantle plume provides ore-forming minerals to orogenic gold deposits, as well as affords force to supercontinent formation and decomposition, for the more controls the global tectonic. Supercontinent is the movement of upper crust that could be cause by combine factors of cold and heat mantle plume. Supercontinent supply suitable tectonic environment for orogenic gold deposits. Further, we discuss the relationship between mantle plume, supercontinent and orogenic gold deposit on space and time. With the evolution of the earth, especially the energy loss, the frequency of orogenic gold mineralization is increasing, while the scale is reducing.
APA, Harvard, Vancouver, ISO, and other styles
2

Groves, David I., Liang Zhang, and M. Santosh. "Subduction, mantle metasomatism, and gold: A dynamic and genetic conjunction." GSA Bulletin 132, no. 7-8 (November 4, 2019): 1419–26. http://dx.doi.org/10.1130/b35379.1.

Full text
Abstract:
Abstract Global gold deposit classes are enigmatic in relation to first-order tectonic scale, leading to controversial genetic models and exploration strategies. Traditionally, hydrothermal gold deposits that formed through transport and deposition from auriferous ore fluids are grouped into specific deposit types such as porphyry, skarn, high- and low-sulfidation–type epithermal, gold-rich volcanogenic massive sulfide (VMS), Carlin-type, orogenic, and iron-oxide copper-gold (IOCG), and intrusion-related gold deposits (IRGDs). District-scale mineral system approaches propose interrelated groups such as porphyry Cu-Au, skarn Cu-Au-Ag, and high-sulfidation Au-Ag. In this study, the temporal evolution of subduction-related processes in convergent margins was evaluated to propose a continuum of genetic models that unify the various types of gold deposits. At the tectonic scale of mineral systems, all hydrothermal gold deposits are interrelated in that they formed progressively during the evolution of direct or indirect subduction-related processes along convergent margins. Porphyry-related systems formed initially from magmatic-hydrothermal fluids related to melting of fertile mantle to initiate calc-alkaline to high-K felsic magmatism in volcanic arcs directly related to subduction. Formation of gold-rich VMS systems was related to hydrothermal circulation driven by magmatic activity during rifting of oceanic arcs. Orogenic gold deposits formed largely through fluids derived from devolatilization of the downgoing slab and overlying sediment wedge during late transpression in the orogenic cycle. Carlin-type deposits, IRGDs, and some continental-arc porphyry systems formed during the early stages of orogenic collapse via fluids directly or indirectly related to hybrid magmatism from melting of lithosphere that was metasomatized and gold-fertilized by earlier fluid release from subduction zones near margins of continental blocks. The IOCGs were formed during postorogenic asthenosphere upwelling beneath such subduction-related metasomatized and fertilized lithospheric blocks via fluid release and explosive emplacement of volatile-rich melts. Thus, importantly, subduction is clearly recognized as the key unifying dynamic factor in gold metallogenesis, with subduction-related fluids or melts providing the critical ore components for a wide variety of gold-rich deposit types.
APA, Harvard, Vancouver, ISO, and other styles
3

Sciuba, Marjorie, and Georges Beaudoin. "Texture and Trace Element Composition of Rutile in Orogenic Gold Deposits." Economic Geology 116, no. 8 (December 1, 2021): 1865–92. http://dx.doi.org/10.5382/econgeo.4857.

Full text
Abstract:
Abstract Rutile from a wide range of orogenic gold deposits and districts, including representative world-class deposits, was investigated for its texture and trace element composition using scanning electron microscopy, electron probe microanalysis, and laser ablation-inductively coupled plasma-mass spectrometry. Deposits are hosted in various country rocks including felsic to ultramafic igneous rocks and sedimentary rocks, which were metamorphosed from lower greenschist to middle amphibolite facies and with ages of mineralization that range from Archean to Phanerozoic. Rutile presents a wide range of size, texture, and chemical zoning. Rutile is the dominant TiO2 polymorph in orogenic gold mineralization. Elemental plots and partial least square-discriminant analysis suggest that the composition of the country rocks exerts a strong control on concentrations of V, Nb, Ta, and Cr in rutile, whereas the metamorphic facies of the country rocks controls concentrations of V, Zr, Sc, U, rare earth elements, Y, Ca, Th, and Ba in rutile. The trace element composition of rutile in orogenic gold deposits can be distinguished from rutile in other deposit types and geologic settings. Elemental ratios Nb/V, Nb/Sb, and Sn/V differentiate the rutile trace element composition of orogenic gold deposits compared with those from other geologic settings and environments. A binary plot of Nb/V vs. W enables distinction of rutile in metamorphic-hydrothermal and hydrothermal deposits from rutile in magmatic-hydrothermal deposits and magmatic environments. The binary plot Nb/Sb vs. Sn/V distinguishes rutile in orogenic gold deposits from other geologic settings and environments. Results are used to establish geochemical criteria to constrain the source of rutile for indicator mineral surveys and potentially guide mineral exploration.
APA, Harvard, Vancouver, ISO, and other styles
4

Gaboury, Damien. "The Neglected Involvement of Organic Matter in Forming Large and Rich Hydrothermal Orogenic Gold Deposits." Geosciences 11, no. 8 (August 17, 2021): 344. http://dx.doi.org/10.3390/geosciences11080344.

Full text
Abstract:
Orogenic gold deposits have provided most of gold to humanity. These deposits were formed by fluids carrying dissolved gold at temperatures of 200–500 °C and at crustal depths of 4–12 km. The model involves gold mobilization as HS− complexes in aqueous solution buffered by CO2, with gold precipitation following changes in pH, redox activity (fO2), or H2S activity. In this contribution, the involvement of carbonaceous organic matter is addressed by considering the formation of large and/or rich orogenic gold deposits in three stages: the source of gold, its solubilization, and its precipitation. First, gold accumulates in nodular pyrite within carbonaceous-rich sedimentary rocks formed by bacterial reduction of sulfates in seawater in black shales. Second, gold can be transported as hydrocarbon-metal complexes and colloidal gold nanoparticles for which the hydrocarbons can be generated from the thermal maturation of gold-bearing black shales or from abiotic origin. The capacity of hydrocarbons for solubilizing gold is greater than those of aqueous fluids. Third, gold can be precipitated efficiently with graphite derived from fluids containing hydrocarbons or by reducing organic-rich rocks. Black shales are thus a key component in the formation of large and rich orogenic gold deposits from the standpoints of source, transport, and precipitation. Unusual CO2-rich, H2O-poor fluids are documented for some of the largest and richest orogenic gold deposits, regardless of their age. These fluids are interpreted to result from chemical reactions involving hydrocarbon degradation, hence supporting the fundamental role of organic matter in forming exceptional orogenic gold deposits.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Zheming, Qingdong Zeng, Tong Pan, Hailin Xie, Zhanhao Wei, Hongrui Fan, Jinjian Wu, Kuifeng Yang, Xinghui Li, and Gaizhong Liang. "Two Epochs of Mineralization of Orogenic Gold Deposit in the East Kunlun Orogenic Belt: Constraints from Monazite U–Pb Age, In Situ Sulfide Trace Elements and Sulfur Isotopes in Wulonggou Gold Field." Minerals 12, no. 8 (July 29, 2022): 968. http://dx.doi.org/10.3390/min12080968.

Full text
Abstract:
The Wulonggou Gold Field is one of the giant gold fields in the East Kunlun Orogenic Belt, northwestern China. Previous studies mainly focused on elementary mineral isotopic studies, fluid inclusions, and geological features in the Wulonggou Gold Field. In this study, we report some research on the precise age and the specific ore-forming process of the WGF: the hydrothermal monazite U–Pb ages; the way of gold precipitation; the composition, evolution, and source of ore-forming fluids of the Wulonggou Gold Field. Finally, we demonstrate a link between two-stage hydrothermal events and sequential episodes of crust-derived magmas, with implications for gold metallogeny in the East Kunlun Orogenic Belt. There are four hydrothermal stages that are recognized: a quartz–pyrite stage (stage 1), a quartz–pyrite–arsenopyrite–chalcopyrite stage (stage 2), a quartz–galena–sphalerite–pyrite stage (stage 3) and a quartz–stibnite–carbonate stage (stage 4). The monazite U–Pb ages of the Huanglonggou and Hongqigou deposits in the Wulonggou Gold Field were 422.2 ± 2.4 Ma and 236.7 ± 3.7 Ma, respectively, which support the opinion of two epochs of mineralization. Stages 1 and 2 are the main gold mineralization stages, wherein Au and As have a close genetic relationship. The Hongqigou and Huanglonggou deposits seem to have been formed in different metallogenic events due to the contrast on the trace element compositions in pyrite. The sources of the ore-forming materials and fluids of the Hongqigou and Huanglonggou deposits show apparent characteristics of orogenic gold deposit, and the magmatic events during Paleozoic and Mesozoic have an important contribution to the formation of the gold deposits. The gold deposits in the Wulonggou Gold Field can be interpreted as an orogenic gold system related to two-epoch tectonic–magmatic events.
APA, Harvard, Vancouver, ISO, and other styles
6

Large, Ross R., and Valeriy V. Maslennikov. "Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits." Minerals 10, no. 4 (April 9, 2020): 339. http://dx.doi.org/10.3390/min10040339.

Full text
Abstract:
LA-ICPMS analysis of pyrite in ten gold deposits is used to determine the precise siting of invisible gold within pyrite, and thus the timing of gold introduction relative to the growth of pyrite and related orogenic events. A spectrum of invisible gold relationships in pyrite has been observed which suggests that, relative to orogenic pyrite growth, gold introduction in some deposits is early at the start of pyrite growth; in other deposits, it is late toward the end of pyrite growth and in a third case, it may be introduced at the intermediate stage of orogenic pyrite growth. In addition, we report a distinct chemical association of invisible gold in pyrite in the deposits studied. For example, in the Gold Quarry (Carlin type), Mt Olympus, Macraes and Konkera, the invisible gold is principally related to the arsenic content of pyrite. In contrast, in Kumtor and Geita Hill, the invisible gold is principally related to the tellurium content of pyrite. Other deposits (Golden Mile, Bendigo, Spanish Mountain, Witwatersrand Carbon Leader Reef (CLR)) exhibit both the Au-As and Au-Te association in pyrite. Some deposits of the Au-As association have late orogenic Au-As-rich rims on pyrite, which substantially increase the value of the ore. In contrast, deposits of the Au-Te association are not known to have Au-rich rims on pyrite but contain nano- to micro-inclusions of Au-Ag-(Pb-Bi) tellurides.
APA, Harvard, Vancouver, ISO, and other styles
7

Prokofiev, Vsevolod Yu, and Vladimir B. Naumov. "Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time." Minerals 10, no. 1 (January 5, 2020): 50. http://dx.doi.org/10.3390/min10010050.

Full text
Abstract:
This paper reviews data from numerous publications focused on the physicochemical parameters and chemical composition of ore-forming fluids from orogenic gold deposits formed during various geological epochs. The paper presents analysis of the distribution of the principal parameters of mineralizing fluids depending on the age of the mineralization. Some parameters of the fluids (their salinity and pressure) at orogenic gold deposits are demonstrated to systematically vary from older (median salinity 6.1 wt.%, median pressure 1680 bar) to younger (median salinity 3.6 wt.%, median pressure 1305 bar) deposits. The detected statistically significant differences between some parameters of mineralizing fluids at orogenic gold deposits are principally new information. The parameters at which mineralization of various age was formed are demonstrated to pertain to different depth levels of similar mineralization-forming systems. The fluid parameters of the most ancient deposits (which are mostly deeply eroded) correspond to the deepest levels of orogenic fluid systems. Hence, the detected differences in the salinity and pressure of the mineralizing fluids at orogenic deposits of different age reflect the vertical zoning of the mineralizing fluid systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Elsayed, Hani Sharafeldin. "LATE-OROGENIC GOLD DEPOSITS IN EGYPT." Mining science and technology, no. 1 (April 28, 2018): 89–96. http://dx.doi.org/10.17073/2500-0632-2018-1-89-96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Izaguirre, Aldo, Antoni Camprubí, and Alexander Iriondo. "Mesozoic orogenic gold deposits in Mexico." Ore Geology Reviews 81 (March 2017): 1172–83. http://dx.doi.org/10.1016/j.oregeorev.2015.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fridovsky, Valery Y., and Maxim Kudrin. "Ore Geology, RE–OS Isotope Geochemistry of the Au and Au-Sb Mineralizations, Kular–Nera Terrane, Northeast Asia: Implications for Time of Formation and Ore Genesis." IOP Conference Series: Earth and Environmental Science 906, no. 1 (November 1, 2021): 012011. http://dx.doi.org/10.1088/1755-1315/906/1/012011.

Full text
Abstract:
Abstract The paper presents the first results of investigation of the Re–Os isotope system of native gold from the Malo-Tarynskoe, Khangalas, Bazovskoe, and chalcopyrite from the Dvoinoe orogenic gold deposits and stibnite from the Maltan Au-Sb depositin the Kular–Nera terrane, Northeast Asia. The deposits are spatially related to NW-trending lithospheric-scale major brittle faults or controlled by subsidiary faults and fracture zones. Such zones served as pathways for fluids rising from below the crust, and they have a long tectonic and reactivation history. The Kular–Nera terrane consists of Upper Permian, Triassic, and Lower Jurassic clastic sedimentary-rock sequences, metamorphosed to initial stages of greenschist facies. Magmatism is manifested by Kimmeridgian–Berriasian S- and I-types granitoids and mafic dikes of the Tas–Kystabyt magmatic belt. Re concentration in gold varies from 0.168 to 6.997 ppb, and that of osmium – from 0.068 to 1.443 ppb. Chalcopyrite from the Dvoinoe deposit occurrence contains 0.1522 ppb Re and 0.499 ppb Os. Stibnite from the Maltan Au-Sb depositoccurrence contains 0. 236 ppb Re and 0.903 ppb Os. The Re–Os ages of gold from the Malo-Tarynskoe (147.8 ± 3.8 Ma) and Bazovskoe (147.2 ± 1.8 Ma) and Khangalas (137.1 ± 7.6 Ma) orogenic deposits and the Maltan Au-Sb deposits (69.7±1.9 Ma) are determined. Malo-Tarynskoe and Bazovskoe represent the earliest known orogenic gold mineralization in the Kular–Nera terrane. The data obtained permit us to correlate the initiation of orogenic gold-ore systems with the completion of the formation at the end of the Late Jurassic Uyandina–Yasachnaya volcanic belt, crystallization and subsequent cooling in the Late Jurassic–early Early Cretaceous of granitoid massifs of the Tas-Kystabyt magmatic belt, and subduction–accretionary events at the northeastern active continental margin of the Siberian craton. Maltan Au-Sb deposit is related to completion of the formation of the Albian-Late Cretaceous Okhotsk–Chukotka volcano-plutonic belt. Contrasting mantle and/or crustal sources of ore-forming material are established. The osmium initial isotopic ratio in gold 187Os/188Os = 0.2210-0.4275 and antimonite (0,2543-0,2976) is typical for the ore-forming material from the fertile mantle reservoir, and for chalcopyrite (3.1904) – from the crust.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Orogenic gold deposits"

1

Kirk, Jason Donald. "Rhenium-osmium systematics of orogenic gold deposits through geologic time." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280717.

Full text
Abstract:
Here we report new and previously published Re-Os and trace elemental data on gold as well as coeval sulfides and oxides from various Archean to Alphanumeric gold deposits. When possible, measured concentrations and isotopic ratios were used to determine geochronology as well as the likely source reservoir of the gold mineralization. Rhenium-osmium ages of some gold and related minerals are consistent with existing geochronology and in some cases better constrain genetic models of mineralization. The initial Os isotopic composition is also preserved within some ore minerals and reflects the importance of both crustal and mantle material in the generation of specific deposits. However, many of the gold deposits show evidence of post-crystallization Re-Os disturbance, and so age and source information are not preserved. In these cases, it is likely that hydrothermal fluids added or removed Re or Os subsequent to primary mineralization. Preservation of age favors minerals with high Re and Os concentrations and/or minerals from monocyclic gold deposits without multiple influxes of fluids. More specifically, gold and pyrite from the 2890--2710 Ma Witwatersrand basin, typically form ca. 3000 Ma isochrons with chondritic initial 187Os/188Os values. The Os concentrations of the gold range from approximately 2 to over 4000 ppb and are significantly elevated compared to other gold deposits. The older age, mantle source and high concentration of the gold support modified paleo-placer models with minor hydrothermal modification but not significant deposition of gold via hydrothermal fluids of any age. Other gold deposits have low average Os concentrations ranging from approximately 20 ppt to 1 ppb and Re/Os ratios generally similar to average continental crust. The initial 187Os/188Os of these deposits vary but seem to have more crustal signatures than the Witwatersrand deposits. Data support gold deposition from leaching of gold and Os via hydrothermal fluids from crustal lithologies. Os concentration and Re/Os data of gold show systematic variation with the age of the deposit. These trends may result from a decrease in the efficiency of partial melts to extract juvenile gold and Os from the cooling mantle and the increasing importance of recycling gold from pre-existing continental crust.
APA, Harvard, Vancouver, ISO, and other styles
2

Sciuba, Marjorie. "Texture and composition of scheelite, tourmaline and rutile in orogenic gold deposits." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66580.

Full text
Abstract:
La scheelite, la tourmaline et le rutile des gisements d'or orogénique, encaissés dans des roches de composition et de faciès métamorphique variés ont été étudiés pour établir des paramètres discriminants pour contraindre les campagnes utilisant les minéraux indicateurs pour l'exploration aurifère. La texture et les associations minérales ont été investiguées par microscopie optique et microscopie électronique à balayage (MEB). La scheelite, la tourmaline et le rutile présentent une grande variabilité de taille, de texture et d'association minérale, qui ne sont pas informatives pour les campagnes de minéraux indicateurs. La composition minérale a été déterminée par microsonde électronique (EPMA) et ablation laser et spectroscopie de masse avec plasma couplée par induction (LA-ICP-MS). Les résultats ont été investigués par des diagrammes élémentaires et des analyses multivariées incluant des analyses en composantes principales (PCA) et des analyses de réduction des moindres carrées (PLS-DA). La composition et le faciès métamorphique des roches encaissantes régionales exercent un fort contrôle sur la composition en éléments traces de la scheelite, de la tourmaline et du rutile. Dans la scheelite, Sr, Pb, U, Th, Na, Éléments des Terres Rares (ETR) et Y; dans la tourmaline Ga et Sn; et dans le rutile Nb, Ta, V et Cr varient avec la composition de la roche encaissante. Dans la scheelite, ETR, Y, Sr, Mn, Nb, Ta et V; dans la tourmaline, Ga, Sn, Ti, ETR, Zr, Hf, Nb, Ta, Th et U; et dans le rutile Nb, Ta, V et Cr varient avec le faciès métamorphique des roches encaissantes. La composition en éléments traces de la scheelite varie avec l'âge de la roche encaissante alors que la tourmaline et le rutile ne montrent pas de variation compositionnelle avec l'âge de l'encaissant. La variation compositionnelle résulte des échanges fluide-roche lors de la circulation du fluide hydrothermal jusqu'au site de dépôt de l'or. Les résultats pour les minéraux des gisements d'or orogénique sont comparés avec ceux d'autres types de gîtes et de paramètres géologiques variées de la littérature. La scheelite et la tourmaline des gisements d'or orogénique présentent clairement une variation compositionnelle distincte comparée à celle d'autres types de gîtes et paramètres géologiques. La scheelite des gisements d'or orogénique a une signature distincte en Sr, Mo, Eu, As et Sr/Mo mais similaire en ETR par rapport à la scheelite provenant d'autres types de gîtes. Les diagrammes binaires tels que Sr/Li vs V/Sn, Sr/Sn vs V/Nb, Sr/Sn vs Ni/Nb et Sr/Sn vs V/Be discriminent la tourmaline des gisements d'or orogénique de celle provenant d'autres sources. Les diagrammes élémentaires mettent en avant une variation transitionnelle de la composition en éléments traces de la tourmaline provenant d'environnement métamorphique, à hydrothermal-magmatique, à magmatique. Le rutile des gisements d'or orogénique a une composition distincte en Mn, V, Sn, Sb et W comparée aux rutiles provenant d'autres types de gîtes et paramètres géologiques. Les diagrammes binaires incluant V vs Sb et Nb/V vs. Sn/V discriminent le rutile des gisements d'or orogénique et celui provenant des environnements magmatique-hydrothermaux et magmatiques. D'autres diagrammes binaires tel que Nb/V vs W permettent de distinguer partiellement le rutile des gisements d'or orogénique et celui provenant d'environnement hydrothermaux et métamorphique-hydrothermaux.
Scheelite, tourmaline and rutile from orogenic gold deposits and districts, hosted in varied country rocks and metamorphic facies of various ages were investigated to establish discriminant features to constrain indicator mineral surveys for gold exploration. Texture and mineral associations were investigated by optical microscopy and Scanning Electron Microscopy (SEM). Scheelite, tourmaline and rutile present a wide range of size, texture, and mineral association that are not informative for indicator mineral surveys. Mineral composition was determined using Electron Probe Micro-Analyzer (EPMA) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results were investigated with elemental plots and multivariate statistics including Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA). The composition of the metamorphic facies of the local country rocks as well as the regional country rocks exert a strong control on scheelite, tourmaline and rutile trace element composition. In scheelite Sr, Pb, U, Th, Na, REE and Y; in tourmaline Ga and Sn; and in rutile Nb, Ta, V and Cr vary with the country rock composition. In scheelite, REE, Y, Sr, Mn, Nb, Ta and V; in tourmaline, Ga, Sn, Ti, REE, Zr, Hf, Nb, Ta, Th and U; and in rutile Nb, Ta, V and Cr vary with the metamorphic facies of the country rocks. Scheelite trace element composition vary with the country rock age whereas tourmaline and rutile do not show any compositional variation with the country rock age. Compositional variation results of fluid-rock exchange during fluid flow to gold deposition site. Results for minerals from orogenic gold deposits are compared with those from various deposit types and geological settings from literature. Scheelite and tourmaline from orogenic gold deposits present clearly a distinct compositional variation, compared to scheelite and tourmaline from other deposit types and geological settings. Scheelite from orogenic gold deposits have distinct Sr, Mo, Eu, As and Sr/Mo, but indistinguishable REE signatures, compared to scheelite from other deposit types. Binary plots such as Sr/Li vs V/Sn, Sr/Sn vs V/Nb, Sr/Sn vs Ni/Nb and Sr/Sn vs V/Be discriminate orogenic gold deposit tourmaline from that from other sources. Elemental plots highlight a transitional variation in the trace element composition of tourmaline from metamorphic, to hydrothermal-magmatic to, magmatic environments. Rutile from orogenic gold deposits has a distinctive Mn, V, Sn, Sb and W composition compared to those from various deposits types and geological settings. Binary diagrams, including V vs Sb and Nb/V vs Sn/V, discriminate rutile from orogenic gold deposits from those from hydrothermal-magmatic and magmatic deposit types. Other binary diagrams, such as Nb/V vs W, discriminate partially orogenic gold deposit rutile from hydrothermal and metamorphic-hydrothermal environments.
APA, Harvard, Vancouver, ISO, and other styles
3

Pitcairn, Iain Kerr. "Sources of fluids and metals in orogenic gold deposits : the Otago Schists, New Zealand." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Engström, Adam. "Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland." Thesis, Stockholms universitet, Institutionen för geologiska vetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-92297.

Full text
Abstract:
Orogenic gold deposits occur within metamorphic belts throughout the world and have through time represented the source for over 25% of the world’s gold production. Although orogenic gold deposits are of great economic importance, controversies exist on the subject of fluid and metal sources and there have been few studies of gold´s distribution and mobility outside of large economic deposits. Research made by Pitcairn et al. (2006), on the Mesozoic Otago and Alpine schists of New Zealand, observed systematic depletion of Au and a suite of 6 associated elements with increasing metamorphic grade. This depletion was identical to the suite of elements enriched in the Otago gold deposits and provided strong evidence that orogenic gold deposits form due to metamorphic processes. The mobilization of metals was attributed to the recrystallization of sulfide minerals during prograde metamorphism causing dehydration and release of metal-rich metamorphic fluids.  This thesis is part of a larger project aimed at testing the “Otago model” in a classic metamorphic terrain: The Dalradian metamorphic belt of Scotland. Rocks in the study are from the southern higlands group and the Appin and Argyll group which range in metamorphic grade from chlorite zone greenschist facies to sillimanite zone amphibolite facies. Three main aspects, which supplement earlier research, are addressed in this study: 1) Investigation of the sulfide paragenesis at Loch Lomond and Stonehaven was carried out to map the evolution of sulfides with metamorphic grade and the possible relations to the distribution of gold. Using SEM scanning to quantify the abundance of different sulfide minerals together with previous data on the Glen Esk region, a complex sulfide evolution pattern for the Dalradian Supergroup is identified. The sulfide evolution describes the same changes in texture and chemistry as observed in the Otago Schists but is made complex by the difference in geological evolution for the different regions. 2) Reinvestigation of the higher grade zones of Glen Esk (staurolite to sillimanite) was carried out as samples from the previous study were very weathered. Results from ultralow detection limit methods (HG-AFS and a gold detection method developed by Pitcairn et al. 2006) showed significant systematic depletion of Au and As with metamorphic grade. From chlorite to sillimanite zone average values of Au and As were showed to decrease by 65% and 88% respectively. Furthermore, a suite of 10 major and 12 trace elements were analyzed using ICP methods showing no trends of systematic depletion with increased metamorphic grade.  3) Investigation of Pb-Ag Veining and vein samples from each of the metamorphic index mineral zones in the Glen Esk area was carried out to identify fluid composition and ore mineralogy. Using microthermometry and Raman laser spectroscopy two distinct fluids were identified. The first type is a H2O-CO2-N2-salt fluid of low salinity (0-15 weight percent NaCl equivalent) and medium temperature (150 to 250 °C) locally containing minor amounts of CH4. It is found in the veins from the mineral index zones of Glen Esk and was formed in the ductile regime most likely related to late stage metamorphic devolatilization released during Caledonian uplift of the Dalradian. Pb-Ag veins from the locality of Hardhill host the second fluid type which was formed in the brittle regime  accompanied by brecciation as a high salinity (15 to 20 weight percent NaCl equivalent) low temperature (70-140°C) H2O-salt fluid with calcic composition was precipitated. This fluid bears much resemblance to Carboniferous calcic brines responsible for economic base-metal precipitation with widespread occurrence in southwest Scotland and Northern Ireland. Results of this thesis show many similarities with the Otago study, with a connection between metal mobility and metamorphic grade, providing support for the dehydration model as a viable mechanism for the generation of orogenic gold deposits.
APA, Harvard, Vancouver, ISO, and other styles
5

Grzela, Donald. "Chemical composition of indicator minerals from orogenic gold deposits and glacial sediments of the Val-d'Or district (Québec, Canada)." Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27588.

Full text
Abstract:
Les tourmalines, les scheelites et les magnétites provenant des gisements aurifères de type orogénique (n=22) et des sédiments glaciaires (n=5) du district minier de Val-d’Or (Québec, Canada) ont été investiguées à la microsonde électronique (EPMA) et par ablation laser et spectrométrie de masse à plasma à couplage inductif (LA-ICP-MS) afin de déterminer leur signature chimique et d’évaluer leur potentiel en tant que minéraux indicateurs pour l’exploration aurifère. Les tourmalines de Type I provenant de dépôts aurifères de type orogénique encaissés dans des roches felsiques et intermédiaires calco-alcalines montrent de faibles teneurs en V, Cr, Mn, Fe, Co, Ni, Zn et Sn et une teneur élevée en Mg par rapport aux tourmalines de Type II provenant de dépôts aurifères de type orogénique encaissés dans des roches mafiques tholéiitiques. Les tourmalines de Type III provenant de dépôts aurifères de type orogénique situés au contact entre des roches mafiques volcaniques et métasédimentaires montrent une chimie similaire aux tourmalines de Type I avec des teneurs en Li, Mn et Pb légèrement plus élevées. Les tourmalines des gisements aurifères de type orogénique sont caractérisées par des teneurs en Zn, Cu, Sn et Pb plus faibles que les tourmalines associées aux miniéralisations de type Cu-Zn, Pb-Zn-Cu et Sn. Les tourmalines récupérées dans le till portent la signature chimique des tourmalines provenant des gisements aurifères de type orogénique avec une majorité portant la signature des tourmalines de Type I. Les scheelites provenant de dépôts aurifères de type orogénique encaissés dans des intrusions calco-alcalines de composition intermédiaire sont caractérisées par des teneurs en Na, ÉTR et Y plus élevées que les scheelites provenant de dépôts aurifères encaissés dans des roches sédimentaires ou mafiques. Les scheelites récupérées dans le till portent la signature chimique des scheelites provenant des gisements aurifères de type orogénique. Les magnétites sont rare dans les dépôts aurifères de type orogénique du district de Val-d’Or. Les magnétites d’origine hydrothermale provenant des veines aurifères sont caractérisées par des teneurs plus élevées en Cr, Zn, Mn, K, Ca, Ti et Al que les magnétites d’origine magmatique retrouvées dans les roches encaissantes de composition dioritique ou gabbroique. Les magnétites associées à la minéralisation aurifère forment des grains fins disséminés (< 0,05 mm), ce qui suggère que les magnétites grossières récupérées dans le till ne proviennent probablement pas des veines de quartz aurifères.
Tourmalines, scheelites and magnetites from orogenic gold deposits (n=22) and glacial sediments (n=5) of the Val-d’Or mining district (Québec, Canada) were investigated by Electron Probe Micro-Analyzer (EPMA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in order to determine their chemical signature and to assess their potential as indicator minerals for gold exploration. Type I tourmalines from orogenic gold deposits hosted in felsic and intermediate calc-alkaline rocks have low contents of V, Cr, Mn, Fe, Co, Ni, Zn, and Sn and a high content of Mg compared to Type II tourmalines from orogenic gold deposits hosted in mafic tholeiitic rocks. Type III tourmalines from orogenic gold deposits located at the contact between mafic volcanic and metasedimentary rocks show a chemistry similar to Type I tourmalines with slightly higher Li, Mn, and Pb contents. Tourmalines from orogenic gold deposits are characterized by lower contents of Zn, Cu, Sn, and Pb than tourmalines associated to Cu-Zn, Pb-Zn-Cu, and Sn mineralizations. Till tourmalines carry the chemical signature of tourmalines from orogenic gold deposits with a majority carrying the signature of Type I tourmalines. Scheelites from orogenic gold deposits of the Val-d’Or district hosted in calc-alkaline intrusions of intermediate composition are characterized by high Na, REE, and Y contents compared to scheelites from sediment- or mafic-hosted gold deposits. Till scheelites carry the chemical signature of scheelites from orogenic gold deposits. Magnetites are rare in orogenic gold deposits of the Val-d’Or district. Magnetites of hydrothermal origin occuring in gold veins are characterized by higher contents of Cr, Zn, Mn, K, Ca, Ti, and Al than magnetites of magmatic origin found in the dioritic or gabbroic host rocks. Magnetites associated to the gold mineralization form fine disseminated grains (< 0.05 mm), which suggests that the coarse magnetites recovered in the till probably do not originate from the gold-bearing quartz veins.
APA, Harvard, Vancouver, ISO, and other styles
6

Branson, Thomas Keegan. "A review of archean orogenic gold deposits in greenstone belts and the Slave Province : exploration in the Yellowknife domain, NWT, Canada." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1012142.

Full text
Abstract:
A review of Archean granite-greenstone terranes, orogenic gold deposits, the Slave Province and modern exploration tools, techniques and methods was conducted to identify prospective areas in the Yellowknife domain for hosting orogenic gold deposits and illustrate the best exploration methods for delineating this deposit type. This study identifies Archean granite-greenstone terranes as economically important hosts to quartz-carbonate vein-hosted orogenic gold deposits. These deposits occur at convergent plate margins, but can also be related to local extensional tectonics within a convergent setting. Heat generated from tectonic processes can trigger hydrothermal fluid movement along first-order faults and shear zones. Precipitation of gold-bearing quartz-carbonate veins from the hydrothermal fluids occurs in second- and third-order faults and shear zones related to the first-order structures. This study also identifies the Archean Slave Province in northern Canada as a well-endowed craton with numerous orogenic gold deposits, diamondiferous kimberlites, VMS deposits and several other mineralization styles. In particular, three greenstone belts (Yellowknife, Cameron River and Beaulieu River) associated with likely first-order structures are comprised of prospective rocks for hosting orogenic gold and VMS mineralization. The Yellowknife greenstone belt hosts the past-producing and former world-class Con and Giant orogenic gold deposits, but has been little explored with modern exploration techniques. The Cameron River and Beaulieu River greenstone belts host numerous base and precious metal VMS and BIF-hosted orogenic gold prospects and deposits, indicating mineralization is present. There is considerable potential for significant discoveries to be made using modern exploration techniques in the greenstone belts; however, exploration in the region has been hindered over the past decade by ongoing political negotiations. Once the political negotiations are finalized, application of modern exploration methods and techniques in the prospective greenstone belts should be carried out. Regional scale methodologies should be applied to generate targets using predictive modelling, implicit 3D modelling, 3D geochemistry and exploration targeting so decisions defining a businesses strategy for ground acquisition of high priority targets are made using quantitative analysis. Once ground is acquired, field-based exploration for orogenic gold and VMS deposits should include geological mapping with a focus on structural geology, geochemical sampling and airborne magnetic, radiometric and EM geophysical surveys. Prior to reconnaissance drilling, integration of all data layers and interpretation within a common 3D earth model should be conducted. Following successful reconnaissance drilling, definition drilling along strike and down dip of intersected mineralization, combined with borehole geophysics, should be carried out to delineate the extent of mineralization.
APA, Harvard, Vancouver, ISO, and other styles
7

Hodkiewicz, Paul. "The interplay between physical and chemical processes in the formation of world-class orogenic gold deposits in the Eastern Goldfields Province, Western Australia." University of Western Australia. Centre for Global Metallogeny, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0057.

Full text
Abstract:
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] The formation of world-class Archean orogenic gold deposits in the Eastern Goldfields Province of Western Australia was the result of a critical combination of physical and chemical processes that modified a single and widespread ore-fluid along fluid pathways and at the sites of gold deposition. Increased gold endowment in these deposits is associated with efficient regional-scale fluid focusing mechanisms and the influence of multiple ore-depositional processes at the deposit-scale. Measurement of the complexity of geologic features, as displayed in high-quality geologic maps of uniform data density, can be used to highlight areas that influence regional-scale hydrothermal fluid flow. Useful measurements of geological complexity include fractal dimensions of map patterns, density and orientation of faults and lithologic contacts, and proportions of rock types. Fractal dimensions of map patterns of lithologic contacts and faults highlight complexity gradients. Steep complexity gradients, between domains of high and low fractal dimensions within a greenstone belt, correspond to district-scale regions that have the potential to focus the flow of large volumes of hydrothermal fluid, which is critical for the formation of significant orogenic gold mineralization. Steep complexity gradients commonly occur in greenstone belts where thick sedimentary units overly more complex patterns of lithologic contacts, associated with mafic intrusive and mafic volcanic units. The sedimentary units in these areas potentially acted as seals to the hydrothermal Mineral Systems, which resulted in fluid-pressure gradients and increased fluid flow. The largest gold deposits in the Kalgoorlie Terrane and the Laverton Tectonic Zone occur at steep complexity gradients adjacent to thick sedimentary units, indicating the significance of these structural settings to gold endowment. Complexity gradients, as displayed in surface map patterns, are an indication of three-dimensional connectivity along fluid pathways, between fluid source areas and deposit locations. Systematic changes in the orientation of crustal-scale shear zones are also significant and measurable map features. The largest gold deposits along the Bardoc Tectonic Zone and Boulder-Lefroy Shear Zone, in the Eastern Goldfields Province, occur where there are counter-clockwise changes in shear zone orientation, compared to the average orientation of the shear zone along its entire length. Sinistral movement along these shear zones resulted in the formation of district-scale dilational jogs and focused hydrothermal fluid-flow at the Golden Mile, New Celebration and Victory-Defiance deposits. Faults and lithologic contacts are the dominant fluid pathways in orogenic gold Mineral Systems, and measurements of the density of faults and contacts are also a method of quantifying the complexity of geologic map patterns on high-quality maps. Significantly higher densities of pathways in areas surrounding larger gold deposits are measurable within 20- and 5-kilometer search radii around them. Large variations in the sulfur isotopic composition of ore-related pyrites in orogenic gold deposits in the Eastern Goldfields Province are the result of different golddepositional mechanisms and the in-situ oxidation of a primary ore fluid in specific structural settings. Phase separation and wall-rock carbonation are potentially the most common mechanisms of ore-fluid oxidation and gold precipitation. The influence of multiple gold-depositional mechanisms increases the potential for significant ore-fluid oxidation, and more importantly, provides an effective means of increasing gold endowment. This explains the occurrence of negative δ34S values in ore-related pyrites in some world-class orogenic gold deposits. Sulfur isotopic compositions alone cannot uniquely define potential gold endowment. However, in combination with structural, hydrothermal alteration and fluid inclusion studies that also seek to identify multiple ore-forming processes, they can be a useful indicator. The structural setting of a deposit is also a potentially important factor controlling ore-fluid oxidation and the distribution of δ34S values in ore-related pyrites. At Victory-Defiance, the occurrence of negative δ34S(py) values in gently-dipping dilational structures, compared to more positive δ34S(py) values in steeply-dipping compressional structures, is potentially associated with different gold-depositional mechanisms that developed as a result of fluid-pressure fluctuations during different stages of the fault-valve cycle. During the pre-failure stage, when fluids are discharging from faults, fluid-rock interaction is the dominant gold-depositional mechanism. Phase separation and back-mixing of modified ore-fluid components are dominant during and immediately after faulting. Under appropriate conditions, any, or all, of these three mechanisms can oxidize orogenic gold fluids and cause gold deposition. The influence of multiple gold-depositional mechanisms during fault-valve cycles at dilational jogs, where fluid pressure fluctuations are interpreted to be most severe, can potentially explain both the large gold endowment of the giant to world-class Golden Mile, New Celebration and Victory-Defiance deposits along the Boulder-Lefroy Shear Zone, and the presence of gold-related pyrites with negative δ34S values in these deposits. This study highlights the interplay that exists between physical and chemical processes in orogenic gold Mineral Systems, during the transport of ore fluids in pathways from original fluid reservoirs to deposit sites. Potentially, a single and widespread orogenic ore-fluid could become oxidized, and lead to the formation of ore-related sulfides with variable sulfur isotopic compositions, depending on the nature and orientation of major fluid pathways, the nature of wall-rocks through which it circulates, and the precise ore-depositional processes that develop during fault-valve cycles.
APA, Harvard, Vancouver, ISO, and other styles
8

Wiberg, Steen Tobias. "Genetic relationships and origin of the Ädelfors gold deposits in Southeastern Sweden." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67912.

Full text
Abstract:
Ädelfors is situated ca 17 km east of Vetlanda, Jönköping County, in the N-S striking Trans-scandinavian igneous belt and is a part of the NE-SW striking 1.83-1.82 Ga Oskarshamn-Jönköping belt emplaced during a continental subduction towards the Svecofennian continental margin. The continental arc hosts the 1.83 Ga metasedimentary Vetlanda supergroup composed of foliated metagreywacke, metasandstone and metaconglomerate. The sequence is intercalated by mafic and felsic volcanites and hosts the Cu-Au-Fe-mines at Ädelfors. Ädelfors mining field consists of ca 330 mineralized quartz veins hosting both copper, gold and iron. The iron mines Nilsson’s iron mine (NFE) and Fe-mine (FE), the copper mine Kamelen (KM) and the gold mines Brånad’s mine (BR), Adolf Fredrik’s mine (AF), Old Kron mine (GKR), Old Kolhag’s mine (GKO), Thörn mine (TH), New Galon mine (NG), Stenborg’s mine (ST), Tysk mine (TG), Hällaskallen (HS) and Fridhem (FR) have been investigated to deduce a possible genetic relation between the veins and their origin. Sulfur isotope ratios have also been conducted on pyrite from KM, AF and FE. The veins can stucturally be divided into several groups. AF, GKR, ST, NG, TH and possibly NFE are striking 10-70° with a dip of 55-70°. BR, GKO and KM are striking 110-140° with a dip of 80-90° whereas TG and HS strike 90-110° dipping 85°. Fridhem, being distal to the other mines, strikes 70° and dips 80°. A chlorite-quartz-biotite-sericite-rich metapelite hosts the veins in all localities except; FR where a layered, beresitizised felsic volcanite rich in plagioclase, sericite, biotite and quartz hosts disseminated pyrite; and NFE, HS and NG which are hosted by a mafic tuffite. Quartz veins are mainly milky and equigranular, exceptions are FE with black pyrite-bearing quartz veins, cutting through the banded magnetite-metapelite and KM with its dynamically recrystallized quartz. Chlorite-, zeolite-, carbonate-, hematite-, amphibole-, kalifeldspar-, sericite-, biotite- and epidote alteration has been observed among the localities. The ore minerals are dominated by: fractured sub- to euhedral pyrite in cataclastic aggregates or selvage bands, interstitial chalcopyrite in pyrite, marcasite, pyrrhotite, gold and sporadic chalcopyrite diseased sphalerite and arsenopyrite. Previously not reported tetradymite, staurolite, galena and Ce-monazite have also been observed. Bismuthinite and tetradymite as inclusions in pyrite were observed in AF, GKR, FR and TG. Gold was observed in AF, BR, GKR and TG as inclusions in pyrite or quartz with a Au/Ag median of 78.41. HS distinguishes itself with Au/Ag ratios of 4.66-5.25. The trace element ratios in pyrite reveal two major types of pyrite. 1) found in FE and KM (pyrite type 1) with Co/Ni ratio of 10.94, Bi/Au of 1.79, Bi/S of 0.037, Au/Ag of 11.13, S/Se of 235.96 and As/S of 0.006. 2) found in NG, GKO, ST, TH, AF, NFE, HS, GKR, BR, FR, TG and as stringers in KM4 py1 pyrite type 2) with an average Co/Ni ratio of 5.26, Bi/Au of 1.95, Bi/S of 0.031, Au/Ag of 4.19, S/Se of 0 and As/S of 0. δ34S values strengthens this grouping as KM and FE has 1,3-2,6 ‰ and AF 3,6-3,8 ‰. The following geological interpretation has been concluded: The banded iron formation in FE is the earliest mineralization and was later fractured, emplacing quartz veins with pyrite of type 1. During this event, the Cu-vein in KM was also formed. A second generation of fractures, emplaced after the Småland granitoids formed, were filled with quartz and pyrite of type 2 at mesozonal depth. This is the main stage of gold mineralization and includes NG, GKO, ST, TH, AF, NFE, GKR, BR, FR and TG. During this event, pyrite of type 2 was added to KM, causing recrystallizing of the quartz. HS is possibly emplaced last or altered as it is more enriched in silver. Morphology, mineralogy, alterations, mineral chemistry and sulfur isotope signatures indicates an orogenic origin of the gold-rich quartz veins at Ädelfors as well as the copper-rich vein in KM.
Ädelfors ligger ca 17 km öster om Vetlanda, Jönköpings län, i det N-S strykande Transskandinaviska granit och porfyrbältet och är en del av det NÖ-SV strykande 1,83-1,82 Ga Oskarshamn-Jönköpingsbältet (OJB) bildad i en kontinental subduktionszon i kanten av den Svecofenniska kontinentalplattan. I denna kontinentalbåge ligger Vetlanda supergruppen som är en metasedimentär del av OJB bestående av starkt folierad 1,83 Ga metagråvacka, metasandsten och metakonglomerat med inlagringar av mafiska och felsiska vulkaniter. Ädelfors gruvfält består utav ca. 330 kvartsgångar förande mestadels guld men också koppar. Järnmineraliseringar i form av bandad järnmalm finns också i området. Geologin, mineralogin och pyritens kemiska sammansättning från järngruvorna Nilssons järngruva (NFE) och Fe-gruvan (FE), koppargruvan Kamelen (KM) och guldgruvorna Brånadsgruvan (BR), Adolf Fredriks gruva (AF), Gamla Krongruvan (GKR), Gamla Kolhagsgruvan (GKO), Thörngruvan (TH), Nya Galongruvan (NG), Stenborgs gruva (ST), Tyskgruvan (TG), Hällaskallen (HS) och Fridhem (FR) har undersökts för att finna eventuella genetiska likheter. Svavelisotopförhållande har fastställts för pyrit från AF, FE och KM. Strukturellt kan gångarna delas in i ett antal grupper. AF, GKR, ST, NG, TH och möjligtvis NFE stryker 10-70° och stupar 55-70°. BR, GKO och KM stryker 110-140° och stupar 80-90° medan TG och HS stryker 90-110° och stupar 85°. Fridhem stryker 70° och stupar 80°. En klorit-kvarts-sericit-biotitrik metapelit utgör värdbergarten i alla gruvor förutom; FR där den utgörs av en beresitiserad felsisk vulkanit rik på plagioklas, sericit, biotit och kvarts med disseminerad pyrit; och NFE, HS, NG vilka har en mafisk tuffitisk moderbergart. Kvartsgångarna är mjölkvita med undantag för FE:s svarta, pyritförande kvarts vilket uppträder som sprickfyllnad i den bandade järnmalmen och är senare bildad. Kvartsen i KM är starkt dynamiskt omkristalliserad. Svag till måttlig foliation är vanlig i sidoberget med undantag av stark foliation i TG och NFE, vilka är lokaliserade i förkastningssprickor med stark kloritförskiffring av värdbergarten. Klorit-, zeolit-, karbonat-, hematit-, amfibol-, kalifältspat-, sericit-, biotit- och epidotomvandling förekommer i majoriteten av lokalerna. Malmmineralen är dominerande sprött deformerad subhedral till euhedral pyrit som kataklastiska aggregat eller band, interstitiell kopparkis i pyrit, markasit, magnetkis, guld och sporadiskt kopparkissjuk zinkblände och arsenikkis. I det här arbetet har även tetradymit, staurolit, blyglans och Ce-monazit observerats. Bismutinit och tetradymit i form av inneslutningar i pyrit observerades i AF, GKR, FR och TG. Guld observerades i AF, BR, GKR och TG som inneslutningar i pyrit eller fritt i kvarts med Au/Ag medianvärde på 78,41, avvikande är HS med värden mellan 4,66-5,25.    Förhållanden mellan spårelement i pyrit indikerar två typer av pyrit. Typ 1 funnen i FE och KM har följande värden: Co/Ni = 10,94, Bi/Au = 1,79, Bi/S = 0,037, Au/Ag = 11,13, S/Se = 235,96 och As/S = 0,006. Typ 2 funnen i NG, GKO, ST, TH, AF, NFE, HS, GKR, BR, FR, TG och som sliror i KM4 py1 har följande värden Co/Ni = 5,26, Bi/Au = 1,95, Bi/S = 0,031, Au/Ag = 4,19, S/Se = 0 and As/S = 0. δ34S värden styrker denna uppdelning där KM och FE har värdena 1,3-2,6 ‰ och AF 3,6-3,8 ‰. Den geologiska utvecklingen av fältet har tolkats som följande: FE-gruvans bandade järnmalm är den tidigaste mineraliseringen vilket följs utav uppsprickning och läkning av kvarts med pyrit typ 1 som också bildar kopparmineraliseringen KM. Senare sprickzoner efter Smålandsgraniternas intrusion läks av kvarts med pyrit typ 2 på mesozonalt djup vilket bildar NG, GKO, ST, TH, AF, NFE, GKR, BR, FR, TG och omkristalliserar och introducerar nya pyritsliror i kvartsen i KM. HS bildas möjligtvis sist eller har blivit omvandlad eftersom den är anrikad på silver. Morfologi, omvandlingar och svavelisotop-signaturer tyder på ett orogent ursprung för Ädelfors guldrika kvartsådror samt den kopparrika kvartsådern i KM.
APA, Harvard, Vancouver, ISO, and other styles
9

Gelber, Benjamin D. J. "A mineral systems approach to the development of structural targeting criteria for orogenic gold deposits in the Asankrangwa gold belt of the Kumasi Basin, South-west Ghana." Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/63143.

Full text
Abstract:
The Kumasi Basin in South-west Ghana lies at the centre of the best-endowed Paleoproterozoic gold province in the world. The Kumasi Basin and margins of the adjacent volcanic belts are host to six world class gold camps: (1) 62 Moz Obuasi camp, (2) 22 Moz Prestea-Bogoso camp, (3) 11 Moz Asanko Gold Mine camp, (4) 9 Moz Edikan camp, (5) 7 Moz Bibiani camp, (6) 5 Moz Chirano camp, as well as several additional minor gold camps and many more prospects. Cumulatively these camps account for>116 Moz of endowment and contribute to making south-west Ghana the greatest Paleoproterozoic gold province in the world. Gold deposits in the Kumasi Basin are shear zone hosted and mineralisation ranges from disseminated to massive sulphide refractory deposits, to free milling quartz vein style deposits. Structural relationships and age dating indicate that most deposits are genetically related and were formed during a single episode of gold mineralisation during the D4 NNW-SSE crustal shortening deformation event of the Eburnean Orogeny (2125 – 1980 Ma). The understanding of structural controls on mineralisation is critical for exploration success as it allows exploration to focus on areas where these structural controls exist. This study uses a mineral systems approach to understand the relationship between the geodynamic history and structural controls on gold mineralisation in the Kumasi Basin at various scales, and define targeting criteria which can be applied for the purpose of developing predictive exploration models for making new discoveries in the Asanko Gold Mine camp located in the Asankrangwa Belt. The study used a quantitative analysis to establish residual endowment potential in the Asankrangwa Belt, providing the basis for a business model and resulting exploration strategy. Once established, a Fry autocorrelation analysis was applied to identify trends in deposit and camp spatial distribution to which critical geological processes were ascribed. Observed trends were mapped from multi-scale geophysical data sets and through interpretation of existing geophysical structure models, and structural criteria for targeting orogenic gold deposits at the regional and camp scales were developed. Results show that different structural controls on mineralisation act at the regional and camp scale. At the regional scale the distribution of gold camps was found to be controlled by fundamental N-S and NW-SE basement structures with gold camps forming where they intersect NE-SW first and second order structural corridors. At the Asanko Gold Mine camp scale, deposit distribution was found to be related to the intersection between major second order D3 NE-SW shear zones, minor third order D4 NNE-SSW brittle faults, and cryptic NW-SE upward propagating basement structures. In addition to these structural criteria, deposits in the Asanko Gold Mine camp were found to be aligned along a NNE-SSW lineament caused by the interaction between the N-S basement structure and the NE-SW trending Asankrangwa Belt shear corridor.
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Yafei. "Gold Source and Deportment in the Daqiao Epizonal Orogenic Gold Deposit, China." Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/78110.

Full text
Abstract:
Yafei Wu’s PhD project has explored different ore-forming aspects of a world-class Chinese orogenic gold deposit. The results show that orogenic gold could be sourced from either metamorphism or magmatism. Silica has an important role in gold transport. Gold zoning in pyrite records both fluid conditions and local kinetics. Gold significantly redistributes during pyrite replacement. The knowledge gained increases our understanding of the genesis of orogenic gold widely distributed in Australia, New Zealand and worldwide.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Orogenic gold deposits"

1

Craw, Dave, and Doug MacKenzie. Macraes Orogenic Gold Deposit (New Zealand). Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35158-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robb, Laurence, and Andrew Mitchell. Mineral Deposits of Myanmar (Burma). Society of Economic Geologists, 2021. http://dx.doi.org/10.5382/gb.62.

Full text
Abstract:
Myanmar is richly endowed in natural resources that include tin, tungsten, copper, gold, zinc, lead, nickel, and silver, as well as gemstones. The material covered over a nine-day field trip explores the country’s complex geology, which reflects a collisional history stretching from the Late Triassic to at least Miocene, sited at the eastern end of the India-Asia suture. The country can be divided into three principal metallotects: the Wuntho-Popa magmatic arc, with granites and associated porphyry-type and epithermal Cu-Au mineralization; the Slate Belt (also called the Mogok-Mandalay-Mergui Belt), with multiple precollisional I-type and postcollisional S-type crustal melt granites that host significant tin-tungsten mineralization, and which also are host to a number of orogenic gold deposits; and the Shan Plateau with massive sulfide-type and also MVT-style lead-zinc-silver deposits.
APA, Harvard, Vancouver, ISO, and other styles
3

Crawford, Dave, and Doug MacKenzie. Macraes Orogenic Gold Deposit (New Zealand). Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Craw, Dave, and Doug MacKenzie. Macraes Orogenic Gold Deposit: Origin and Development of a World Class Gold Mine. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Orogenic gold deposits"

1

Craw, Dave, and Doug MacKenzie. "Introduction: Macraes Mine as an Orogenic Gold Deposit." In SpringerBriefs in World Mineral Deposits, 1–6. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35158-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bierlein, F. P., A. B. Christie, P. K. Smith, S. Maher, and N. G. Corner. "Orogenic disseminated gold in Phanerozoic fold belts: some examples." In Mineral Deposits at the Beginning of the 21st Century, 703–6. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003077503-179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shatov, V. V., A. Cole, R. Seltmann, and A. S. Yakubchuk. "Metallogeny of gold in the Tien Shan and Urals Paleozoic orogenic belts: a GIS-based approach." In Mineral Deposits at the Beginning of the 21st Century, 489–92. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003077503-124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hodge, J. L., S. G. Hagemann, and P. Neumayr. "Characteristics and evolution of hydrothermal fluids from the Archean orogenic New Celebration gold deposits, Western Australia." In Mineral Deposit Research: Meeting the Global Challenge, 529–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sangurmath, Prabhakar. "World Class Hutti Gold Deposit—An Archean Orogenic Gold Deposit in Hutti-Maski Greenstone Belt, Karnataka, India." In Geological and Geo-Environmental Processes on Earth, 75–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4122-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goldfarb, R. J., Taihe Zhou, S. L. Garwin, Jingwen Mao, and Yumin Qiu. "Precambrian cratons and Phanerozoic orogens: gold metallogeny of China." In Mineral Deposits at the Beginning of the 21st Century, 743–46. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003077503-189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Micklethwaite, Steven, Arianne Ford, Walter Witt, and Heather A. Sheldon. "Transient permeability in fault stepovers and rapid rates of orogenic gold deposit formation." In Crustal Permeability, 249–59. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burke, Mike, Craig J. R. Hart, and Lara L. Lewis. "Models for epigenetic gold exploration in the northern Cordilleran Orogen, Yukon, Canada." In Mineral Deposit Research: Meeting the Global Challenge, 525–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mikulski, S. Z., S. Speczik, and A. Kozlowski. "Fluid inclusion study of quartz veins from the orogenic Klecza gold deposit in the Kaczawa Mountains (SW Poland)." In Mineral Deposit Research: Meeting the Global Challenge, 553–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bierlein, Frank P., Beatriz Coira, and Holly Stein. "Geochemical and isotopic constraints on Palaeozoic orogenic gold endowment and crustal evolution of the south central Andes, NW Argentina." In Mineral Deposit Research: Meeting the Global Challenge, 521–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_134.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Orogenic gold deposits"

1

Snachev, A. V., A. V. Kolomoets, M. A. Rassomakhin, V. I. Snachev, and R. S. Kisil. "TOURMALINE MINERALIZATION IN CARBONACEOUS SHALE OF THE BAIKAL DEPOSIT (SOUTH URAL)." In Проблемы минералогии, петрографии и металлогении. Научные чтения памяти П. Н. Чирвинского. Пермский государственный национальный исследовательский университет, 2021. http://dx.doi.org/10.17072/chirvinsky.2021.217.

Full text
Abstract:
The article discusses the geological structure of the Baikal deposit, located within the Kumak ore field and confined to the black shale of the Bredy Formation (C1bd). It has been established that the gold mineralization within the occurrence is confined mainly to the members of quartz-mica-tourmaline metasomatically altered carbonaceous shales. Gold is noted here in intergrowth with tourmaline. In terms of their chemical composition, tourmalines belong to dravite and foitite and are close to those of orogenic gold and gold-sulfide deposits. The close intergrowth of thin needle- like tourmaline and gold indicates the synchrony of their formation and allows the manifestation of Baikal deposit to be attributed to the quartz-tourmaline formation.
APA, Harvard, Vancouver, ISO, and other styles
2

Frieman, Ben, Bradley Squires, Thomas Monecke, and Frank Powell. "UNRAVELING THE STRUCTURAL HISTORY OF OROGENIC GOLD DEPOSITS IN THE CORONA DE ORO GOLD BELT, NORTHWESTERN NICARAGUA." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-383511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Munkhjargal, Buyanzaya, Erdenebayar Oyun, and Chinbat Khishgee. "GOLD MINERALIZATION SEQUENCES AND GENETIC CONDITIONS AT THE GOLD DEPOSITS IN THE NORTH KHENTEI GOLD BELT, CENTRAL NORTHERN MONGOLIA: IMPLICATIONS FOR OROGENIC TYPE MINERALIZATION." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-331766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khishgee, Chinbat, and Erdenebayar Oyun. "OROGENIC-TYPE GOLD MINERALIZATION AND GENETIC CONDITIONS: EXAMPLES FROM THE BOROO, GATSUURT AND ULAANBULAG GOLD DEPOSITS IN THE NORTH KHENTEI GOLD BELT, CENTRAL NORTHERN MONGOLIA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-280474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bedeaux, Pierre, Silvain Rafini, and Réal Daigneault. "SEISMIC FAILURE ALONG THE CADILLAC-LARDER LAKE FAULT ZONE AND ITS IMPLICATIONS ON THE DISTRIBUTION OF OROGENIC GOLD DEPOSITS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Linnan, Yanwen Tang, and Zhiwei Han. "Phapon gold deposit, Laos: A unique orogenic gold deposit with calcite as the main gold-bearing mineral." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gonzalez-Fonseca, Ana Liseth, Ricardo Vega-Granillo, and Jesus Roberto Vidal Solano. "GEOLOGY AND STRUCTURAL EVOLUTION OF THE SAN FRANCISCO OROGENIC GOLD DEPOSIT, SONORA, MEXICO." In 115th Annual GSA Cordilleran Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019cd-329739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ozsarac, Safak, and James A. Saunders. "QUARTZ TEXTURES AND MINERALIZATION OF IGNEOUS-ROCK HOSTED OROGENIC GOLD DEPOSIT AT HOG MOUNTAIN, TALLAPOOSA COUNTY, ALABAMA." In 65th Annual Southeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016se-273884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stromberg, J. M., Erik Barr, Lisa VanLoon, and Neil R. Banerjee. "GEOCHEMISTRY OF THE DOME MINE ANKERITE VEINS; INSIGHTS INTO FLUID FLOW PATHWAYS AND THE MULTI-STAGE ENRICHMENT OF A WORLD-CLASS OROGENIC GOLD DEPOSIT." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-307657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zaitcev, Albert I. "COMPOSITION AND AGE OF THE BASITIC DIKES OF THE NASTENKA SITE OF THE MALO-TARYNSKOYE OROGENIC GOLD DEPOSIT (VERKHOYANSK-KOLYMA FOLDED REGION, NORTHEAST RUSSIA)." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/1.1/s01.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Orogenic gold deposits"

1

Neyedley, K., J. J. Hanley, Z. Zajacz, and M. Fayek. Accessory mineral thermobarometry, trace element chemistry, and stable O isotope systematics, Mooshla Intrusive Complex (MIC), Doyon-Bousquet-LaRonde mining camp, Abitibi greenstone belt, Québec. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328986.

Full text
Abstract:
The Mooshla Intrusive Complex (MIC) is an Archean polyphase magmatic body located in the Doyon-Bousquet-LaRonde (DBL) mining camp of the Abitibi greenstone belt, Québec, that is spatially associated with numerous gold (Au)-rich VMS, epizonal 'intrusion-related' Au-Cu vein systems, and shear zone-hosted (orogenic?) Au deposits. To elucidate the P-T conditions of crystallization, and oxidation state of the MIC magmas, accessory minerals (zircon, rutile, titanite) have been characterized using a variety of analytical techniques (e.g., trace element thermobarometry). The resulting trace element and oxythermobarometric database for accessory minerals in the MIC represents the first examination of such parameters in an Archean magmatic complex in a world-class mineralized district. Mineral thermobarometry yields P-T constraints on accessory mineral crystallization consistent with the expected conditions of tonalite-trondhjemite-granite (TTG) magma genesis, well above peak metamorphic conditions in the DBL camp. Together with textural observations, and mineral trace element data, the P-T estimates reassert that the studied minerals are of magmatic origin and not a product of metamorphism. Oxygen fugacity constraints indicate that while the magmas are relatively oxidizing (as indicated by the presence of magmatic epidote, titanite, and anhydrite), zircon trace element systematics indicate that the magmas were not as oxidized as arc magmas in younger (post-Archean) porphyry environments. The data presented provides first constraints on the depth and other conditions of melt generation and crystallization of the MIC. The P-T estimates and qualitative fO2 constraints have significant implications for the overall model for formation (crystallization, emplacement) of the MIC and potentially related mineral deposits.
APA, Harvard, Vancouver, ISO, and other styles
2

Neyedley, K., J. J. Hanley, P. Mercier-Langevin, and M. Fayek. Ore mineralogy, pyrite chemistry, and S isotope systematics of magmatic-hydrothermal Au mineralization associated with the Mooshla Intrusive Complex (MIC), Doyon-Bousquet-LaRonde mining camp, Abitibi greenstone belt, Québec. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328985.

Full text
Abstract:
The Mooshla Intrusive Complex (MIC) is an Archean polyphase magmatic body located in the Doyon-Bousquet-LaRonde (DBL) mining camp of the Abitibi greenstone belt, Québec. The MIC is spatially associated with numerous gold (Au)-rich VMS, epizonal 'intrusion-related' Au-Cu vein systems, and shear zone-hosted (orogenic?) Au deposits. To elucidate genetic links between deposits and the MIC, mineralized samples from two of the epizonal 'intrusion-related' Au-Cu vein systems (Doyon and Grand Duc Au-Cu) have been characterized using a variety of analytical techniques. Preliminary results indicate gold (as electrum) from both deposits occurs relatively late in the systems as it is primarily observed along fractures in pyrite and gangue minerals. At Grand Duc gold appears to have formed syn- to post-crystallization relative to base metal sulphides (e.g. chalcopyrite, sphalerite, pyrrhotite), whereas base metal sulphides at Doyon are relatively rare. The accessory ore mineral assemblage at Doyon is relatively simple compared to Grand Duc, consisting of petzite (Ag3AuTe2), calaverite (AuTe2), and hessite (Ag2Te), while accessory ore minerals at Grand Duc are comprised of tellurobismuthite (Bi2Te3), volynskite (AgBiTe2), native Te, tsumoite (BiTe) or tetradymite (Bi2Te2S), altaite (PbTe), petzite, calaverite, and hessite. Pyrite trace element distribution maps from representative pyrite grains from Doyon and Grand Duc were collected and confirm petrographic observations that Au occurs relatively late. Pyrite from Doyon appears to have been initially trace-element poor, then became enriched in As, followed by the ore metal stage consisting of Au-Ag-Te-Bi-Pb-Cu enrichment and lastly a Co-Ni-Se(?) stage enrichment. Grand Duc pyrite is more complex with initial enrichments in Co-Se-As (Stage 1) followed by an increase in As-Co(?) concentrations (Stage 2). The ore metal stage (Stage 3) is indicated by another increase in As coupled with Au-Ag-Bi-Te-Sb-Pb-Ni-Cu-Zn-Sn-Cd-In enrichment. The final stage of pyrite growth (Stage 4) is represented by the same element assemblage as Stage 3 but at lower concentrations. Preliminary sulphur isotope data from Grand Duc indicates pyrite, pyrrhotite, and chalcopyrite all have similar delta-34S values (~1.5 � 1 permille) with no core-to-rim variations. Pyrite from Doyon has slightly higher delta-34S values (~2.5 � 1 permille) compared to Grand Duc but similarly does not show much core-to-rim variation. At Grand Duc, the occurrence of Au concentrating along the rim of pyrite grains and associated with an enrichment in As and other metals (Sb-Ag-Bi-Te) shares similarities with porphyry and epithermal deposits, and the overall metal association of Au with Te and Bi is a hallmark of other intrusion-related gold systems. The occurrence of the ore metal-rich rims on pyrite from Grand Duc could be related to fluid boiling which results in the destabilization of gold-bearing aqueous complexes. Pyrite from Doyon does not show this inferred boiling texture but shares characteristics of dissolution-reprecipitation processes, where metals in the pyrite lattice are dissolved and then reconcentrated into discrete mineral phases that commonly precipitate in voids and fractures created during pyrite dissolution.
APA, Harvard, Vancouver, ISO, and other styles
3

Ciufo, T. J., C. Yakymchuk, S. Lin, K. Jellicoe, and P. Mercier-Langevin. Hydrothermal alteration and vectors at the orogenic Island Gold deposit, Michipicoten Greenstone Belt, Wawa, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2018. http://dx.doi.org/10.4095/306443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jellicoe, K. M., S. Lin, T. J. Ciufo, C. Yakymchuk, and P. Mercier-Langevin. Structural controls and relative timing of events at the orogenic Island Gold deposit, Michipicoten Greenstone Belt, Wawa, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2018. http://dx.doi.org/10.4095/306442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mueller, C., S. J. Piercey, M. G. Babechuk, and D. Copeland. Stratigraphy and lithogeochemistry of the Goldenville horizon and associated rocks, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328990.

Full text
Abstract:
The Goldenville horizon in the Baie Verte Peninsula is an important stratigraphic horizon that hosts primary (Cambrian to Ordovician) exhalative magnetite and pyrite and was a chemical trap for younger (Silurian to Devonian) orogenic gold mineralization. The horizon is overlain by basaltic flows and volcaniclastic rocks, is intercalated with variably coloured argillites and cherts, and underlain by mafic volcaniclastic rocks; the entire stratigraphy is cut by younger fine-grained mafic dykes and coarser gabbro. Lithogeochemical signatures of the Goldenville horizon allow it to be divided into high-Fe iron formation (HIF; &amp;gt;50% Fe2O3), low-Fe iron formation (LIF; 15-50% Fe2O3), and argillite with iron minerals (AIF; &amp;lt;15% Fe2O3). These variably Fe-rich rocks have Fe-Ti-Mn-Al systematics consistent with element derivation from varying mineral contributions from hydrothermal venting and ambient detrital sedimentation. Post-Archean Australian Shale (PAAS)-normalized rare earth element (REE) signatures for the HIF samples have negative Ce anomalies and patterns similar to modern hydrothermal sediment deposited under oxygenated ocean conditions. The PAAS-normalized REE signatures of LIF samples have positive Ce anomalies, similar to hydrothermal sediment deposited under anoxic to sub-oxic conditions. The paradoxical Ce behaviour is potentially explained by the Mn geochemistry of the LIF samples. The LIF have elevated MnO contents (2.0-7.5 weight %), suggesting that Mn from hydrothermal fluids was oxidized in an oxygenated water column during hydrothermal venting, Mn-oxides then scavenged Ce from seawater, and these Mn-oxides were subsequently deposited in the hydrothermal sediment. The Mn-rich LIF samples with positive Ce anomalies are intercalated with HIF with negative Ce anomalies, both regionally and on a metre scale within drill holes. Thus, the LIF positive Ce anomaly signature may record extended and particle-specific scavenging rather than sub-oxic/redox-stratified marine conditions. Collectively, results suggest that the Cambro-Ordovician Taconic seaway along the Laurentian margin may have been completely or near-completely oxygenated at the time of Goldenville horizon deposition.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography