Academic literature on the topic 'Organoruthenium compounds Optical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organoruthenium compounds Optical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Organoruthenium compounds Optical properties":

1

Humphrey, Mark G., Bryce Lockhart-Gillett, Marek Samoc, Brian W. Skelton, Vicki-Anne Tolhurst, Allan H. White, Adele J. Wilson, and Brian F. Yates. "Synthesis, structure and optical limiting properties of organoruthenium–chalcogenide clusters." Journal of Organometallic Chemistry 690, no. 6 (March 2005): 1487–97. http://dx.doi.org/10.1016/j.jorganchem.2004.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parveen, Shahida, Kelvin K. H. Tong, Muhammad Khawar Rauf, Mario Kubanik, Muhammad Ashraf Shaheen, Tilo Söhnel, Stephen M. F. Jamieson, Muhammad Hanif, and Christian G. Hartinger. "Coordination Chemistry of Organoruthenium Compounds with Benzoylthiourea Ligands and their Biological Properties." Chemistry – An Asian Journal 14, no. 8 (February 14, 2019): 1262–70. http://dx.doi.org/10.1002/asia.201801798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tschan, Mathieu J. L., Younes Makoudi, Frédéric Chérioux, Frank Palmino, Isabelle Fabre-Francke, Saïd Sadki, and Georg Süss-Fink. "Grafting of Organoruthenium Oligomers on Quartz Substrates: Synthesis, Electrochemistry, Optical Properties, and AFM Investigations." Chemistry of Materials 19, no. 15 (July 2007): 3754–62. http://dx.doi.org/10.1021/cm070908p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Botta, C., R. Bosisio, G. Bongiovanni, A. Mura, and R. Tubino. "Optical properties of oligothiophene inclusion compounds." Synthetic Metals 84, no. 1-3 (January 1997): 535–36. http://dx.doi.org/10.1016/s0379-6779(97)80849-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mudryi, A. V., A. I. Patuk, I. A. Shakin, A. E. Kalmykov, S. F. Marenkin, and A. M. Raukhman. "Optical properties of AIIBV semiconductor compounds." Materials Chemistry and Physics 44, no. 2 (May 1996): 151–55. http://dx.doi.org/10.1016/0254-0584(95)01668-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schoenes, J., and W. Reim. "Magneto-optical properties of uranium compounds." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1371–76. http://dx.doi.org/10.1016/0304-8853(86)90860-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ismail, Lamia A., Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Reda F. M. Elshaarawy, Emad M. Gad, and W. N. El-Sayed. "Hybrid organoruthenium(II) complexes with thiophene-β-diketo-benzazole ligands: Synthesis, optical properties, CT-DNA interactions and anticancer activity." Journal of Organometallic Chemistry 949 (September 2021): 121960. http://dx.doi.org/10.1016/j.jorganchem.2021.121960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knyazev, Yu V., and Yu I. Kuz’min. "Optical Properties of YFe2 and TbFe2 Compounds." Physics of the Solid State 62, no. 7 (July 2020): 1132–35. http://dx.doi.org/10.1134/s1063783420070094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lange, P., H. Neff, M. Fearheiley, and K. J. Bachmann. "Optical Properties of CuInSe2 and Related Compounds." Journal of The Electrochemical Society 132, no. 9 (September 1, 1985): 2281–83. http://dx.doi.org/10.1149/1.2114335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hidaka, Chiharu, and Takeo Takizawa. "Optical properties of Sr1−xEuxGa2S4 mixed compounds." Journal of Physics and Chemistry of Solids 69, no. 2-3 (February 2008): 358–61. http://dx.doi.org/10.1016/j.jpcs.2007.07.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Organoruthenium compounds Optical properties":

1

Humphrey, Mark Graeme. "Aspects of organometallic chemistry, particularly metal alkynyl and cluster chemistry." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09SD/09sdh9267.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Includes bibliographical references. Details research carried out into the nonlinear optical properties of metal alkynyls, chiefly organoruthenium complexes, showing that these complexes can be designed to have very large NLO coefficients. Also demonstrates the utility of spectroscopic, electrochemical and copmutational aids as predictive tools for NLO materials. Also examines cluster synthesis, reactivity and physical properties using ruthenium clusters and hard-donor ligands, affording a series of cluster complrxes that provide structural models for industrially-important hydrotreating intermediates.
2

Lawrence, Heather Bunting Elizabeth. "Organometallic compounds with non-linear optical properties." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de, Almeida Katia Júlia. "Optical and Magnetic Properties of Copper(II) Compounds." Doctoral thesis, KTH, Teoretisk kemi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This thesis encloses quantum chemical calculations and applications of a response function formalism recently implemented within the framework of density functional theory. The optical and magnetic properties of copper(II) molecular systems are the main goal of this work. In this work, the visible and near-infrared electronic transitions, which have shown a key role in studies on electronic structure and structure-function relationships of copper compounds, were investigated in order to explore the correlation of the positions and intensities of these transitions with the geometrical structures and their molecular distortions. The evaluation of solvent effects on the absorption spectra were successfully achieved, providing accurate and inedit computational insight of these effects for copper(II) complexes. Electron Paramagnetic Resonance (EPR) parameters, that is, the electronic g tensor and the hyperfine coupling constants, are powerful spectroscopic properties for investigating paramagnetic systems and were thoroughly analysed in this work in different molecular systems. Relativistic corrections generated by spin-orbit interactions or by scalar relativistic effects were taken into account in all calculations. In addition, we have designed a methodology for accurate evaluation of the electronic g tensors and hyperfine coupling tensors as well as for evaluation of solvent effects on these properties. It is found that this methodology is able to provide reliable and accurate results for EPR parameters of copper(II) molecular systems. The spin polarization effects on EPR parameters of square planar copper(II) complexes were also considered, showing that these effects give rise to significant contributions to the hyperfine coupling tensor, whereas the electronic g tensor of these complexes are only marginally affected by these effects. The evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state has been also taken into account in this work. As a first application of the theory, the electronic g tensors of dihalogen anion radicals X$_2^-$ (X=F,~Cl,~Br,~I) have been investigated and the obtained results indicate that the spin--orbit interaction is responsible for the parallel component of the g tensor shift, while both the leading-order scalar relativistic and spin--orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. Overall, both optical and magnetic results show quantitative agreements with experiments, indicating that the methodologies employed form a practical way in study of copper(II) molecular systems including those of biological importance.
QC 20100714
4

de, Almeida Katia Júlia. "Optical and magnetic properties of copper(II) compounds /." Stockholm : Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rachford, Aaron A. "Designing and investigating molecular bistability in ruthenium dimethylsulfoxide complexes /." View abstract, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3286186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hissink, Catharina Everdina. "Silicon-Bridged donor-acceptor compounds: synthesis and nonlinear optical properties." [S.l. : [Groningen] : s.n.] ; [University Library Groningen] [Host], 1996. http://irs.ub.rug.nl/ppn/148933343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wijngaard, Jan Hendrik. "Magnetic and magneto-optical properties of some transition metal compounds." [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 1990. http://irs.ub.rug.nl/ppn/297971859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gunes, Mustafa. "Optical and electronic properties of nitrogen containing III-V compounds." Thesis, University of Essex, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The main aim of this project is to carry out a critical and in depth study of electrical, optical and magneto transport properties of nitrogen containing III-V compounds such as bulk InN, In-rich Inl-xGaxK, GaN/lnN/Ga)J and n- and p- modulation doped Galni'1As QWs. Various experimental results presented and discussed provide fundamental important physical and electronic understanding which does not exist in the current literature such as a Superconductivity Phase transition in Mg-doped and unintentionally doped InN and also magnetotransport properties of modulation doped dilute nitrides. The plausible mechanisms are discussed in detail to explain the existence of the superconductivity in Mg and undoped InN samples. The optical properties of MBE grown III-nitrides and III-V-nitrides samples were investigated using steady state photoluminescence, Raman spectroscopy and spectral photoconductivity techniques while electrical properties were determined with Hall and magnetotransport measurements at low temperature T=1.6 K. The composition dependence of Longitudinal Optical (LO) phonon energies in undoped and Mg doped Inl_xGaxN samples are determined using two independent techniques in the range of Ga fraction from x=O to x=56%. The techniques used are the Raman and the temperature dependent momentum relaxation measurements at high temperatures where LO phonon scattering dominates the transport. The first study of spectral photoconductivity in Mg-doped indium rich GaxIn1_xK is presented. Spectral photoconductivity have three broad peaks at hw =0.65, 1.0 and l.4 eV. It is claimed that Indium segregation in the material might have occurred giving rise to three broad peaks in the photoconductivity spectra. The temperature dependence of the photoconductivity peaks suggest strongly that minority carrier trapping occurs in the material and the trapping energy of Erh=103±15meV is comparable to the Mg activation energy for InN .
9

Tong, Ka Lap. "Electrical and optical properties of triphenylamine-based compounds and devices." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Exley, James Richard. "Electrical and optical properties of novel phthalocyanine compounds for sensor devices." Thesis, Sheffield Hallam University, 1995. http://shura.shu.ac.uk/7110/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
UV/visible spectrophotometry measurements, together with measurement of the temperature dependence of ac parameters G (conductance), C (capacitance) and tan (dielectric loss) for 20Hz 162K) relates to the distance of singlet states below the conduction band. The low temperature activation energy indicates hopping conduction between localised states close to the Fermi level. Visible optical absorption and transmission spectra are obtained for 50nm thick sublimed films of heavy fraction rare-earth [HF(pc)(pc*)], gadolinium [Gd(pc)(pc*)] and thulium [Tm(pc)(pc*)] bisphthalocyanine compounds when they have undergone the postdeposition treatments of voltage-cycling to blue, voltage cycling to red and annealing at 393K for one hour; also for untreated fluorochromium phthalocyanine. The different post-deposition treatments produce different effects on the absorption spectra; in the case of annealing, this is attributed to the phase changes occurring in the films. The changes due to the voltage cycling are believed to be a result of oxidation processes taking place in the materials. Absorption data are also analysed in order to obtain information regarding the dispersion of refractive index and dielectric constants within optical frequency range. Absorption data are analysed in terms of a well known power law, and a value of 2.3eV is found for the optical gap E0. in HF (pc)(pc*)

Books on the topic "Organoruthenium compounds Optical properties":

1

M, Roundhill D., and Fackler John P, eds. Optoelectronic properties of inorganic compounds. New York: Plenum Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sokolov, Vi͡acheslav I. Chirality and optical activity in organometallic compounds. New York: Gordon and Breach Science Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

V i atcheslav I. Sokolov. Chirality and optical activity in organometallic compounds. New York: Gordon and Breach Science Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wakaki, Moriaki. Physical properties and data of optical materials. Boca Raton, FL: CRC Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wakaki, Moriaki. Physical properties and data of optical materials. Boca Raton: CRC Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1932-, Weber Marvin J., ed. Selected papers on photoluminescence of inorganic solids. Bellingham, Wash: SPIE Optical Engineering Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

R, Vij D., ed. Luminescence of solids. New York: Plenum Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yamashita, Masahiro. Material Designs and New Physical Properties in MX- and MMX-Chain Compounds. Vienna: Springer Vienna, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Yue. Smart light-responsive materials: Azobenzene-containing polymers and liquid crystals. Hoboken, N.J: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1958-, Kuzyk Mark G., and Dirk Carl William 1954-, eds. Characterization techniques and tabulations for organic nonlinear optical materials. New York: Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Organoruthenium compounds Optical properties":

1

Steinemann, S. G., W. Wolf, and R. Podloucky. "Color and Optical Properties." In Intermetallic Compounds - Principles and Practice, 231–44. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470845856.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roundhill, D. Max. "Optical Sensors with Metal Ions." In Optoelectronic Properties of Inorganic Compounds, 317–47. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amirtharaj, P. M., and J. H. Burnett. "Optical properties of MCT." In Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, 133–79. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1109-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kershaw, Stephen V. "Metallo-Organic Materials for Optical Telecommunications." In Optoelectronic Properties of Inorganic Compounds, 349–406. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shi, S. "Nonlinear Optical Properties of Inorganic Clusters." In Optoelectronic Properties of Inorganic Compounds, 55–105. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bundesmann, C., R. Schmidt-Grund, and M. Schubert. "Optical Properties of ZnO and Related Compounds." In Transparent Conductive Zinc Oxide, 79–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73612-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gray, Gary M., and Christopher M. Lawson. "Structure-Property Relationships in Transition Metal-Organic Third-Order Nonlinear Optical Materials." In Optoelectronic Properties of Inorganic Compounds, 1–27. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eklund, P. C., M. H. Yang, and G. L. Doll. "Optical Properties of Donor-Type Graphite Intercalation Compounds." In Intercalation in Layered Materials, 257–70. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-5556-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van der Voort, D. "Luminescence of the Eu3+ Ion in Calcium Compounds." In Optical Properties of Excited States in Solids, 693. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3044-2_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Geserich, H. P. "Optical Investigations of One-Dimensional Inorganic Metals." In Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, 111–38. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-6926-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Organoruthenium compounds Optical properties":

1

Zawadzka, A., P. Plociennik, J. Strzelecki, Z. Lukasiak, K. Bartkiewicz, A. Korcala, and B. Sahraoui. "Optical properties of metallophthalocyanine compounds thin films." In 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE, 2012. http://dx.doi.org/10.1109/icton.2012.6253720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barachevsky, Valery A. "Photochromic organic compounds with polyfunctional properties." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Andrey Y. Chikishev, Victor N. Zadkov, and Alexei M. Zheltikov. SPIE, 1999. http://dx.doi.org/10.1117/12.340018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tutt, Lee W., Stephen W. McCahon, and Marvin B. Klein. "Optimization of optical limiting properties of organometallic cluster compounds." In Orlando '90, 16-20 April, edited by Rudolf Hartmann, M. J. Soileau, and Vijay K. Varadan. SPIE, 1990. http://dx.doi.org/10.1117/12.21681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Diaz-Garcia, Maria A., Gema Rojo, and Fernando Agullo-Lopez. "Third-order nonlinear optical properties of phthalocyanines and related compounds." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Mark G. Kuzyk. SPIE, 1998. http://dx.doi.org/10.1117/12.328179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shwetha, G., and V. Kanchana. "Optical properties of halide and oxide compounds including the excitonic effects." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4873004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

von Rottkay, Nik, Terry J. Richardson, Michael Rubin, J. Slack, Enrico Masetti, and G. Dautzenberg. "Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds." In Optical Science, Engineering and Instrumentation '97, edited by Carl M. Lampert, Claes G. Granqvist, Michael Graetzel, and Satyen K. Deb. SPIE, 1997. http://dx.doi.org/10.1117/12.279205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stenzel, Olaf, Andrei Lebedev, Raiko Jaehnig, Hartmut Kupfer, Thomas Pfeifer, and Steffen Wilbrandt. "Optical properties of heterogeneous thin solid films formed from inorganic and organic compounds." In International Symposium on Optical Science and Technology, edited by Akhlesh Lakhtakia, Werner S. Weiglhofer, and Russell F. Messier. SPIE, 2000. http://dx.doi.org/10.1117/12.390575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jans, Jan C., J. Petruzzello, J. M. Gaines, and Diego J. Olego. "Determination of the optical properties of II-VI compounds by spectroscopic ellipsometry." In Physical Concepts of Materials for Novel Optoelectronic Device Applications II, edited by Fabio Beltram and Erich Gornik. SPIE, 1993. http://dx.doi.org/10.1117/12.162742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bandrovskaya, I. K., I. P. Sharkany, Yu D. Shershun, Z. I. Batori-Tartsi, and S. Y. Hertz. "Optical properties of the bacteriorhodopsin films containing N, S, and Br compounds." In Holography, Correlation Optics, and Recording Materials, edited by Oleg V. Angelsky. SPIE, 1993. http://dx.doi.org/10.1117/12.165367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Papadopoulos, Manthos G., Aggelos Avramopoulos, George Maroulis, and Theodore E. Simos. "The Linear and Non-Linear Optical Properties of Some Noble Gas Compounds." In Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2827015.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Organoruthenium compounds Optical properties":

1

Lee, S. J. Optical and magneto-optical properties of single crystals of RFe{sub 2} (R = Gd, Tb, Ho, and Lu) and GdCo{sub 2} intermetallic compounds. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348925.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography