Journal articles on the topic 'Organoruthenium compounds Optical properties'

To see the other types of publications on this topic, follow the link: Organoruthenium compounds Optical properties.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Organoruthenium compounds Optical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Humphrey, Mark G., Bryce Lockhart-Gillett, Marek Samoc, Brian W. Skelton, Vicki-Anne Tolhurst, Allan H. White, Adele J. Wilson, and Brian F. Yates. "Synthesis, structure and optical limiting properties of organoruthenium–chalcogenide clusters." Journal of Organometallic Chemistry 690, no. 6 (March 2005): 1487–97. http://dx.doi.org/10.1016/j.jorganchem.2004.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parveen, Shahida, Kelvin K. H. Tong, Muhammad Khawar Rauf, Mario Kubanik, Muhammad Ashraf Shaheen, Tilo Söhnel, Stephen M. F. Jamieson, Muhammad Hanif, and Christian G. Hartinger. "Coordination Chemistry of Organoruthenium Compounds with Benzoylthiourea Ligands and their Biological Properties." Chemistry – An Asian Journal 14, no. 8 (February 14, 2019): 1262–70. http://dx.doi.org/10.1002/asia.201801798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tschan, Mathieu J. L., Younes Makoudi, Frédéric Chérioux, Frank Palmino, Isabelle Fabre-Francke, Saïd Sadki, and Georg Süss-Fink. "Grafting of Organoruthenium Oligomers on Quartz Substrates: Synthesis, Electrochemistry, Optical Properties, and AFM Investigations." Chemistry of Materials 19, no. 15 (July 2007): 3754–62. http://dx.doi.org/10.1021/cm070908p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Botta, C., R. Bosisio, G. Bongiovanni, A. Mura, and R. Tubino. "Optical properties of oligothiophene inclusion compounds." Synthetic Metals 84, no. 1-3 (January 1997): 535–36. http://dx.doi.org/10.1016/s0379-6779(97)80849-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mudryi, A. V., A. I. Patuk, I. A. Shakin, A. E. Kalmykov, S. F. Marenkin, and A. M. Raukhman. "Optical properties of AIIBV semiconductor compounds." Materials Chemistry and Physics 44, no. 2 (May 1996): 151–55. http://dx.doi.org/10.1016/0254-0584(95)01668-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schoenes, J., and W. Reim. "Magneto-optical properties of uranium compounds." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1371–76. http://dx.doi.org/10.1016/0304-8853(86)90860-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ismail, Lamia A., Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Reda F. M. Elshaarawy, Emad M. Gad, and W. N. El-Sayed. "Hybrid organoruthenium(II) complexes with thiophene-β-diketo-benzazole ligands: Synthesis, optical properties, CT-DNA interactions and anticancer activity." Journal of Organometallic Chemistry 949 (September 2021): 121960. http://dx.doi.org/10.1016/j.jorganchem.2021.121960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knyazev, Yu V., and Yu I. Kuz’min. "Optical Properties of YFe2 and TbFe2 Compounds." Physics of the Solid State 62, no. 7 (July 2020): 1132–35. http://dx.doi.org/10.1134/s1063783420070094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lange, P., H. Neff, M. Fearheiley, and K. J. Bachmann. "Optical Properties of CuInSe2 and Related Compounds." Journal of The Electrochemical Society 132, no. 9 (September 1, 1985): 2281–83. http://dx.doi.org/10.1149/1.2114335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hidaka, Chiharu, and Takeo Takizawa. "Optical properties of Sr1−xEuxGa2S4 mixed compounds." Journal of Physics and Chemistry of Solids 69, no. 2-3 (February 2008): 358–61. http://dx.doi.org/10.1016/j.jpcs.2007.07.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wahab, L. A., M. B. El-Den, A. A. Farrag, S. A. Fayek, and K. H. Marzouk. "Electrical and optical properties of chalcopyrite compounds." Journal of Physics and Chemistry of Solids 70, no. 3-4 (March 2009): 604–8. http://dx.doi.org/10.1016/j.jpcs.2008.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Andzelm, Jan, Adam M. Rawlett, Joshua A. Orlicki, James F. Snyder, and Kim K. Baldridge. "Optical Properties of Phthalocyanine and Naphthalocyanine Compounds." Journal of Chemical Theory and Computation 3, no. 3 (April 18, 2007): 870–77. http://dx.doi.org/10.1021/ct700017b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Reshak, Ali Hussain, Z. Charifi, and H. Baaziz. "Optical properties of some laves phases compounds." Current Opinion in Solid State and Materials Science 12, no. 3-4 (June 2008): 39–43. http://dx.doi.org/10.1016/j.cossms.2008.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yalcin, B. G., M. Ustundag, and M. Aslan. "Optical Properties of BN and BBi Compounds." Acta Physica Polonica A 125, no. 2 (January 2014): 574–76. http://dx.doi.org/10.12693/aphyspola.125.574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Baldanzi, A., E. Bellotti, and M. Goano. "Optical Properties of III-Nitride Ternary Compounds." physica status solidi (b) 228, no. 2 (November 2001): 425–28. http://dx.doi.org/10.1002/1521-3951(200111)228:2<425::aid-pssb425>3.0.co;2-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Borghesi, A., G. Guizzetti, and L. Nosenzo. "Optical properties of some AB2X4 layered compounds." Progress in Crystal Growth and Characterization 13, no. 2 (January 1986): 97–103. http://dx.doi.org/10.1016/0146-3535(86)90031-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kübler, J. "Calculated magneto-optical properties of metallic compounds." Journal of Physics and Chemistry of Solids 56, no. 11 (November 1995): 1529–33. http://dx.doi.org/10.1016/0022-3697(95)00124-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dagys, R., G. J. Babonas, G. Pukinskas, and L. Leonyuk. "Optical properties of Bi2Sr2CaCu2O8+δ-type compounds." Solid State Communications 79, no. 11 (September 1991): 955–57. http://dx.doi.org/10.1016/0038-1098(91)90450-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hurly, J., and P. T. Wedepohl. "Optical properties of coloured platinum intermetallic compounds." Journal of Materials Science 28, no. 20 (October 1993): 5648–53. http://dx.doi.org/10.1007/bf00367841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yang, Sze-Ming, Hsin Juan Chen, and Jiann Shen Lin. "Optical Properties of Model Compounds of Polyaniline." Journal of the Chinese Chemical Society 35, no. 1 (February 1988): 39–44. http://dx.doi.org/10.1002/jccs.198800006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cuccioloni, Massimiliano, Valentina Cecarini, Laura Bonfili, Riccardo Pettinari, Alessia Tombesi, Noemi Pagliaricci, Laura Petetta, Mauro Angeletti, and Anna Maria Eleuteri. "Enhancing the Amyloid-β Anti-Aggregation Properties of Curcumin via Arene-Ruthenium(II) Derivatization." International Journal of Molecular Sciences 23, no. 15 (August 5, 2022): 8710. http://dx.doi.org/10.3390/ijms23158710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Alzheimer’s disease (AD) is a fatal neurodegenerative disorder associated with severe dementia, progressive cognitive decline, and irreversible memory loss. Although its etiopathogenesis is still unclear, the aggregation of amyloid-β (Aβ) peptides into supramolecular structures and their accumulation in the central nervous system play a critical role in the onset and progression of the disease. On such a premise, the inhibition of the early stages of Aβ aggregation is a potential prevention strategy for the treatment of AD. Since several natural occurring compounds, as well as metal-based molecules, showed promising inhibitory activities toward Aβ aggregation, we herein characterized the interaction of an organoruthenium derivative of curcumin with Aβ(1–40) and Aβ(1–42) peptides, and we evaluated its ability to inhibit the oligomerization/fibrillogenesis processes by combining in silico and in vitro methods. In general, besides being less toxic to neuronal cells, the derivative preserved the amyloid binding ability of the parent compound in terms of equilibrium dissociation constants but (most notably) was more effective both in retarding the formation and limiting the size of amyloid aggregates by virtue of a higher hindering effect on the amyloid–amyloid elongation surface. Additionally, the complex protected neuronal cells from amyloid toxicity.
22

Díaz-García, María A. "Nonlinear optical properties of phthalocyanines and related compounds." Journal of Porphyrins and Phthalocyanines 13, no. 04n05 (April 2009): 652–67. http://dx.doi.org/10.1142/s1088424609000784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper aims to review the advances achieved in the field of nonlinear optics in relation to phthalocyanines and other related compounds. The main focus is on electronic nonlinear processes, such as second- and third-harmonic generation, and mostly on the work performed by Portuguese and Spanish research groups. Several aspects in which these teams were pioneers are described in more detail. In particular, they performed numerous experiments in solution, thanks to their synthetic efforts in preparing soluble compounds, thus enabling the determination of the nonlinear parameters at a molecular level. They also measured for the first time the real and imaginary components (i.e. the magnitude and the phase) of the nonlinear parameters of phthalocyanines and, in some cases, their frequency dispersion behavior. Such detailed studies allow for the elaboration of microscopic models to identify the electronic levels involved in nonlinear processes. Some Spanish groups were also pioneers in the characterization of the nonlinear optical properties of unsymmetrically substituted phthalocyanines and other related compounds, such as triazolehemiporphyrazines and subphthalocyanines.
23

Knyazev, Yu V., A. V. Lukoyanov, Yu I. Kuz'min, and V. S. Gaviko. "Electronic structure and optical properties of GdNi2Mnx compounds." Low Temperature Physics 44, no. 2 (February 2018): 157–61. http://dx.doi.org/10.1063/1.5020912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gazhulina, Anastasia P., and Mikhail O. Marychev. "B3 andB20 compounds: pseudosymmetry and nonlinear optical properties." Acta Crystallographica Section A Foundations and Advances 71, a1 (August 23, 2015): s322. http://dx.doi.org/10.1107/s2053273315095157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Yuanzuo, Jing Li, Runzhou Su, and Jingang Cui. "Nonlinear optical properties of dihydrobenzothiazolylidene and dihydroquinoinylidene compounds." Optical Materials 36, no. 2 (December 2013): 437–43. http://dx.doi.org/10.1016/j.optmat.2013.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kučera, M., and P. Hasa. "Magneto-optical properties of UxY1−xFe10Si2 intermetallic compounds." Journal of Magnetism and Magnetic Materials 316, no. 2 (September 2007): e466-e469. http://dx.doi.org/10.1016/j.jmmm.2007.02.182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Benia, H. M., M. Guemmaz, G. Schmerber, A. Mosser, and J. C. Parlebas. "Optical and electrical properties of sputtered ZrN compounds." Catalysis Today 89, no. 3 (March 2004): 307–12. http://dx.doi.org/10.1016/j.cattod.2003.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Schoenes, J. "Optical and electrical transport properties of actinide compounds." Journal of the Less Common Metals 121 (July 1986): 87–96. http://dx.doi.org/10.1016/0022-5088(86)90518-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Delin, Anna, Olle Eriksson, Rajeev Ahuja, Börje Johansson, M. S. S. Brooks, Thomas Gasche, Sushil Auluck, and J. M. Wills. "Optical properties of the group-IVBrefractory metal compounds." Physical Review B 54, no. 3 (July 15, 1996): 1673–81. http://dx.doi.org/10.1103/physrevb.54.1673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Balykina, E. A., E. A. Ganshina, G. S. Krinchik, A. Yu Trifonov, and I. O. Troyanchuk. "Magneto-optical properties of new manganese oxide compounds." Journal of Magnetism and Magnetic Materials 117, no. 1-2 (November 1992): 259–69. http://dx.doi.org/10.1016/0304-8853(92)90319-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Stankiewicz, Jolanta, and Juan Bartolomé. "Magnetotransport properties of compounds." Journal of Magnetism and Magnetic Materials 290-291 (April 2005): 1172–76. http://dx.doi.org/10.1016/j.jmmm.2004.11.571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jun, CHEN, WANG Shuang-Qing, and YANG Guo-Qiang. "Nonlinear Optical Limiting Properties of Organic Metal Phthalocyanine Compounds." Acta Physico-Chimica Sinica 31, no. 4 (2015): 595–611. http://dx.doi.org/10.3866/pku.whxb201502023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shan, Y. Ding and Jing. "Optical and electronic properties of organoboron compounds in solvent." Journal of Atomic and Molecular Sciences 8, no. 2 (June 2017): 63–69. http://dx.doi.org/10.4208/jams.071917.091517a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Itahara, Hiroshi, and Hideyuki Nakano. "Synthesis and optical properties of two-dimensional nanosilicon compounds." Japanese Journal of Applied Physics 56, no. 5S1 (February 16, 2017): 05DA02. http://dx.doi.org/10.7567/jjap.56.05da02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gong, Lijing, Cheng Ma, Jian Zhang, Xiangyu Zhang, and Kun Jin. "Optical and NLO properties of zigzag carbon nanobelt compounds." Journal of Molecular Structure 1244 (November 2021): 130936. http://dx.doi.org/10.1016/j.molstruc.2021.130936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Marinescu, Maria, Ludmila-Otilia Cinteză, and Irina Zarafu. "Synthesis of some Heterocyclic Compounds with Nonlinear Optical Properties." Proceedings 57, no. 1 (November 9, 2020): 3. http://dx.doi.org/10.3390/proceedings2020057003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Domondon, Andrew, Yoshinori Iketaki, Koumei Nagai, Yu Sato, and Tsutomu Watanabe. "Optical Properties of Carbon Compounds Near the K-edge." IEEJ Transactions on Electronics, Information and Systems 127, no. 9 (2007): 1340–41. http://dx.doi.org/10.1541/ieejeiss.127.1340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Breitzer, Jonathan G., Dana D. Dlott, Lawrence K. Iwaki, Sean M. Kirkpatrick, and Thomas B. Rauchfuss. "Third-Order Nonlinear Optical Properties of Sulfur-Rich Compounds." Journal of Physical Chemistry A 103, no. 35 (September 1999): 6930–37. http://dx.doi.org/10.1021/jp990137f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bulatetskaya, L. V., V. V. Bozhko, G. E. Davidyuk, and O. V. Parasyuk. "Optical and photoelectrical properties of AgCd2GaS4 single-crystal compounds." Semiconductors 42, no. 5 (May 2008): 508–13. http://dx.doi.org/10.1134/s1063782608050035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Khenata, R., B. Daoudi, M. Sahnoun, H. Baltache, M. Rérat, A. H. Reshak, B. Bouhafs, H. Abid, and M. Driz. "Structural, electronic and optical properties of fluorite-type compounds." European Physical Journal B 47, no. 1 (September 2005): 63–70. http://dx.doi.org/10.1140/epjb/e2005-00301-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Doğan, Kübra, Aybüke Gülkaya, Mehrdad Forough, and Özgül Persil Çetinkol. "Novel Fluorescent Azacyanine Compounds: Improved Synthesis and Optical Properties." ACS Omega 5, no. 36 (August 31, 2020): 22874–82. http://dx.doi.org/10.1021/acsomega.0c02202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Essaidi, Z., J. Niziol, and B. Sahraoui. "Azo-azulene based compounds-nonlinear optical and photorefractive properties." Optical Materials 33, no. 9 (July 2011): 1387–90. http://dx.doi.org/10.1016/j.optmat.2011.02.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

HALILOV, S. V., and R. FEDER. "THEORY OF OPTICAL AND MAGNETOOPTICAL PROPERTIES OF INVAR COMPOUNDS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 683–86. http://dx.doi.org/10.1142/s0217979293001438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The frequency-dependent optical conductivity tensor for ferromagnetic transition metal compounds is determined in a theoretical framework, in which spin-orbit interaction and ferromagnetic exchange interaction are included on an equal footing. The interplay of the latter two mechanisms manifests itself in substantial modifications of the diagonal tensor components and the appearance of offdiagonal components, and thereby in optical and magnetooptical properties. Numerical calculations for Fe3Pt using a “high-spin” model yield a polar Kerr rotation angle in good agreement with experimental data, Results for the diagonal tensor components reveal very pronounced differences between assumed ”high-spin” and ”low-spin” models of Fe3Pt. We conclude that specific experimental studies should be able to provide more information on the still not completely resolved issue of the nature of the INVAR mechanism in Fe3Pt.
44

Kang, Ji Hoon, and Kwang Joo Kim. "Structural, optical, and electronic properties of cubic TiNx compounds." Journal of Applied Physics 86, no. 1 (July 1999): 346–50. http://dx.doi.org/10.1063/1.370736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jung, Eilho, Seokbae Lee, Seulki Roh, Xiuqing Meng, Sefaattin Tongay, Jihoon Kang, Tuson Park, and Jungseek Hwang. "Optical properties of NbCl5 and ZnMg intercalated graphite compounds." Journal of Physics D: Applied Physics 47, no. 48 (November 13, 2014): 485304. http://dx.doi.org/10.1088/0022-3727/47/48/485304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Spitaler, J., E. Ya. Sherman, C. Ambrosch-Draxl, and H. G. Evertz. "Optical Properties and Raman Scattering of Vanadium Ladder Compounds." Physica Scripta T109 (2004): 159. http://dx.doi.org/10.1238/physica.topical.109a00159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ferreira da Silva, A., I. Pepe, C. Persson, J. Souza de Almeida, C. Moys�s Ara�jo, R. Ahuja, B. Johansson, C. Y. An, and J. H. Guo. "Optical Properties of Oxide Compounds PbO, SnO2 and TiO2." Physica Scripta T109 (2004): 180. http://dx.doi.org/10.1238/physica.topical.109a00180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Županović, P., A. Bjeliš, and S. Barišić. "Crystal stability and optical properties of organic chain compounds." Europhysics Letters (EPL) 45, no. 2 (January 15, 1999): 188–94. http://dx.doi.org/10.1209/epl/i1999-00145-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gierschner, J., L. Lüer, D. Oelkrug, E. Musluoğlu, B. Behnisch, and M. Hanack. "Preparation and Optical Properties of Oligophenylenevinylene/Perhydrotriphenylene Inclusion Compounds." Advanced Materials 12, no. 10 (May 2000): 757–61. http://dx.doi.org/10.1002/(sici)1521-4095(200005)12:10<757::aid-adma757>3.0.co;2-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kagaya, H. Matsuo, and T. Soma. "Thermal Properties of Tetrahedral Compounds." physica status solidi (b) 142, no. 2 (August 1, 1987): 411–16. http://dx.doi.org/10.1002/pssb.2221420210.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography