Journal articles on the topic 'Organici Volatili'

To see the other types of publications on this topic, follow the link: Organici Volatili.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Organici Volatili.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hong, Juan, Mikko Äijälä, Silja A. K. Häme, Liqing Hao, Jonathan Duplissy, Liine M. Heikkinen, Wei Nie, et al. "Estimates of the organic aerosol volatility in a boreal forest using two independent methods." Atmospheric Chemistry and Physics 17, no. 6 (March 31, 2017): 4387–99. http://dx.doi.org/10.5194/acp-17-4387-2017.

Full text
Abstract:
Abstract. The volatility distribution of secondary organic aerosols that formed and had undergone aging – i.e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase – was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40 % of the organics in particles were semi-volatile, 34 % were low-volatility organics and 26 % were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (ΔHVAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol−1 were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m∕z 43 (f43) and m∕z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when ΔHVAP = 80 kJ mol−1 was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16 % (R2) of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.
APA, Harvard, Vancouver, ISO, and other styles
2

Patoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis. "The role of organic condensation on ultrafine particle growth during nucleation events." Atmospheric Chemistry and Physics Discussions 14, no. 22 (December 9, 2014): 30761–98. http://dx.doi.org/10.5194/acpd-14-30761-2014.

Full text
Abstract:
Abstract. A new aerosol dynamics model (DMANx) has been developed that simulates the aerosol size/composition distribution and includes the condensation of organic vapors on nanoparticles through the implementation of the recently developed Volatility Basis Set framework. Simulations were performed for Hyytiala (Finland) and Finokalia (Greece), two locations with different organic sources where detailed measurements were available to constrain the new model. We investigate the effect of condensation of organics and chemical aging reactions of secondary organic aerosol (OA) on ultrafine particle growth and particle number concentration. This work highlights the importance of the pathways of oxidation of biogenic volatile organic compounds and the production of extremely low-volatility organics. At Hyytiala, organic condensation dominates the growth process of new particles. The low-volatility secondary OA contributes to particle growth during the early growth stage, but after a few hours most of the growth is due to semi-volatile secondary OA. At Finokalia, simulations show that organics have a complementary role to new particle growth contributing 45% to the total mass of new particles. Condensation of organics increases the number concentration of particles that can act as CCN (N100) by 13% at Finokalia and 25% at Hyytiala. The sensitivity of our results to the surface tension used is discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Patoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis. "The role of organic condensation on ultrafine particle growth during nucleation events." Atmospheric Chemistry and Physics 15, no. 11 (June 11, 2015): 6337–50. http://dx.doi.org/10.5194/acp-15-6337-2015.

Full text
Abstract:
Abstract. A new aerosol dynamics model (DMANx) has been developed that simulates aerosol size/composition distribution and includes the condensation of organic vapors on nanoparticles through the implementation of the recently developed volatility basis set framework. Simulations were performed for Hyytiälä (Finland) and Finokalia (Greece), two locations with different organic sources where detailed measurements were available to constrain the new model. We investigate the effect of condensation of organics and chemical aging reactions of secondary organic aerosol (SOA) precursors on ultrafine particle growth and particle number concentration during a typical springtime nucleation event in both locations. This work highlights the importance of the pathways of oxidation of biogenic volatile organic compounds and the production of extremely low volatility organics. At Hyytiälä, organic condensation dominates the growth process of new particles. The low-volatility SOA contributes to particle growth during the early growth stage, but after a few hours most of the growth is due to semi-volatile SOA. At Finokalia, simulations show that organics have a complementary role in new particle growth, contributing 45% to the total mass of new particles. Condensation of organics increases the number concentration of particles that can act as CCN (cloud condensation nuclei) (N100) by 13% at Finokalia and 25% at Hyytiälä during a typical spring day with nucleation. The sensitivity of our results to the surface tension used is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Jathar, S. H., M. A. Miracolo, A. A. Presto, N. M. Donahue, P. J. Adams, and A. L. Robinson. "Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust." Atmospheric Chemistry and Physics 12, no. 19 (October 4, 2012): 9025–40. http://dx.doi.org/10.5194/acp-12-9025-2012.

Full text
Abstract:
Abstract. We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Kays, Stanley J. "NON-ETHYLENE BIOLOGICALLY ACTIVE POSTHARVEST VOLATILES." HortScience 25, no. 9 (September 1990): 1180f—1180. http://dx.doi.org/10.21273/hortsci.25.9.1180f.

Full text
Abstract:
While we tend to think of postharvest volatiles as nitrogen, oxygen, carbon dioxide and ethylene, harvested products are actually exposed to thousands of volatile compounds. These volatiles are derived from both organic and inorganic sources, evolving from storage room walls, insulation, wrapping materials, combusted products, plants, animals, and a myriad of other sources. Plants alone manufacture a diverse array of secondary metabolizes (estimated to be as many as 400,000) of which many display some degree of volatility. We tend to be cognizant of volatiles when they represent distinct odors. A number of volatiles, however, have significant biological activity, and under appropriate conditions may effect postharvest quality. An overview of biologically active volatile compounds and their relation to postharvest quality will be presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, A. K. Y., K. L. Hayden, P. Herckes, W. R. Leaitch, J. Liggio, A. M. Macdonald, and J. P. D. Abbatt. "Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing." Atmospheric Chemistry and Physics 12, no. 15 (August 6, 2012): 7103–16. http://dx.doi.org/10.5194/acp-12-7103-2012.

Full text
Abstract:
Abstract. The water-soluble fractions of aerosol filter samples and cloud water collected during the Whistler Aerosol and Cloud Study (WACS 2010) were analyzed using an Aerodyne aerosol mass spectrometer (AMS). This is the first study to report AMS organic spectra of re-aerosolized cloud water, and to make direct comparison between the AMS spectra of cloud water and aerosol samples collected at the same location. In general, the mass spectra of aerosol were very similar to those of less volatile cloud organics. By using a photochemical reactor to oxidize both aerosol filter extracts and cloud water, we find evidence that fragmentation of water-soluble organics in aerosol increases their volatility during photochemical oxidation. By contrast, enhancement of AMS-measurable organic mass by up to 30% was observed during the initial stage of oxidation of cloud water organics, which was followed by a decline at the later stages of oxidation. These observations are in support of the general hypothesis that cloud water oxidation is a viable route for SOA formation. In particular, we propose that additional SOA material was produced by functionalizing dissolved organics via OH oxidation, where these dissolved organics are sufficiently volatile that they are not usually part of the aerosol. This work demonstrates that water-soluble organic compounds of intermediate volatility (IVOC), such as cis-pinonic acid, produced via gas-phase oxidation of monoterpenes, can be important aqueous-phase SOA precursors in a biogenic-rich environment.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, A. K. Y., K. L. Hayden, P. Herckes, W. R. Leaitch, J. Liggio, A. M. Macdonald, and J. P. D. Abbatt. "Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing." Atmospheric Chemistry and Physics Discussions 12, no. 2 (February 24, 2012): 6019–47. http://dx.doi.org/10.5194/acpd-12-6019-2012.

Full text
Abstract:
Abstract. The water-soluble fractions of aerosol samples and cloud water collected during Whistler Aerosol and Cloud Study (WACS 2010) were analyzed using an Aerodyne aerosol mass spectrometer (AMS). This is the first study to report AMS organic spectra of re-aerosolized cloud water, and to make direct comparison between the AMS spectra of cloud water and aerosol samples collected at the same location. In general, the aerosol and cloud organic spectra were very similar, indicating that the cloud water organics likely originated from secondary organic aerosol (SOA) formed nearby. By using a photochemical reactor to oxidize both aerosol filter extracts and cloud water, we find evidence that fragmentation of aerosol water-soluble organics increases their volatility during oxidation. By contrast, enhancement of AMS-measurable organic mass by up to 30% was observed during aqueous-phase photochemical oxidation of cloud water organics. We propose that additional SOA material was produced by functionalizing dissolved organics via OH oxidation, where these dissolved organics are sufficiently volatile that they are not usually part of the aerosol. This work points out that water-soluble organic compounds of intermediate volatility (IVOC), such as cis-pinonic acid, produced via gas-phase oxidation of monoterpenes, can be important aqueous-phase SOA precursors in a biogenic-rich environment.
APA, Harvard, Vancouver, ISO, and other styles
8

Jathar, S. H., M. A. Miracolo, A. A. Presto, P. J. Adams, and A. L. Robinson. "Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust." Atmospheric Chemistry and Physics Discussions 12, no. 4 (April 18, 2012): 9945–83. http://dx.doi.org/10.5194/acpd-12-9945-2012.

Full text
Abstract:
Abstract. We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.
APA, Harvard, Vancouver, ISO, and other styles
9

Grieshop, A. P., J. M. Logue, N. M. Donahue, and A. L. Robinson. "Laboratory investigation of photochemical oxidation of organic aerosol from wood fires – Part 1: Measurement and simulation of organic aerosol evolution." Atmospheric Chemistry and Physics Discussions 8, no. 4 (August 18, 2008): 15699–737. http://dx.doi.org/10.5194/acpd-8-15699-2008.

Full text
Abstract:
Abstract. Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in wood smoke by exposing diluted emissions from soft- and hard-wood fires to UV light in a smog chamber. Particle- and gas-phase concentrations were monitored with a suite of instruments including a Proton Transfer Reaction Mass Spectrometer (PTR-MS), an Aerosol Mass Spectrometer (AMS) and a thermodenuder to measure aerosol volatility. The measurements highlight how in-plume processing can lead to considerable evolution of the mass and volatility of biomass burning OA. Photochemical oxidation produced substantial new OA, increasing concentrations by a factor of 1.5 to 2.8 after several hours of exposure to typical summertime hydroxyl radical (OH) concentrations. Less than 20% of this new OA could be explained using the measured decay of traditional secondary organic aerosol (SOA) precursors and a state-of-the-art SOA model. Aging also created less volatile OA; at 50°C between 50 and 80% of the fresh primary OA evaporated but only 20 to 40% of aged OA. Therefore, the data provide additional evidence that primary OA is semivolatile. They also raise questions about the current approach used to simulate OA in chemical transport models, which assume that primary OA are non-volatile but that SOA is semivolatile. Predictions of a volatility basis-set model that explicitly tracks the partitioning and aging of low-volatile organics are compared to the chamber data. This model demonstrates that the OA production observed in these experiments can be explained by oxidation of low volatility organic vapors. The basis-set model can also simulate observed changes in OA volatility and composition, predicting the OA production and the increased oxygenation and decreased volatility of the OA.
APA, Harvard, Vancouver, ISO, and other styles
10

Apriyanto, Donni Kis, and Mitrayana Mitrayana. "SERAPAN SENYAWA ORGANIK VOLATIL SEBAGAI BIOMARKER PENYAKIT KANKER PARU: SUATU MINI REVIEW." Biomedika 12, no. 2 (August 30, 2020): 58–64. http://dx.doi.org/10.23917/biomedika.v12i2.10114.

Full text
Abstract:
ABSTRAKUlasan ini merupakan hasil studi literatur yang memberikan tinjauan umum serapan senyawa-senyawa organik volatil yang dianggap sebagai biomarker kanker paru. Senyawa-senyawa ini dapat menyerap pada panjang gelombang tertentu. Senyawa-senyawa organik volatil yang teridentifikasi didaftar dan dijabarkan panjang gelombang yang dapat mereka serap. Studi literatur ini menyajikan kelompok senyawa-senyawa organik volatil dapat menyerap pada rentang panjang gelombang inframerah. Hasil ulasan ini mungkin dapat bermanfaat untuk pengembangan skrinning kanker paru dengan menggunakan alat spektroskopi fotoakustik yang menggunakan sumber laser pada rentang panjang gelombang inframerah atau ultraviolet dengan memanfaatkan serapan panjang gelombang oleh senyawa-senyawa tertentu.Keyword: Biomarker Kanker Paru,Senyawa Organik Volatil, Spektroskopi ABSTRACTThis review is the result of a literature study that provides a general collection of volatile organic compounds (VOC) which are considered as markers for lung cancer. These compounds can absorb certain long waves. The volatile organic compounds identified are listed and described in wavelengths that they can absorb. Literature studies that produce volatile organic compounds in the analysis wavelength range. The results of this review may be useful for the development of lung cancer screening by photoacoustic spectroscopic devices that use laser sources in the range of infrared or ultraviolet wavelengths by utilizing wavelength absorb by certain compounds.Keyword: Lung Cancer Biomarker, Volatile Organic Compounds, Spectroscopy
APA, Harvard, Vancouver, ISO, and other styles
11

Raatikainen, T., P. Vaattovaara, P. Tiitta, P. Miettinen, J. Rautiainen, M. Ehn, M. Kulmala, A. Laaksonen, and D. R. Worsnop. "Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer." Atmospheric Chemistry and Physics 10, no. 4 (February 23, 2010): 2063–77. http://dx.doi.org/10.5194/acp-10-2063-2010.

Full text
Abstract:
Abstract. An Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) was deployed in Hyytiälä, a forested rural measurement site in southern Finland, during a 2-week measurement campaign in spring 2005. Q-AMS measures mass concentrations of non-refractory species including sulphate, nitrate, ammonium and organics from submicron particles. A positive matrix factorization method was used in identifying two oxygenated organic aerosol (OOA) groups from the measured total organic mass. The properties of these groups were estimated from their diurnal concentration cycles and correlations with additional data such as air mass history, particle number size distributions, hygroscopic and ethanol growth factors and particle volatility. It was found that the aged and highly oxidized background organic aerosol (OOA1 or LV-OOA) species have a wide range of hygroscopic growth factors and volatilization temperatures, but on the average OOA1 is the less volatile and more hygroscopic organic group. Hygroscopic properties and volatilities of the OOA1 species are correlated so that the less volatile species have higher hygroscopic growth factors. The other, less oxidized organic aerosol group (OOA2 or SV-OOA) is more volatile and non-hygroscopic. Trajectory analysis showed that OOA1 and the inorganic species are mainly long-range transported anthropogenic pollutions. OOA2 species and its precursor gases have short atmospheric life times, so they are from local sources. These results span the range of previous observations of oxygen content, volatility and hygroscopic growth factor, simultaneously coupling all three measurements for the first time.
APA, Harvard, Vancouver, ISO, and other styles
12

Poulain, L., W. Birmili, F. Canonaco, M. Crippa, Z. J. Wu, S. Nordmann, G. Spindler, A. S. H. Prévôt, A. Wiedensohler, and H. Herrmann. "Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany." Atmospheric Chemistry and Physics 14, no. 18 (September 23, 2014): 10145–62. http://dx.doi.org/10.5194/acp-14-10145-2014.

Full text
Abstract:
Abstract. In the fine-particle mode (aerodynamic diameter < 1 μm) non-volatile material has been associated with black carbon (BC) and low-volatile organics and, to a lesser extent, with sea salt and mineral dust. This work analyzes non-volatile particles at the tropospheric research station Melpitz (Germany), combining experimental methods such as a mobility particle-size spectrometer (3–800 nm), a thermodenuder operating at 300 °C, a multi-angle absorption photometer (MAAP), and an aerosol mass spectrometer (AMS). The data were collected during two atmospheric field experiments in May–June 2008 as well as February–March 2009. As a basic result, we detected average non-volatile particle–volume fractions of 11 ± 3% (2008) and 17 ± 8% (2009). In both periods, BC was in close linear correlation with the non-volatile fraction, but not sufficient to quantitatively explain the non-volatile particle mass concentration. Based on the assumption that BC is not altered by the heating process, the non-volatile particle mass fraction could be explained by the sum of black carbon (47% in summer, 59% in winter) and a non-volatile organic contribution estimated as part of the low-volatility oxygenated organic aerosol (LV-OOA) (53% in summer, 41% in winter); the latter was identified from AMS data by factor analysis. Our results suggest that LV-OOA was more volatile in summer (May–June 2008) than in winter (February–March 2009) which was linked to a difference in oxidation levels (lower in summer). Although carbonaceous compounds dominated the sub-μm non-volatile particle mass fraction most of the time, a cross-sensitivity to partially volatile aerosol particles of maritime origin could be seen. These marine particles could be distinguished, however from the carbonaceous particles by a characteristic particle volume–size distribution. The paper discusses the uncertainty of the volatility measurements and outlines the possible merits of volatility analysis as part of continuous atmospheric aerosol measurements.
APA, Harvard, Vancouver, ISO, and other styles
13

Gao, Chloe Y., Kostas Tsigaridis, and Susanne E. Bauer. "MATRIX-VBS (v1.0): implementing an evolving organic aerosol volatility in an aerosol microphysics model." Geoscientific Model Development 10, no. 2 (February 16, 2017): 751–64. http://dx.doi.org/10.5194/gmd-10-751-2017.

Full text
Abstract:
Abstract. The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.
APA, Harvard, Vancouver, ISO, and other styles
14

Cheung, Heidi H. Y., Haobo Tan, Hanbing Xu, Fei Li, Cheng Wu, Jian Z. Yu, and Chak K. Chan. "Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China." Atmospheric Chemistry and Physics 16, no. 13 (July 12, 2016): 8431–46. http://dx.doi.org/10.5194/acp-16-8431-2016.

Full text
Abstract:
Abstract. Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA) and an organic carbon/elemental carbon (OC ∕ EC) analyzer. Low volatility (LV) particles, with a volatility shrink factor (VSF) at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11–15 % of the 80–300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4 < VSF < 0.9) and high volatility (HV, VSF < 0.4) particles. The MV and HV particles contributed 57–71 % of number concentration for the particles between 40 and 300 nm in size. The average EC and OC concentrations measured by the OC ∕ EC analyzer were 3.4 ± 3.0 and 9.0 ± 6.0 µg m−3, respectively. Non-volatile OC evaporating at 475 °C or above, together with EC, contributed 67 % of the total carbon mass. In spite of the daily maximum and minimum, the diurnal variations in the volume fractions of the volatile material, HV, MV and LV residuals were less than 15 % for the 80–300 nm particles. Back trajectory analysis also suggests that over 90 % of the air masses influencing the sampling site were well aged as they were transported at low altitudes (below 1500 m) for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the sum of EC and non-volatile OC was conducted. It suggests that non-volatile OC, in addition to EC, was one of the components of the non-volatile residuals measured by the VTDMA in this study.
APA, Harvard, Vancouver, ISO, and other styles
15

Poulain, L., W. Birmili, F. Canonaco, M. Crippa, Z. J. Wu, S. Nordmann, G. Spindler, A. S. H. Prévôt, A. Wiedensohler, and H. Herrmann. "Chemical mass balance of refractory particles (<i>T</i>=300 °C) at the tropospheric research site Melpitz, Germany." Atmospheric Chemistry and Physics Discussions 13, no. 10 (October 16, 2013): 26981–7018. http://dx.doi.org/10.5194/acpd-13-26981-2013.

Full text
Abstract:
Abstract. In the fine particle mode (aerodynamic diameter <1 μm) refractory material has been associated with black carbon (BC) and low-volatile organics and, to a lesser extent, with sea salt and mineral dust. This work analyses refractory particles at the tropospheric research station Melpitz (Germany), combining experimental methods such as a mobility particle size spectrometer (3–800 nm), a thermodenuder operating at 300 °C, a multi-angle absorption photometer (MAAP), and an aerosol mass spectrometer (AMS). The data were collected during two atmospheric field experiments in May/June 2008 as well as February/March 2009. As a basic result, we detected average refractory particle volume fractions of 11±3% (2008) and 17±8% (2009). In both periods, BC was in close linear correlation with the refractory fraction, but not sufficient to quantitatively explain the refractory particle mass concentration. Based on the assumption that BC is not altered by the heating process, the refractory particle mass fraction could be explained by the sum of black carbon BC (47% in summer, 59% in winter) and a refractory organic contribution estimated as part of the Low-Volatility Oxygenated Organic Aerosol (LV-OOA) (53% in summer, 41% in winter); the latter was identified from AMS data by factor analysis. Our results suggest that organics were more volatile in summer (May–June 2008) than in winter (February/March 2009). Although carbonaceous compounds dominated the sub-μm refractory particle mass fraction most of the time, a cross-sensitivity to partially volatile aerosol particles of maritime origin could be seen. These marine particles could be distinguished, however, from the carbonaceous particles by a characteristic particle volume size distribution. The paper discusses the uncertainty of the volatility measurements and outlines the possible merits of volatility analysis as part of continuous atmospheric aerosol measurements.
APA, Harvard, Vancouver, ISO, and other styles
16

Lu, Quanyang, Yunliang Zhao, and Allen L. Robinson. "Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions." Atmospheric Chemistry and Physics 18, no. 23 (December 12, 2018): 17637–54. http://dx.doi.org/10.5194/acp-18-17637-2018.

Full text
Abstract:
Abstract. Emissions from mobile sources are important contributors to both primary and secondary organic aerosols (POA and SOA) in urban environments. We compiled recently published data to create comprehensive model-ready organic emission profiles for on- and off-road gasoline, gas-turbine, and diesel engines. The profiles span the entire volatility range, including volatile organic compounds (VOCs, effective saturation concentration C*=107–1011 µg m−3), intermediate-volatile organic compounds (IVOCs, C*=103–106 µg m−3), semi-volatile organic compounds (SVOCs, C*=1–102 µg m−3), low-volatile organic compounds (LVOCs, C*≤0.1 µg m−3) and non-volatile organic compounds (NVOCs). Although our profiles are comprehensive, this paper focuses on the IVOC and SVOC fractions to improve predictions of SOA formation. Organic emissions from all three source categories feature tri-modal volatility distributions (“by-product” mode, “fuel” mode, and “lubricant oil” mode). Despite wide variations in emission factors for total organics, the mass fractions of IVOCs and SVOCs are relatively consistent across sources using the same fuel type, for example, contributing 4.5 % (2.4 %–9.6 % as 10th to 90th percentiles) and 1.1 % (0.4 %–3.6 %) for a diverse fleet of light duty gasoline vehicles tested over the cold-start unified cycle, respectively. This consistency indicates that a limited number of profiles are needed to construct emissions inventories. We define five distinct profiles: (i) cold-start and off-road gasoline, (ii) hot-operation gasoline, (iii) gas-turbine, (iv) traditional diesel and (v) diesel-particulate-filter equipped diesel. These profiles are designed to be directly implemented into chemical transport models and inventories. We compare emissions to unburned fuel; gasoline and gas-turbine emissions are enriched in IVOCs relative to unburned fuel. The new profiles predict that IVOCs and SVOC vapour will contribute significantly to SOA production. We compare our new profiles to traditional source profiles and various scaling approaches used previously to estimate IVOC emissions. These comparisons reveal large errors in these different approaches, ranging from failure to account for IVOC emissions (traditional source profiles) to assuming source-invariant scaling ratios (most IVOC scaling approaches).
APA, Harvard, Vancouver, ISO, and other styles
17

Häkkinen, S. A. K., M. Äijälä, K. Lehtipalo, H. Junninen, J. Backman, A. Virkkula, T. Nieminen, et al. "Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland." Atmospheric Chemistry and Physics Discussions 12, no. 5 (May 2, 2012): 11201–44. http://dx.doi.org/10.5194/acpd-12-11201-2012.

Full text
Abstract:
Abstract. The volatility of atmospheric 20–500 nm aerosol particles was investigated at a boreal forest site in Hyytiälä, Finland. Measurements were performed continuously between January 2008 and May 2010. The ambient aerosol sample was heated step-wise to six temperatures ranging from 80 °C to 280 °C and the total mass concentration of aerosol particles was determined from the measured particle number size distributions before and after heating assuming particle density of 1.6 g cm−3. On average 19% of the total aerosol mass stayed in the condensed phase even after heating to 280 °C. The observed non-volatile residual at 280 °C had a seasonal pattern; during winter the aerosol mass fraction remaining after heating was the highest and during summer the lowest. Black carbon concentrations correlated positively with the non-volatile fraction of the aerosol, but could not explain the presence of the non-volatile material completely: most of the time a notable fraction of the non-volatile residual was something else than black carbon. Using additional information on ambient meteorological conditions and trajectories, and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of the non-volatile residual and its seasonal behavior was further examined. During winter and spring months the non-volatile mass fraction had a marked positive linear correlation with pollutant trace gases, such as CO, SO2 and NOx. This suggests an anthropogenic influence on the non-volatile fraction of the aerosol in winter and spring. The anthropogenic effect on the formation of the low-volatility material was furthermore supported by observed correlation between the non-volatile residual and the mass fractions of poly-aromatic hydrocarbons (PAHs) sampled simultaneously at the site. During the fall the aerosol particles had relatively more non-volatile material in them when the aerosol mass fractions of organic nitrate and organics in the AMS data were high, and when the measurement site was influenced by clean air masses passing over the forest. Thus, the existence of very low volatile organic nitrates in the aerosol phase can be speculated.
APA, Harvard, Vancouver, ISO, and other styles
18

Chinnasamy, G. P., S. Sundareswaran, K. S. Subramaniyan, K. Raja, P. R. Renganayaki, and S. Marimuthu. "Volatile organic compound analysis as advanced technology to detect seed quality in groundnut." Journal of Applied and Natural Science 14, no. 3 (September 16, 2022): 885–94. http://dx.doi.org/10.31018/jans.v14i3.3617.

Full text
Abstract:
An experiment was conducted to profiling the volatile organic compounds emitted from groundnut seeds during storage and also to assess the volatiles emission level during seed deterioration. Volatile organic compounds profiling of stored groundnut seeds was done through GC-MS at monthly intervals. The results showed that several volatile compounds were released from stored groundnut seeds and all the compounds are falling into eight major groups viz., alcohols, aldehydes, acids, esters, alkanes, alkenes, ketones and ethers. The study clearly demonstrated the influence of volatile organic compounds emission level on physiological and biochemical properties during storage. There was a significant decrease in physiological and biochemical quality attributes noted due to an increase in the strength of volatiles released during ageing. When the release of total volatile strength reached more than 50%, a significant reduction in physiological attributes such as germination, root and shoot length, dry matter production and vigour index were observed. With respect to biochemical properties, a significant increase in electrical conductivity of seed leachate, lipid peroxidation and lipoxygenase activity, and a decrease in dehydrogenase, catalase and peroxidase activities were observed. However, the highest reduction in all these properties was recorded when the total volatile strength reached 92.72%. The study concluded that the volatiles released during seed deterioration could be considered the signature components for detecting the seed quality during storage.
APA, Harvard, Vancouver, ISO, and other styles
19

Huang, Wei, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Thomas Leisner, and Claudia Mohr. "Seasonal characteristics of organic aerosol chemical composition and volatility in Stuttgart, Germany." Atmospheric Chemistry and Physics 19, no. 18 (September 19, 2019): 11687–700. http://dx.doi.org/10.5194/acp-19-11687-2019.

Full text
Abstract:
Abstract. The chemical composition and volatility of organic aerosol (OA) particles were investigated during July–August 2017 and February–March 2018 in the city of Stuttgart, one of the most polluted cities in Germany. Total non-refractory particle mass was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; hereafter AMS). Aerosol particles were collected on filters and analyzed in the laboratory with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS; hereafter CIMS), yielding the molecular composition of oxygenated OA (OOA) compounds. While the average organic mass loadings are lower in the summer period (5.1±3.2 µg m−3) than in the winter period (8.4±5.6 µg m−3), we find relatively larger mass contributions of organics measured by AMS in summer (68.8±13.4 %) compared to winter (34.8±9.5 %). CIMS mass spectra show OOA compounds in summer have O : C of 0.82±0.02 and are more influenced by biogenic emissions, while OOA compounds in winter have O : C of 0.89±0.06 and are more influenced by biomass burning emissions. Volatility parametrization analysis shows that OOA in winter is less volatile with higher contributions of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs). We partially explain this by the higher contributions of compounds with shorter carbon chain lengths and a higher number of oxygen atoms, i.e., higher O : C in winter. Organic compounds desorbing from the particles deposited on the filter samples also exhibit a shift of signal to higher desorption temperatures (i.e., lower apparent volatility) in winter. This is consistent with the relatively higher O : C in winter but may also be related to higher particle viscosity due to the higher contributions of larger-molecular-weight LVOCs and ELVOCs, interactions between different species and/or particles (particle matrix), and/or thermal decomposition of larger molecules. The results suggest that whereas lower temperature in winter may lead to increased partitioning of semi-volatile organic compounds (SVOCs) into the particle phase, this does not result in a higher overall volatility of OOA in winter and that the difference in sources and/or chemistry between the seasons plays a more important role. Our study provides insights into the seasonal variation of the molecular composition and volatility of ambient OA particles and into their potential sources.
APA, Harvard, Vancouver, ISO, and other styles
20

Slowik, J. G., J. P. S. Wong, and J. P. D. Abbatt. "Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol." Atmospheric Chemistry and Physics Discussions 12, no. 3 (March 26, 2012): 8183–224. http://dx.doi.org/10.5194/acpd-12-8183-2012.

Full text
Abstract:
Abstract. The chemical complexity of atmospheric organic aerosol (OA) requires novel methods for characterization of its components and description of its atmospheric processing-induced transformations. We present the first field deployment of the Toronto Photooxidation Tube (TPOT), a field-deployable flow reactor for the controlled exposure of ambient aerosol to OH radicals. The system alternates between sampling of (1) unreacted ambient aerosol, (2) aerosol subjected to a ~4 °C temperature increase, and (3) aerosol that is both heated and oxidized by OH. This allows both characterization of the aging process and classification of aerosol in terms of its volatility and reaction-based properties. Summertime measurements by an aerosol mass spectrometer coupled to the TPOT were performed in the remote forest of Western Canada, resulting in aerosol dominated by biogenic secondary organic aerosol. Volatilization resulted in an approximately 10 to 25% decrease in organic mass and resulted in a slight increase in oxygenation. OH oxidation resulted in a further organic mass decrease (additional ~25%) and yielded an aerosol with O:C values comparable to those characteristic of low volatility, highly oxygenated OA. Most OH-induced changes occurred within the equivalent of ~3 days of atmospheric processing, with further reactions generally proceeding at a greatly reduced rate. Positive matrix factorization (PMF) analysis of the TPOT data yielded five factors. One factor is related to primary biomass burning organic aerosol, while the others describe oxygenated organic aerosol (OOA) components in terms of reactivity and volatility: (1) volatile and reactive; (2) non-volatile and reactive; (3) non-volatile and reactive early-generation product; (4) non-volatile and non-reactive product. This PMF classification of aerosol components directly in terms of reactivity and volatility is enabled by the TPOT-modulated perturbation of aerosol composition, and is not otherwise accessible. The particle-phase reaction end products have mass spectra similar to the low-volatility oxygenated organic aerosol (LV-OOA) factors widely reported in the literature, providing supporting evidence for aged organic aerosol formation from OH-driven oxidation processes.
APA, Harvard, Vancouver, ISO, and other styles
21

Karnezi, E., I. Riipinen, and S. N. Pandis. "Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis." Atmospheric Measurement Techniques Discussions 7, no. 1 (January 28, 2014): 859–93. http://dx.doi.org/10.5194/amtd-7-859-2014.

Full text
Abstract:
Abstract. Organic compounds represent a significant fraction of submicrometer atmospheric aerosol mass. Even if most of these compounds are semi-volatile in atmospheric concentrations, the ambient organic aerosol volatility is quite uncertain. The most common volatility measurement method relies on the use of a thermodenuder (TD). The aerosol passes through a heated tube where its more volatile components evaporate leaving the less volatile behind in the particulate phase. The typical result of a~thermodenuder measurement is the mass fraction remaining (MFR), which depends among other factors on the organic aerosol (OA) vaporization enthalpy and the accommodation coefficient. We use a new method combining forward modeling, introduction of "experimental" error and inverse modeling with error minimization for the interpretation of TD measurements. The OA volatility distribution, its effective vaporization enthalpy, the mass accommodation coefficient and the corresponding uncertainty ranges are calculated. Our results indicate that existing TD-based approaches quite often cannot estimate reliably the OA volatility distribution, leading to large uncertainties, since there are many different combinations of the three properties that can lead to similar thermograms. We propose an improved experimental approach combining TD and isothermal dilution measurements. We evaluate this experimental approach using the same model and show that it is suitable for studies of OA volatility in the lab and the field.
APA, Harvard, Vancouver, ISO, and other styles
22

Adebesin, Funmilayo, Joshua R. Widhalm, Benoît Boachon, François Lefèvre, Baptiste Pierman, Joseph H. Lynch, Iftekhar Alam, et al. "Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter." Science 356, no. 6345 (June 29, 2017): 1386–88. http://dx.doi.org/10.1126/science.aan0826.

Full text
Abstract:
Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of aPetunia hybridaadenosine triphosphate–binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport.PhABCG1down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission.
APA, Harvard, Vancouver, ISO, and other styles
23

Xu, Weiqi, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, et al. "Summertime aerosol volatility measurements in Beijing, China." Atmospheric Chemistry and Physics 19, no. 15 (August 13, 2019): 10205–16. http://dx.doi.org/10.5194/acp-19-10205-2019.

Full text
Abstract:
Abstract. Volatility plays a key role in affecting mass concentrations and the lifetime of aerosol particles in the atmosphere, yet our knowledge of aerosol volatility in relatively polluted environment, e.g., north China, remains poor. Here aerosol volatility in Beijing in summer 2017 and 2018 was measured using a thermodenuder (TD) coupled with an Aerodyne high-resolution aerosol mass spectrometer (AMS) and a soot particle AMS. Our results showed overall similar thermograms for most non-refractory aerosol species compared with those reported in previous studies. However, high mass fraction remaining and NO+/NO2+ ratio for chloride and nitrate, each above 200 ∘C, indicated the presence of considerable metallic salts and organic nitrates in Beijing. The volatility distributions of organic aerosol (OA) and four OA factors that were resolved from positive matrix factorization were estimated using a mass transfer model. The ambient OA comprised mainly semi-volatile organic compounds (SVOCs; 63 %) with an average effective saturation concentration (C*) of 0.55 µg m−3, suggesting overall more volatile properties than OA in megacities of Europe and the US. Further analysis showed that the freshly oxidized secondary OA was the most volatile OA factor (SVOC = 70 %) followed by hydrocarbon-like OA (HOA). In contrast, the volatility of more oxidized oxygenated OA (MO-OOA) was comparable to that of cooking OA with SVOC on average accounting for 60.2 %. We also compared the volatility of ambient and black-carbon-containing OA. Our results showed that the BC-containing primary OA (POA) was much more volatile than ambient POA (C*=0.69 µg m−3 vs. 0.37 µg m−3), while the BC-containing SOA was much less volatile, highlighting the very different composition and properties between BC-containing and ambient aerosol particles.
APA, Harvard, Vancouver, ISO, and other styles
24

Raatikainen, T., P. Vaattovaara, P. Tiitta, P. Miettinen, J. Rautiainen, M. Ehn, M. Kulmala, A. Laaksonen, and D. R. Worsnop. "Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer." Atmospheric Chemistry and Physics Discussions 9, no. 5 (October 19, 2009): 21847–89. http://dx.doi.org/10.5194/acpd-9-21847-2009.

Full text
Abstract:
Abstract. An Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) was deployed in Hyytiälä, a forested rural measurement site in southern Finland, during a 2-week measurement campaign in spring 2005. Q-AMS measures mass concentrations of non-refractory species including sulphate, nitrate, ammonium and organics from submicron particles. A positive matrix factorization method was used in identifying two oxygenated organic aerosol (OOA) groups from the measured total organic mass. The properties of these groups were estimated from their diurnal concentration cycles and correlations with additional data such as air mass history, particle number size distributions, hygroscopic and ethanol growth factors and particle volatility. It was found that the aged and highly oxidized background organic aerosol (OOA1) species have a wide range of hygroscopic growth factors and volatilization temperatures, but on the average OOA1 is the less volatile and hygroscopic organic group. It seems that hygroscopic properties and volatilities of the OOA1 species are correlated so that the less volatile species have higher hygroscopic growth factors. The other less oxidized organic aerosol group (OOA2) is more volatile and non-hygroscopic. Trajectory analysis showed that OOA1 and the inorganic species are mainly long-range transported anthropogenic pollutions. On the other hand, OOA2 species and its precursor gases have short atmospheric life times, so they are from local sources. Current results are in good agreement with previous studies, but additional data especially from other seasons is required to verify the generality of the conclusions.
APA, Harvard, Vancouver, ISO, and other styles
25

Fons, Françoise, Didier Froissard, Jean-Marie Bessière, Bruno Buatois, and Sylvie Rapior. "Biodiversity of Volatile Organic Compounds from Five French Ferns." Natural Product Communications 5, no. 10 (October 2010): 1934578X1000501. http://dx.doi.org/10.1177/1934578x1000501028.

Full text
Abstract:
Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum Capillus-Veneris L. (Pteridaceae) was ( E)-2-decenal with a plastic or “stink bug” odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was ( E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were ( E)-nerolidol, α-terpineol, β-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and γ-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles.
APA, Harvard, Vancouver, ISO, and other styles
26

Kokkola, H., P. Yli-Pirilä, M. Vesterinen, H. Korhonen, H. Keskinen, S. Romakkaniemi, L. Hao, et al. "The role of low volatile organics on secondary organic aerosol formation." Atmospheric Chemistry and Physics 14, no. 3 (February 14, 2014): 1689–700. http://dx.doi.org/10.5194/acp-14-1689-2014.

Full text
Abstract:
Abstract. Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates into an underestimation of SOA contribution to radiative forcing of atmospheric aerosol. Here we show that the underestimation of SOA yields can be partly explained by wall losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected into a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized volatile organic compounds (OVOC) of very low volatility in the chamber. If these oxidized organic compounds form in the gas phase, their wall losses will have significant implications on their partitioning between the gas and particle phase. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment, while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event can be of the order of 10−5 μg m−3.
APA, Harvard, Vancouver, ISO, and other styles
27

Karnezi, E., I. Riipinen, and S. N. Pandis. "Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis." Atmospheric Measurement Techniques 7, no. 9 (September 16, 2014): 2953–65. http://dx.doi.org/10.5194/amt-7-2953-2014.

Full text
Abstract:
Abstract. Organic compounds represent a significant fraction of submicrometer atmospheric aerosol mass. Even if most of these compounds are semi-volatile in atmospheric concentrations, the ambient organic aerosol volatility is quite uncertain. The most common volatility measurement method relies on the use of a thermodenuder (TD). The aerosol passes through a heated tube where its more volatile components evaporate, leaving the less volatile components behind in the particulate phase. The typical result of a thermodenuder measurement is the mass fraction remaining (MFR), which depends, among other factors, on the organic aerosol (OA) vaporization enthalpy and the accommodation coefficient. We use a new method combining forward modeling, introduction of "experimental" error, and inverse modeling with error minimization for the interpretation of TD measurements. The OA volatility distribution, its effective vaporization enthalpy, the mass accommodation coefficient and the corresponding uncertainty ranges are calculated. Our results indicate that existing TD-based approaches quite often cannot estimate reliably the OA volatility distribution, leading to large uncertainties, since there are many different combinations of the three properties that can lead to similar thermograms. We propose an improved experimental approach combining TD and isothermal dilution measurements. We evaluate this experimental approach using the same model, and show that it is suitable for studies of OA volatility in the lab and the field.
APA, Harvard, Vancouver, ISO, and other styles
28

Slowik, J. G., J. P. S. Wong, and J. P. D. Abbatt. "Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol." Atmospheric Chemistry and Physics 12, no. 20 (October 29, 2012): 9775–90. http://dx.doi.org/10.5194/acp-12-9775-2012.

Full text
Abstract:
Abstract. The chemical complexity of atmospheric organic aerosol (OA) requires novel methods for characterization of its components and description of its atmospheric processing-induced transformations. We present the first field deployment of the Toronto Photooxidation Tube (TPOT), a field-deployable flow reactor for the controlled exposure of ambient aerosol to OH radicals. The system alternates between sampling of (1) (unreacted) ambient aerosol, (2) aerosol exposed to UV light and subjected to a ~4 to 10 °C temperature increase, and (3) aerosol that is oxidized by OH (in addition to the aforementioned UV exposure/temperature increase). This allows both characterization of the aging process and classification of aerosol in terms of its volatility and reaction-based properties. Summertime measurements by an aerosol mass spectrometer coupled to the TPOT were performed in the remote forest of western Canada, resulting in aerosol dominated by biogenic secondary organic aerosol. Volatilization/UV exposure resulted in an approximately 10 to 25% decrease in organic mass and resulted in a slight increase in oxygenation. OH oxidation resulted in a further organic mass decrease (additional ~25%) and yielded an aerosol with O:C values comparable to those characteristic of low volatility, highly oxygenated OA. Most OH-induced changes occurred within ~3 day-equivalents of atmospheric processing, with further reactions generally proceeding at a greatly reduced rate. Positive matrix factorization (PMF) analysis of the TPOT data yielded five factors. One factor is related to primary biomass burning organic aerosol, while the others describe oxygenated organic aerosol (OOA) components in terms of reactivity and volatility: (1) volatile and reactive; (2) non-volatile and reactive; (3) non-volatile and reactive early-generation product; (4) non-volatile and non-reactive product. This PMF classification of aerosol components directly in terms of reactivity and volatility is enabled by the TPOT-modulated perturbation of aerosol composition, and is not otherwise accessible. The particle-phase reaction end products have mass spectra similar to the low-volatility oxygenated organic aerosol (LV-OOA) factors widely reported in the literature, providing supporting evidence for aged organic aerosol formation from OH-driven oxidation processes.
APA, Harvard, Vancouver, ISO, and other styles
29

Ciarelli, Giancarlo, Imad El Haddad, Emily Bruns, Sebnem Aksoyoglu, Ottmar Möhler, Urs Baltensperger, and André S. H. Prévôt. "Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments: a box-model study based on the VBS scheme of the CAMx model (v5.40)." Geoscientific Model Development 10, no. 6 (June 23, 2017): 2303–20. http://dx.doi.org/10.5194/gmd-10-2303-2017.

Full text
Abstract:
Abstract. In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ∼ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol–chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC ∕ OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ∼ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10−11 to 4. 0 × 10−11 cm3 molec−1 s−1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol−1, which implies a yield increase of 0.03–0.06 % K−1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.
APA, Harvard, Vancouver, ISO, and other styles
30

Paciga, A., E. Karnezi, E. Kostenidou, L. Hildebrandt, M. Psichoudaki, G. J. Engelhart, B. H. Lee, et al. "Volatility of organic aerosol and its components in the Megacity of Paris." Atmospheric Chemistry and Physics Discussions 15, no. 16 (August 20, 2015): 22263–89. http://dx.doi.org/10.5194/acpd-15-22263-2015.

Full text
Abstract:
Abstract. Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m−3 and another 35–40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.
APA, Harvard, Vancouver, ISO, and other styles
31

Paciga, Andrea, Eleni Karnezi, Evangelia Kostenidou, Lea Hildebrandt, Magda Psichoudaki, Gabriella J. Engelhart, Byong-Hyoek Lee, et al. "Volatility of organic aerosol and its components in the megacity of Paris." Atmospheric Chemistry and Physics 16, no. 4 (February 23, 2016): 2013–23. http://dx.doi.org/10.5194/acp-16-2013-2016.

Full text
Abstract:
Abstract. Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m−3 and another 35–40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10−3–0.1 µg m−3 and ELVOCs C* less or equal than 10−4 µg m−3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1–100 µg m−3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.
APA, Harvard, Vancouver, ISO, and other styles
32

Huang, Kerui, Hui Shang, Qiong Zhou, Yun Wang, Hui Shen, and Yuehong Yan. "Volatiles Induced from Hypolepis punctata (Dennstaedtiaceae) by Herbivores Attract Sclomina erinacea (Hemiptera: Reduviidae): Clear Evidence of Indirect Defense in Fern." Insects 12, no. 11 (October 28, 2021): 978. http://dx.doi.org/10.3390/insects12110978.

Full text
Abstract:
Plants have evolved various self-defense mechanisms against insect feeding. There are many reports regarding both direct and indirect defense mechanisms in seed-plant. However, only direct defenses on ferns were considered and the indirect defense mechanism has never been reported. In this study, it was observed that the fern Hypolepis punctata can attract the assassin bug Sclomina erinacea in the field. We collected and analyzed volatiles from H. punctata healthy individuals and the ones wounded by Bertula hadenalis, using dynamic headspace and GC-MS. We recorded the electroantennogram responses of antennae of S. erinacea to different standards of volatile compounds identified from the GC-MS analysis. We also analyzed the behavior of male and female S. erinacea adults in response to volatiles collected from H. punctata using a Y-tube olfactometer. The results showed that a number of volatile compounds were produced when the fern was damaged by B. hadenalis. Electroantennography and Y-tube olfactometer results showed that some herbivore-induced volatiles and volatiles from undamaged leaves could attract S. erinacea. Our research suggests that H. punctata can attract insect predators by releasing herbivory-induced volatile organic compounds, and for the first time we found ferns may also have indirect defense mechanisms using volatile organic compounds.
APA, Harvard, Vancouver, ISO, and other styles
33

Salo, K., M. Hallquist, Å. M. Jonsson, H. Saathoff, K. H. Naumann, C. Spindler, R. Tillmann, et al. "Volatility of secondary organic aerosol during OH radical induced ageing." Atmospheric Chemistry and Physics Discussions 11, no. 7 (July 7, 2011): 19507–43. http://dx.doi.org/10.5194/acpd-11-19507-2011.

Full text
Abstract:
Abstract. The aim of this study was to investigate oxidation of SOA formed from ozonolysis of α-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA) set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of KIT in Karlsruhe and at the SAPHIR chamber of FZJ in Jülich. A fresh SOA was produced from ozonolysis of α-pinene or limonene and then aged by enhanced OH exposure. As an OH-radical source in the AIDA-chamber the ozonolysis of tetramethylethylene (TME) was used while in the SAPHIR-chamber the OH was produced by natural light photochemistry. A general feature is that SOA produced from ozonolysis of α-pinene and limonene initially were rather volatile and becomes less volatile with time in the ozonolysis part of the experiment. Inducing OH chemistry or adding a new portion of precursors made the SOA more volatile due to addition of new semi-volatile material to the aged aerosol. The effect of OH chemistry was less pronounced in high concentration and low temperature experiments when lower relative amounts of semi-volatile material were available in the gas phase. Conclusions drawn from the changes in volatility were confirmed by comparison with the measured and modelled chemical composition of the aerosol phase. Three quantified products from the α-pinene oxidation; pinonic acid, pinic acid and methylbutanetricarboxylic acid (MBTCA) were used to probe the processes influencing aerosol volatility. A major conclusion from the work is that the OH induced ageing can be attributed to gas phase oxidation of products produced in the primary SOA formation process and that there was no indication on significant bulk or surface reactions. The presented results, thus, strongly emphasise the importance of gas phase oxidation of semi- or intermediate-volatile organic compounds (SVOC and IVOC) for atmospheric aerosol ageing processing.
APA, Harvard, Vancouver, ISO, and other styles
34

Salo, K., M. Hallquist, Å. M. Jonsson, H. Saathoff, K. H. Naumann, C. Spindler, R. Tillmann, et al. "Volatility of secondary organic aerosol during OH radical induced ageing." Atmospheric Chemistry and Physics 11, no. 21 (November 9, 2011): 11055–67. http://dx.doi.org/10.5194/acp-11-11055-2011.

Full text
Abstract:
Abstract. The aim of this study was to investigate oxidation of SOA formed from ozonolysis of α-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA) set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of Karlsruhe Institute of Technology (KIT) in Karlsruhe and at the SAPHIR chamber of Forchungzentrum Jülich (FZJ) in Jülich. A fresh SOA was produced from ozonolysis of α-pinene or limonene and then aged by enhanced OH exposure. As an OH radical source in the AIDA-chamber the ozonolysis of tetramethylethylene (TME) was used while in the SAPHIR-chamber the OH was produced by natural light photochemistry. A general feature is that SOA produced from ozonolysis of α-pinene and limonene initially was rather volatile and becomes less volatile with time in the ozonolysis part of the experiment. Inducing OH chemistry or adding a new portion of precursors made the SOA more volatile due to addition of new semi-volatile material to the aged aerosol. The effect of OH chemistry was less pronounced in high concentration and low temperature experiments when lower relative amounts of semi-volatile material were available in the gas phase. Conclusions drawn from the changes in volatility were confirmed by comparison with the measured and modelled chemical composition of the aerosol phase. Three quantified products from the α-pinene oxidation; pinonic acid, pinic acid and methylbutanetricarboxylic acid (MBTCA) were used to probe the processes influencing aerosol volatility. A major conclusion from the work is that the OH induced ageing can be attributed to gas phase oxidation of products produced in the primary SOA formation process and that there was no indication on significant bulk or surface reactions. The presented results, thus, strongly emphasise the importance of gas phase oxidation of semi- or intermediate-volatile organic compounds (SVOC and IVOC) for atmospheric aerosol ageing.
APA, Harvard, Vancouver, ISO, and other styles
35

Davis, Peter M., and Michael C. Qian. "Effect of Ethanol on the Adsorption of Volatile Sulfur Compounds on Solid Phase Micro-Extraction Fiber Coatings and the Implication for Analysis in Wine." Molecules 24, no. 18 (September 18, 2019): 3392. http://dx.doi.org/10.3390/molecules24183392.

Full text
Abstract:
Complications in the analysis of volatile sulfur compounds (VSC) in wine using solid-phase microextraction (SPME) arise from sample variability. Constituents of the wine matrix, including ethanol, affect the volatility and adsorption of sulfur volatiles on SPME fiber coatings (Carboxen- polydimethylsiloxane(PDMS); DVB-Carboxen-PDMS and DVB-PDMS), which can impact sensitivity and accuracy. Here, several common wine sulfur volatiles, including hydrogen sulfide (H2S), methanethiol (MeSH), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), diethyl disulfide (DEDS), methyl thioacetate (MeSOAc), and ethyl thioacetate (EtSOAc) are analyzed, using SPME followed by gas chromatography (GC), using a system equipped with a pulsed-flame photometric detection (PFPD) system, at various ethanol concentrations in a synthetic wine matrix. Ethyl methyl sulfide (EMS), diethyl sulfide (DES), methyl isopropyl sulfide (MIS), ethyl isopropyl sulfide (EIS), and diisopropyl disulfide (DIDS) are evaluated as internal standards. The absorption of volatile compounds on the SPME fiber is greatly affected by ethanol. All compounds exhibit a stark decrease in detectability with the addition of ethanol, especially between 0.0 and 0.5% v/v. However, the ratio of interested sulfur compounds to the internal standard becomes more stable when the total alcohol concentration exceeds 2%. EMS was found to best resemble DMS. EIS and DES were found to best resemble DMDS, MeSOAc, and EtSOAc. DIDS was found to best resemble DEDS, DMTS, H2S, and MeSH.
APA, Harvard, Vancouver, ISO, and other styles
36

Chinnasamy, G. P., S. Sundareswaran, K. S. Subramaniyan, K. Raja, P. R. Renganayaki, S. Marimuthu, and D. Pradeep. "Assessment of rice (Co 51) seed ageing through volatile organic compound analysis using Headspace-Solid Phase Micro Extraction/ Gas Chromatography-Mass Spectrometry (HS-SPME/GCMS)." Journal of Applied and Natural Science 14, no. 3 (September 16, 2022): 903–13. http://dx.doi.org/10.31018/jans.v14i3.3725.

Full text
Abstract:
Seed ageing is an inevitable process that reduces seed quality during storage. When seeds deteriorate as a result of the lipid peroxidation process, it leads to produce toxic volatile organic compounds. These volatiles served as an indicator for the viability of stored seeds. With this background, the study was conducted to profile the volatile organic compounds emitted from rice seeds during storage. Volatile profiling of stored rice var. Co 51 seeds was done through Headspace-Solid phase microextraction/ Gas chromatography-mass spectrometry (HS-SPME/GCMS). The study clearly demonstrated that the significant decrease in physiological and biochemical quality attributes was noted due to an increase in the strength of volatiles released during ageing. When the release of total volatile strength reached more than 40%, a significant reduction in physiological attributes such as germination, root and shoot length, dry matter production and vigour index were observed. With respect to biochemical properties, a significant increase in electrical conductivity of seed leachate, lipid peroxidation and lipoxygenase activity, and decrease in dehydrogenase, catalase and peroxidase activities were observed. However, the highest reduction in all these properties were recorded when the total volatile strength reached to 54.90%. Finally, the study concluded that, among all the volatiles, 1-hexanol, 1-butanol, ethanol, hexanal, acetic acid, hexanoic acid and methyl ester were the most closely associated volatiles with seed deterioration. It indicates that these components could be considered the signature components for assessing the seed quality in rice during storage.
APA, Harvard, Vancouver, ISO, and other styles
37

Hunziker, Lukas, Denise Bönisch, Ulrike Groenhagen, Aurélien Bailly, Stefan Schulz, and Laure Weisskopf. "Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora infestans." Applied and Environmental Microbiology 81, no. 3 (November 14, 2014): 821–30. http://dx.doi.org/10.1128/aem.02999-14.

Full text
Abstract:
ABSTRACTBacteria emit volatile organic compounds with a wide range of effects on bacteria, fungi, plants, and animals. The antifungal potential of bacterial volatiles has been investigated with a broad span of phytopathogenic organisms, yet the reaction of oomycetes to these volatile signals is largely unknown. For instance, the response of the late blight-causing agent and most devastating oomycete pathogen worldwide,Phytophthora infestans, to bacterial volatiles has not been assessed so far. In this work, we analyzed this response and compared it to that of selected fungal and bacterial potato pathogens, using newly isolated, potato-associated bacterial strains as volatile emitters.P. infestanswas highly susceptible to bacterial volatiles, while fungal and bacterial pathogens were less sensitive. CyanogenicPseudomonasstrains were the most active, leading to complete growth inhibition, yet noncyanogenic ones also produced antioomycete volatiles. Headspace analysis of the emitted volatiles revealed 1-undecene as a compound produced by strains inducing volatile-mediatedP. infestansgrowth inhibition. Supplying pure 1-undecene toP. infestanssignificantly reduced mycelial growth, sporangium formation, germination, and zoospore release in a dose-dependent manner. This work demonstrates the high sensitivity ofP. infestansto bacterial volatiles and opens new perspectives for sustainable control of this devastating pathogen.
APA, Harvard, Vancouver, ISO, and other styles
38

Chrit, Mounir, Karine Sartelet, Jean Sciare, Marwa Majdi, José Nicolas, Jean-Eudes Petit, and François Dulac. "Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region." Atmospheric Chemistry and Physics 18, no. 24 (December 20, 2018): 18079–100. http://dx.doi.org/10.5194/acp-18-18079-2018.

Full text
Abstract:
Abstract. Organic aerosols are measured at a remote site (Ersa) on the cape of Corsica in the northwestern Mediterranean basin during the winter campaign of 2014 of the CHemistry and AeRosols Mediterranean EXperiment (CharMEx), when high organic concentrations from anthropogenic origins are observed. This work aims to represent the observed organic aerosol concentrations and properties (oxidation state) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Because intermediate and semi-volatile organic compounds (I/S-VOCs) are the main precursors of SOAs at Ersa during winter 2014, different parameterizations to represent the emission and aging of I/S-VOCs were implemented in the chemistry-transport model of Polyphemus (different volatility distribution emissions and single-step oxidation vs multi-step oxidation within a volatility basis set – VBS – framework, inclusion of non-traditional volatile organic compounds – NTVOCs). Simulations using the different parameterizations are compared to each other and to the measurements (concentration and oxidation state). The highly observed organic concentrations are well reproduced in all the parameterizations. They are slightly underestimated in most parameterizations. The volatility distribution at emissions influences the concentrations more strongly than the choice of the parameterization that may be used for aging (single-step oxidation vs multi-step oxidation), stressing the importance of an accurate characterization of emissions. Assuming the volatility distribution of sectors other than residential heating to be the same as residential heating may lead to a strong underestimation of organic concentrations. The observed organic oxidation and oxygenation states are strongly underestimated in all simulations, even when multigenerational aging of I/S-VOCs from all sectors is modeled. This suggests that uncertainties in the emissions and aging of I/S-VOC emissions remain to be elucidated, with a potential role of formation of organic nitrate and low-volatility highly oxygenated organic molecules.
APA, Harvard, Vancouver, ISO, and other styles
39

Ciganek, M., and J. Neca. "Chemical characterization of volatile organic compounds on animal farms." Veterinární Medicína 53, No. 12 (December 29, 2008): 641–51. http://dx.doi.org/10.17221/1969-vetmed.

Full text
Abstract:
More than one hundred volatile organic substances were identified by gas chromatography and mass spectrometry (GC/MS) in the indoor and outdoor air, stable and farm road dust and farm soil samples from two pig and cattle farms in the South Moravian Region. Volatile fatty acids (acetic, propanoic, butanoic and pentanoic acids) and their esters dominated along with aldehydes (butanal, pentanal and hexanal) and 4-methylphenol in the indoor and outdoor air samples. Road dust and soil samples contained mainly volatile aromatic compounds (toluene, benzene, ethylbenzene, styrene and xylenes), aliphatic hydrocarbons (largely n-alkanes), dichloromethane and carbon disulphide. The health risks associated with particular volatile compounds detected in the indoor and outdoor samples from the farms need to be assessed.
APA, Harvard, Vancouver, ISO, and other styles
40

Cappa, C. D., and J. L. Jimenez. "Quantitative estimates of the volatility of ambient organic aerosol." Atmospheric Chemistry and Physics Discussions 10, no. 1 (January 25, 2010): 1901–38. http://dx.doi.org/10.5194/acpd-10-1901-2010.

Full text
Abstract:
Abstract. Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al. (2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (ΔHvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol) and lowest for the high (ΔHvap = 150 kJ/mol) assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20% to 400% of the OA mass, with smaller values generally corresponding to the higher ΔHvap assumptions. The volatility of various OA components determined from factor analysis of AMS spectra has also been assessed. In general, it is found that the fraction of non-volatile material follows the pattern: biomass burning OA < hydrocarbon-like OA < semivolatile oxygenated OA < low-volatility oxygenated OA. Correspondingly, the sensitivity to dilution and the estimated amount of semivolatile gas-phase material for the OA factors follows the reverse order. Primary OA has a substantial semivolatile fraction, in agreement with previous results, while the non-volatile fraction appears to be dominated by oxygenated OA produced by atmospheric aging. The overall OA volatility is thus controlled by the relative contribution of each aerosol type to the total OA burden. Finally, the model/measurement comparison appears to require OA having an evaporation coefficient (γe) substantially greater than 10−2; at this point it is not possible to place firmer constraints on γe based on the observations.
APA, Harvard, Vancouver, ISO, and other styles
41

Cappa, C. D., and J. L. Jimenez. "Quantitative estimates of the volatility of ambient organic aerosol." Atmospheric Chemistry and Physics 10, no. 12 (June 21, 2010): 5409–24. http://dx.doi.org/10.5194/acp-10-5409-2010.

Full text
Abstract:
Abstract. Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al.~(2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (ΔHvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol) and lowest for the high (ΔHvap = 150 kJ/mol) assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20% to 400% of the OA mass, with smaller values generally corresponding to the higher ΔHvap assumptions. The volatility of various OA components determined from factor analysis of AMS spectra has also been assessed. In general, it is found that the fraction of non-volatile material follows the pattern: biomass burning OA < hydrocarbon-like OA < semivolatile oxygenated OA < low-volatility oxygenated OA. Correspondingly, the sensitivity to dilution and the estimated amount of semivolatile gas-phase material for the OA factors follows the reverse order. Primary OA has a substantial semivolatile fraction, in agreement with previous results, while the non-volatile fraction appears to be dominated by oxygenated OA produced by atmospheric aging. The overall OA volatility is thus controlled by the relative contribution of each aerosol type to the total OA burden. Finally, the model/measurement comparison appears to require OA having an evaporation coefficient (γe) substantially greater than 10−2; at this point it is not possible to place firmer constraints on γe based on the observations.
APA, Harvard, Vancouver, ISO, and other styles
42

Gao, Chloe Y., Susanne E. Bauer, and Kostas Tsigaridis. "Can semi-volatile organic aerosols lead to fewer cloud particles?" Atmospheric Chemistry and Physics 18, no. 19 (October 8, 2018): 14243–51. http://dx.doi.org/10.5194/acp-18-14243-2018.

Full text
Abstract:
Abstract. The impact of condensing organic aerosols on activated cloud number concentration is examined in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility basis set (VBS) framework coupled with the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. By including the condensation of organic aerosols, the new model produces fewer activated particles compared to the original model, which treats organic aerosols as nonvolatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes that affect activated cloud number concentration are thoroughly tested via a suite of Monte Carlo simulations. Results show that by considering semi-volatile organics in MATRIX-VBS, there is a lower activated particle number concentration, except in cases with low cloud updrafts, in clean environments at above-freezing temperatures, and in polluted environments at high temperatures (310 K) and extremely low-humidity conditions.
APA, Harvard, Vancouver, ISO, and other styles
43

Tsimpidi, A. P., V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld. "ORACLE: a module for the description of ORganic Aerosol Composition and Evolution in the atmosphere." Geoscientific Model Development Discussions 7, no. 4 (August 12, 2014): 5465–515. http://dx.doi.org/10.5194/gmdd-7-5465-2014.

Full text
Abstract:
Abstract. A computationally efficient module for the description of organic aerosol (OA) partitioning and chemical aging has been developed and implemented into the EMAC atmospheric chemistry-climate model. The model simulates the formation of secondary organic aerosol (SOA) from semi-volatile (SVOCs), intermediate-volatility (IVOCs) and volatile organic compounds (VOCs). The model distinguishes SVOCs from biomass burning and all other combustion sources using two surrogate species for each source category with an effective saturation concentration at 298 K of C* = 0.1 and 10 μg m−3. Two additional surrogate species with C* = 103 and 105 μg m−3 are used for the IVOCs emitted by the above two source categories. Gas-phase photochemical reactions that change the volatility of the organics are taken into account. The oxidation products (SOA-sv, SOA-iv, and SOA-v) of each group of precursors (SVOCs, IVOCs, and VOCs) are simulated separately in the module to keep track of their origin. ORACLE efficiently describes the OA composition and evolution in the atmosphere and can be used to (i) estimate the relative contributions of SOA and primary organic aerosol (POA) to total OA, (ii) determine how SOA concentrations are affected by biogenic and anthropogenic emissions, and (iii) evaluate the effects of photochemical aging and long-range transport on the OA budget. Here we estimate that the predicted domain-average global surface OA concentration is 1.5 μg m−3 and consists of 7% POA from fuel combustion, 11% POA from biomass burning, 2% SOA-sv from fuel combustion, 3% SOA-sv from biomass burning, 15% SOA-iv from fuel combustion, 28% SOA-iv from biomass burning, 19% biogenic SOA-v, and 15% anthropogenic SOA-v. The tropospheric burden of OA components is predicted to be 0.23 Tg POA, 0.16 Tg SOA-sv, 1.41 Tg SOA-iv, and 1.2 Tg SOA-v.
APA, Harvard, Vancouver, ISO, and other styles
44

Mahbub, Parvez, Ashantha Goonetilleke, Godwin A. Ayoko, Prasanna Egodawatta, and Tan Yigitcanlar. "Analysis of build-up of heavy metals and volatile organics on urban roads in gold coast, Australia." Water Science and Technology 63, no. 9 (May 1, 2011): 2077–85. http://dx.doi.org/10.2166/wst.2011.151.

Full text
Abstract:
Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experimental investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that that the 1–74 μm particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for the potential dissolved particulate fraction in heavy metals buildup. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.
APA, Harvard, Vancouver, ISO, and other styles
45

Sparinska, Anta, and Nils Rostoks. "Volatile Organic Compounds Of Hybrid Rugosa Roses In Latvia." Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 69, no. 1-2 (April 1, 2015): 57–61. http://dx.doi.org/10.1515/prolas-2015-0007.

Full text
Abstract:
Abstract Hybrid Rugosa is the most winter hardy group of roses in the climatic conditions of the Baltic Sea region. This study aimed at identifying new qualities of Hybrid Rugosa by focusing on determination of content of volatile organic compounds of flower petals and in hydrosols produced from these. Volatiles of seven cultivars were extracted using solid phase microextraction (SPME) with subsequent separation by gas chromatography. Identification was made by comparison with mass spectral libraries and by calculating linear retention indexes and comparing them with literature data. Twenty-five volatile aroma compounds were identified in the petals and hydrosols of six Hybrid Rugosa and species. Among those, phenylethylalcohol, ß-citronellol, geraniol and nerol were predominant. Species Rosa rugosa and variety ‘Plena’ showed the highest total level of volatiles and contained 26% and 31% ß-citronellol, respectively. Varieties ‘Raita’ and ‘Sniedze’ contained up to 57% citronellol. The main volatile compounds were detected in hydrosols in the same proportions, but their concentration was higher than in petals. The varieties ‘Raita’ and ‘Violeta’, bred in Latvia, are recommendable for use as a source of hydrosol.
APA, Harvard, Vancouver, ISO, and other styles
46

Bergström, R., H. A. C. Denier van der Gon, A. S. H. Prévôt, K. E. Yttri, and D. Simpson. "Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol." Atmospheric Chemistry and Physics 12, no. 18 (September 21, 2012): 8499–527. http://dx.doi.org/10.5194/acp-12-8499-2012.

Full text
Abstract:
Abstract. A new organic aerosol module has been implemented into the EMEP chemical transport model. Four different volatility basis set (VBS) schemes have been tested in long-term simulations for Europe, covering the six years 2002–2007. Different assumptions regarding partitioning of primary organic aerosol and aging of primary semi-volatile and intermediate volatility organic carbon (S/IVOC) species and secondary organic aerosol (SOA) have been explored. Model results are compared to filter measurements, aerosol mass spectrometry (AMS) data and source apportionment studies, as well as to other model studies. The present study indicates that many different sources contribute significantly to organic aerosol in Europe. Biogenic and anthropogenic SOA, residential wood combustion and vegetation fire emissions may all contribute more than 10% each over substantial parts of Europe. This study shows smaller contributions from biogenic SOA to organic aerosol in Europe than earlier work, but relatively greater anthropogenic SOA. Simple VBS based organic aerosol models can give reasonably good results for summer conditions but more observational studies are needed to constrain the VBS parameterisations and to help improve emission inventories. The volatility distribution of primary emissions is one important issue for further work. Emissions of volatile organic compounds from biogenic sources are also highly uncertain and need further validation. We can not reproduce winter levels of organic aerosol in Europe, and there are many indications that the present emission inventories substantially underestimate emissions from residential wood combustion in large parts of Europe.
APA, Harvard, Vancouver, ISO, and other styles
47

Walther, Christin, Pamela Baumann, Katrin Luck, Beate Rothe, Peter H. W. Biedermann, Jonathan Gershenzon, Tobias G. Köllner, and Sybille B. Unsicker. "Volatile emission and biosynthesis in endophytic fungi colonizing black poplar leaves." Beilstein Journal of Organic Chemistry 17 (July 22, 2021): 1698–711. http://dx.doi.org/10.3762/bjoc.17.118.

Full text
Abstract:
Plant volatiles play a major role in plant–insect interactions as defense compounds or attractants for insect herbivores. Recent studies have shown that endophytic fungi are also able to produce volatiles and this raises the question of whether these fungal volatiles influence plant–insect interactions. Here, we qualitatively investigated the volatiles released from 13 endophytic fungal species isolated from leaves of mature black poplar (Populus nigra) trees. The volatile blends of these endophytes grown on agar medium consist of typical fungal compounds, including aliphatic alcohols, ketones and esters, the aromatic alcohol 2-phenylethanol and various sesquiterpenes. Some of the compounds were previously reported as constituents of the poplar volatile blend. For one endophyte, a species of Cladosporium, we isolated and characterized two sesquiterpene synthases that can produce a number of mono- and sesquiterpenes like (E)-β-ocimene and (E)-β-caryophyllene, compounds that are dominant components of the herbivore-induced volatile bouquet of black poplar trees. As several of the fungus-derived volatiles like 2-phenylethanol, 3-methyl-1-butanol and the sesquiterpene (E)-β-caryophyllene, are known to play a role in direct and indirect plant defense, the emission of volatiles from endophytic microbial species should be considered in future studies investigating tree-insect interactions.
APA, Harvard, Vancouver, ISO, and other styles
48

Enroth, Joonas, Jyri Mikkilä, Zoltán Németh, Markku Kulmala, and Imre Salma. "Wintertime hygroscopicity and volatility of ambient urban aerosol particles." Atmospheric Chemistry and Physics 18, no. 7 (April 4, 2018): 4533–48. http://dx.doi.org/10.5194/acp-18-4533-2018.

Full text
Abstract:
Abstract. Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility–hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 ∘C in central Budapest during 2 months in winter 2014–2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic particles were ordinarily volatile. They could be composed of moderately transformed aged combustion particles consisting of partly oxygenated organics, inorganic salts and soot. The larger particles contained internally mixed non-volatile chemical species as a refractory residual in 20–25 % of the aerosol material (by volume).
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Zhiling, Yixin Yuan, Bo Hong, Xin Zhao, and Zhaoyu Gu. "Characteristic Volatile Fingerprints of Four Chrysanthemum Teas Determined by HS-GC-IMS." Molecules 26, no. 23 (November 24, 2021): 7113. http://dx.doi.org/10.3390/molecules26237113.

Full text
Abstract:
Volatile composition is an important feature that determines flavor, which actively affects the overall evaluation of chrysanthemum tea. In this study, HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) was performed to characterize the volatile profiles of different chrysanthemum tea subtypes. Forty-seven volatiles of diverse chemical nature were identified and quantified. Partial least squares discriminant analysis (PLS-DA) revealed that four chrysanthemum teas were distinct from each other based on their volatile compounds. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in chrysanthemum tea plants and products.
APA, Harvard, Vancouver, ISO, and other styles
50

Lee, Dong-Hyun, and Jin-Do Chung. "Relevance between Total Volatile Organic Compound (TVOC) Exposure Level and Environmental Diseases Within Residential Environments." Korean Journal of Environmental Health Sciences 37, no. 3 (June 30, 2011): 193–200. http://dx.doi.org/10.5668/jehs.2011.37.3.193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography