Academic literature on the topic 'Organici Volatili'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organici Volatili.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Organici Volatili"

1

Hong, Juan, Mikko Äijälä, Silja A. K. Häme, Liqing Hao, Jonathan Duplissy, Liine M. Heikkinen, Wei Nie, et al. "Estimates of the organic aerosol volatility in a boreal forest using two independent methods." Atmospheric Chemistry and Physics 17, no. 6 (March 31, 2017): 4387–99. http://dx.doi.org/10.5194/acp-17-4387-2017.

Full text
Abstract:
Abstract. The volatility distribution of secondary organic aerosols that formed and had undergone aging – i.e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase – was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40 % of the organics in particles were semi-volatile, 34 % were low-volatility organics and 26 % were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (ΔHVAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol−1 were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m∕z 43 (f43) and m∕z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when ΔHVAP = 80 kJ mol−1 was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16 % (R2) of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.
APA, Harvard, Vancouver, ISO, and other styles
2

Patoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis. "The role of organic condensation on ultrafine particle growth during nucleation events." Atmospheric Chemistry and Physics Discussions 14, no. 22 (December 9, 2014): 30761–98. http://dx.doi.org/10.5194/acpd-14-30761-2014.

Full text
Abstract:
Abstract. A new aerosol dynamics model (DMANx) has been developed that simulates the aerosol size/composition distribution and includes the condensation of organic vapors on nanoparticles through the implementation of the recently developed Volatility Basis Set framework. Simulations were performed for Hyytiala (Finland) and Finokalia (Greece), two locations with different organic sources where detailed measurements were available to constrain the new model. We investigate the effect of condensation of organics and chemical aging reactions of secondary organic aerosol (OA) on ultrafine particle growth and particle number concentration. This work highlights the importance of the pathways of oxidation of biogenic volatile organic compounds and the production of extremely low-volatility organics. At Hyytiala, organic condensation dominates the growth process of new particles. The low-volatility secondary OA contributes to particle growth during the early growth stage, but after a few hours most of the growth is due to semi-volatile secondary OA. At Finokalia, simulations show that organics have a complementary role to new particle growth contributing 45% to the total mass of new particles. Condensation of organics increases the number concentration of particles that can act as CCN (N100) by 13% at Finokalia and 25% at Hyytiala. The sensitivity of our results to the surface tension used is discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Patoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis. "The role of organic condensation on ultrafine particle growth during nucleation events." Atmospheric Chemistry and Physics 15, no. 11 (June 11, 2015): 6337–50. http://dx.doi.org/10.5194/acp-15-6337-2015.

Full text
Abstract:
Abstract. A new aerosol dynamics model (DMANx) has been developed that simulates aerosol size/composition distribution and includes the condensation of organic vapors on nanoparticles through the implementation of the recently developed volatility basis set framework. Simulations were performed for Hyytiälä (Finland) and Finokalia (Greece), two locations with different organic sources where detailed measurements were available to constrain the new model. We investigate the effect of condensation of organics and chemical aging reactions of secondary organic aerosol (SOA) precursors on ultrafine particle growth and particle number concentration during a typical springtime nucleation event in both locations. This work highlights the importance of the pathways of oxidation of biogenic volatile organic compounds and the production of extremely low volatility organics. At Hyytiälä, organic condensation dominates the growth process of new particles. The low-volatility SOA contributes to particle growth during the early growth stage, but after a few hours most of the growth is due to semi-volatile SOA. At Finokalia, simulations show that organics have a complementary role in new particle growth, contributing 45% to the total mass of new particles. Condensation of organics increases the number concentration of particles that can act as CCN (cloud condensation nuclei) (N100) by 13% at Finokalia and 25% at Hyytiälä during a typical spring day with nucleation. The sensitivity of our results to the surface tension used is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Jathar, S. H., M. A. Miracolo, A. A. Presto, N. M. Donahue, P. J. Adams, and A. L. Robinson. "Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust." Atmospheric Chemistry and Physics 12, no. 19 (October 4, 2012): 9025–40. http://dx.doi.org/10.5194/acp-12-9025-2012.

Full text
Abstract:
Abstract. We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Kays, Stanley J. "NON-ETHYLENE BIOLOGICALLY ACTIVE POSTHARVEST VOLATILES." HortScience 25, no. 9 (September 1990): 1180f—1180. http://dx.doi.org/10.21273/hortsci.25.9.1180f.

Full text
Abstract:
While we tend to think of postharvest volatiles as nitrogen, oxygen, carbon dioxide and ethylene, harvested products are actually exposed to thousands of volatile compounds. These volatiles are derived from both organic and inorganic sources, evolving from storage room walls, insulation, wrapping materials, combusted products, plants, animals, and a myriad of other sources. Plants alone manufacture a diverse array of secondary metabolizes (estimated to be as many as 400,000) of which many display some degree of volatility. We tend to be cognizant of volatiles when they represent distinct odors. A number of volatiles, however, have significant biological activity, and under appropriate conditions may effect postharvest quality. An overview of biologically active volatile compounds and their relation to postharvest quality will be presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, A. K. Y., K. L. Hayden, P. Herckes, W. R. Leaitch, J. Liggio, A. M. Macdonald, and J. P. D. Abbatt. "Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing." Atmospheric Chemistry and Physics 12, no. 15 (August 6, 2012): 7103–16. http://dx.doi.org/10.5194/acp-12-7103-2012.

Full text
Abstract:
Abstract. The water-soluble fractions of aerosol filter samples and cloud water collected during the Whistler Aerosol and Cloud Study (WACS 2010) were analyzed using an Aerodyne aerosol mass spectrometer (AMS). This is the first study to report AMS organic spectra of re-aerosolized cloud water, and to make direct comparison between the AMS spectra of cloud water and aerosol samples collected at the same location. In general, the mass spectra of aerosol were very similar to those of less volatile cloud organics. By using a photochemical reactor to oxidize both aerosol filter extracts and cloud water, we find evidence that fragmentation of water-soluble organics in aerosol increases their volatility during photochemical oxidation. By contrast, enhancement of AMS-measurable organic mass by up to 30% was observed during the initial stage of oxidation of cloud water organics, which was followed by a decline at the later stages of oxidation. These observations are in support of the general hypothesis that cloud water oxidation is a viable route for SOA formation. In particular, we propose that additional SOA material was produced by functionalizing dissolved organics via OH oxidation, where these dissolved organics are sufficiently volatile that they are not usually part of the aerosol. This work demonstrates that water-soluble organic compounds of intermediate volatility (IVOC), such as cis-pinonic acid, produced via gas-phase oxidation of monoterpenes, can be important aqueous-phase SOA precursors in a biogenic-rich environment.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, A. K. Y., K. L. Hayden, P. Herckes, W. R. Leaitch, J. Liggio, A. M. Macdonald, and J. P. D. Abbatt. "Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing." Atmospheric Chemistry and Physics Discussions 12, no. 2 (February 24, 2012): 6019–47. http://dx.doi.org/10.5194/acpd-12-6019-2012.

Full text
Abstract:
Abstract. The water-soluble fractions of aerosol samples and cloud water collected during Whistler Aerosol and Cloud Study (WACS 2010) were analyzed using an Aerodyne aerosol mass spectrometer (AMS). This is the first study to report AMS organic spectra of re-aerosolized cloud water, and to make direct comparison between the AMS spectra of cloud water and aerosol samples collected at the same location. In general, the aerosol and cloud organic spectra were very similar, indicating that the cloud water organics likely originated from secondary organic aerosol (SOA) formed nearby. By using a photochemical reactor to oxidize both aerosol filter extracts and cloud water, we find evidence that fragmentation of aerosol water-soluble organics increases their volatility during oxidation. By contrast, enhancement of AMS-measurable organic mass by up to 30% was observed during aqueous-phase photochemical oxidation of cloud water organics. We propose that additional SOA material was produced by functionalizing dissolved organics via OH oxidation, where these dissolved organics are sufficiently volatile that they are not usually part of the aerosol. This work points out that water-soluble organic compounds of intermediate volatility (IVOC), such as cis-pinonic acid, produced via gas-phase oxidation of monoterpenes, can be important aqueous-phase SOA precursors in a biogenic-rich environment.
APA, Harvard, Vancouver, ISO, and other styles
8

Jathar, S. H., M. A. Miracolo, A. A. Presto, P. J. Adams, and A. L. Robinson. "Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust." Atmospheric Chemistry and Physics Discussions 12, no. 4 (April 18, 2012): 9945–83. http://dx.doi.org/10.5194/acpd-12-9945-2012.

Full text
Abstract:
Abstract. We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.
APA, Harvard, Vancouver, ISO, and other styles
9

Grieshop, A. P., J. M. Logue, N. M. Donahue, and A. L. Robinson. "Laboratory investigation of photochemical oxidation of organic aerosol from wood fires – Part 1: Measurement and simulation of organic aerosol evolution." Atmospheric Chemistry and Physics Discussions 8, no. 4 (August 18, 2008): 15699–737. http://dx.doi.org/10.5194/acpd-8-15699-2008.

Full text
Abstract:
Abstract. Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) in wood smoke by exposing diluted emissions from soft- and hard-wood fires to UV light in a smog chamber. Particle- and gas-phase concentrations were monitored with a suite of instruments including a Proton Transfer Reaction Mass Spectrometer (PTR-MS), an Aerosol Mass Spectrometer (AMS) and a thermodenuder to measure aerosol volatility. The measurements highlight how in-plume processing can lead to considerable evolution of the mass and volatility of biomass burning OA. Photochemical oxidation produced substantial new OA, increasing concentrations by a factor of 1.5 to 2.8 after several hours of exposure to typical summertime hydroxyl radical (OH) concentrations. Less than 20% of this new OA could be explained using the measured decay of traditional secondary organic aerosol (SOA) precursors and a state-of-the-art SOA model. Aging also created less volatile OA; at 50°C between 50 and 80% of the fresh primary OA evaporated but only 20 to 40% of aged OA. Therefore, the data provide additional evidence that primary OA is semivolatile. They also raise questions about the current approach used to simulate OA in chemical transport models, which assume that primary OA are non-volatile but that SOA is semivolatile. Predictions of a volatility basis-set model that explicitly tracks the partitioning and aging of low-volatile organics are compared to the chamber data. This model demonstrates that the OA production observed in these experiments can be explained by oxidation of low volatility organic vapors. The basis-set model can also simulate observed changes in OA volatility and composition, predicting the OA production and the increased oxygenation and decreased volatility of the OA.
APA, Harvard, Vancouver, ISO, and other styles
10

Apriyanto, Donni Kis, and Mitrayana Mitrayana. "SERAPAN SENYAWA ORGANIK VOLATIL SEBAGAI BIOMARKER PENYAKIT KANKER PARU: SUATU MINI REVIEW." Biomedika 12, no. 2 (August 30, 2020): 58–64. http://dx.doi.org/10.23917/biomedika.v12i2.10114.

Full text
Abstract:
ABSTRAKUlasan ini merupakan hasil studi literatur yang memberikan tinjauan umum serapan senyawa-senyawa organik volatil yang dianggap sebagai biomarker kanker paru. Senyawa-senyawa ini dapat menyerap pada panjang gelombang tertentu. Senyawa-senyawa organik volatil yang teridentifikasi didaftar dan dijabarkan panjang gelombang yang dapat mereka serap. Studi literatur ini menyajikan kelompok senyawa-senyawa organik volatil dapat menyerap pada rentang panjang gelombang inframerah. Hasil ulasan ini mungkin dapat bermanfaat untuk pengembangan skrinning kanker paru dengan menggunakan alat spektroskopi fotoakustik yang menggunakan sumber laser pada rentang panjang gelombang inframerah atau ultraviolet dengan memanfaatkan serapan panjang gelombang oleh senyawa-senyawa tertentu.Keyword: Biomarker Kanker Paru,Senyawa Organik Volatil, Spektroskopi ABSTRACTThis review is the result of a literature study that provides a general collection of volatile organic compounds (VOC) which are considered as markers for lung cancer. These compounds can absorb certain long waves. The volatile organic compounds identified are listed and described in wavelengths that they can absorb. Literature studies that produce volatile organic compounds in the analysis wavelength range. The results of this review may be useful for the development of lung cancer screening by photoacoustic spectroscopic devices that use laser sources in the range of infrared or ultraviolet wavelengths by utilizing wavelength absorb by certain compounds.Keyword: Lung Cancer Biomarker, Volatile Organic Compounds, Spectroscopy
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Organici Volatili"

1

Epoupa, Mengou Joseph <1973&gt. "Decomposizione catalitica di inquinanti organici volatili clorurati." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/712/1/Tesi_Epoupa_Mengou_Joseph.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Epoupa, Mengou Joseph <1973&gt. "Decomposizione catalitica di inquinanti organici volatili clorurati." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/712/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marzo, Aldo. "L’abbattimento delle emissioni di composti organici volatili in un colorificio." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
L’oggetto del presente lavoro di tesi è stato la riduzione della concentrazione di composti organici volatili (COV) nelle correnti gassose emesse ai camini di uno stabilimento per la produzione di vernici, al fine di portarne il valore al di sotto del limite ammesso dalle norme di legge. La classe dei composti organici volatili comprende numerosi composti chimici con proprietà fisiche e chimiche differenti, ma accomunati da un'elevata volatilità. I COV possono provenire da fonti naturali o da processi umani. Si è stimato che le fonti antropogeniche emettano complessivamente a livello mondiale circa 142∙10E+06 ton/anno di carbonio sotto forma di composti organici volatili, provenienti dai derivati del petrolio, dai prodotti delle combustioni, dalle vernici e dai rivestimenti; nello specifico la produzione mondiale di vernici e di rivestimenti è stimata pari a 12∙10E+09 litri/anno e in essa i COV antropogenici trovano largo utilizzo come solventi. Per contenere l’esponenziale aumento dei COV in atmosfera, vengono istituite regolamentazioni sempre più stringenti, che costringono le industrie di vernici a intervenire sui loro processi al fine di ridurre l’emissione di COV. Gli interventi e le tecnologie convenzionali per abbattere i COV nei processi industriali sono la filtrazione per adsorbimento con il filtro a carboni attivi o la degradazione termica con il post-combustore. Queste tecnologie hanno alti costi operativi e di manutenzione, e non intervengono risolvendo il problema alla radice, bensì sono impiegate in coda al processo produttivo, trascurando le inefficienze della gestione dei COV a monte. Nello stabilimento oggetto del presente lavoro di tesi l’abbattimento delle concentrazioni di COV al camino è stato ottenuto intervenendo direttamente sul processo produttivo, consentendo non solo di soddisfare i necessari requisiti di protezione ambientale, ma anche di ottenere un notevole risparmio economico, a causa della minore perdita di solventi.
APA, Harvard, Vancouver, ISO, and other styles
4

Benitez, Macias Maria de los Àngeles <1973&gt. "Studio dei composti organici solforati volatili nell'ecosistema acquatico: laguna di Venezia." Doctoral thesis, Università Ca' Foscari Venezia, 2009. http://hdl.handle.net/10579/645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ceccardi, Francesca. "Determinazione gascromatografica di composti organici volatili (VOCs) in materiali per packaging sostenibile." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Negli ultimi anni si osserva una richiesta sempre maggiore da parte del mercato di materiali più sostenibili dal punto di vista ambientale. Le aziende hanno quindi iniziato a studiare soluzioni alternative, tra queste l’impiego di materiali riciclati e biodegradabili. Nell’ambito degli imballaggi a contatto con alimenti risulta importante utilizzare materiali che non rilascino composti nel prodotto contenuto ed è quindi necessario poter controllare la presenza di sostanze volatili (VOCs) e semivolatili (SVOCs) legate alla materia prima e al processo produttivo. Per questo motivo, si è messo a punto un metodo di analisi dei composti volatili presenti in matrici di polietilene ad alta densità riciclato (r-HDPE) e polidrossialcanoati (PHA) tramite GC-MS preceduta da estrazione di VOCs in spazio di testa. Si sono poi confrontati i risultati ottenuti dalle analisi dei materiali di partenza con quelli ottenuti sui prodotti stampati a compressione, con lo scopo di capire se e come il processo produttivo potesse influire sul contenuto di analiti presenti nel campione. I risultati evidenziano come il profilo di volatili dell’HDPE riciclato sia strettamente collegato a quello dell’HDPE vergine (alcani lineari e ramificati) ma presenti composti aggiuntivi soltanto nei materiali riciclati. I VOCs caratteristici dei PHA sono invece aldeidi, alcoli e strutture ramificate con atomi di ossigeno sulla catena e risultano molto diversi a seconda della struttura del materiale considerato. È stato inoltre studiato per i PHA se, imponendo stress termico e meccanico a un campione, si formino nuovi composti in seguito a degradazione.
APA, Harvard, Vancouver, ISO, and other styles
6

Prandi, Francesco. "Determinazione gascromatografica di composti organici volatili e semi-volatili (VOCs e SVOCs) in poliolefine ed effetti delle condizioni di lavorazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19215/.

Full text
Abstract:
A relevant problem of polyolefins processing is the presence of volatile and semi-volatile compounds (VOCs and SVOCs) such as linear chains alkanes found out in final products. These VOCs can be detected by customers from the unpleasant smelt and can be an environmental issue, at the same time they can cause negative side effects during process. Since no previously standardized analytical techniques for polymeric matrix are available in bibliography, we have implemented different VOCs extraction methods and gaschromatographic analysis for quali-quantitative studies of such compounds. In literature different procedures can be found including microwave extraction (MAE) and thermo desorption (TDS) used with different purposes. TDS coupled with GC-MS are necessary for the identification of different compounds in the polymer matrix. Although the quantitative determination is complex, the results obtained from TDS/GC-MS show that by-products are mainly linear chains oligomers with even number of carbon in a C8-C22 range (for HDPE). In order to quantify these linear alkanes by-products, a more accurate GC-FID determination with internal standard has been run on MAE extracts. Regardless the type of extruder used, it is difficult to distinguish the effect of the various processes, which in any case entails having a lower-boiling substance content, lower than the corresponding virgin polymer. The two HDPEs studied can be distinguished on the basis of the quantity of analytes found, therefore the production process is mainly responsible for the amount of VOCs and SVOCs observed. The extruder technology used by Sacmi SC allows to obtain a significant reduction in VOCs compared to the conventional screw system. Thus, the result is significantly important as a lower quantity of volatile substances certainly leads to a lower migration of such materials, especially when used for food packaging.
APA, Harvard, Vancouver, ISO, and other styles
7

Di, Talia Valentina. "Potenzialità dell’utilizzo delle piante per l’abbattimento di Composti Organici Volatili in ambienti indoor." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
Questo lavoro nasce dalla lettura di un articolo scientifico del 1989 dove si illustra un concetto rivoluzionario per l’epoca: alcune piante ornamentali sono in grado di abbattere i composti organici volatili in ambienti chiusi. Lo scopo che ci si è proposti è stato quello di raccogliere tutti gli elementi necessari per costruire uno strumento in grado di valutare l’effetto dell’introduzione di piante ornamentali in un definito ambiente. Si è quindi proposto un modello,un semplice bilancio di materia che assume il volume di aria come perfettamente miscelato, che permette di prevedere le variazioni di concentrazione dei composti organici volatili in funzione del rateo di ventilazione dell’ambiente in esame, della concentrazione dell’aria esterna, delle sorgenti emissive e dell’area fogliare presente. Il contributo di rimozione da parte delle piante, l’elemento di novità introdotto, è espresso in relazione alla superficie fogliare considerando l’abbattimento dei composti organici volatili come una reazione di pseudo-adsorbimento. Con tale modello è quindi possibile valutare in prima approssimazione l’impatto dell’inserimento di una data area fogliare in un definito ambiente indoor oltre che determinare l’area fogliare necessaria per ottenere una determinata efficienza di abbattimento. I principali limiti sono i seguenti: viene trascurata la dispersione, si considera solo la rimozione da parte delle piante trascurando altri “sink” e non viene incluso un contributo per la reattività dei contaminanti. Tale modello vuole essere un primo strumento per la progettazione di interventi di mitigazione con piante ornamentali per il controllo della qualità dell’aria indoor i quali portano il vantaggio di presentare costi ridotti e bassi impatti ambientali (inoltre le specie esaminate sono potenzialmente in grado di abbattere anche concentrazioni molto basse). Tra gli svantaggi, sicuramente il principale è la loro efficienza di abbattimento variabile e non sempre prevedibile.
APA, Harvard, Vancouver, ISO, and other styles
8

Iandoli, Mariaclara. "Applicazione di fiocchi di fibre di polistirene sindiotattico per la rimozione di composti organici volatili da matrici acquose." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23253/.

Full text
Abstract:
L’obiettivo della ricerca sperimentale condotta è di valutare la possibile applicabilità di fiocchi di fibre di polistirene sindiotattico come materiale adsorbente da utilizzare nel processo di depurazione delle acque reflue. Il trattamento che potrebbe prevedere l’impiego dei fiocchi di fibre di polistirene sindiotattico è l’adsorbimento. Questo processo di separazione consiste nel trasferimento di uno o più componenti di una fase fluida sulla superficie di un solido poroso. Il mezzo adsorbente di comune impiego è il carbone attivo, per le elevate superfici specifiche e la buona affinità con un grande numero di composti. Il limite di questo materiale riguarda i costi, in particolare di rigenerazione e smaltimento. Le valutazioni economiche, determinanti ai fini dello sviluppo di processo, hanno spostato l’interesse verso materiali facilmente reperibili e che richiedono minori costi di gestione. Affinché si possa pensare di impiegare un materiale come adsorbente questo deve presentare caratteristiche chimico – fisiche che lo rendano idoneo all’applicazione. I fiocchi di fibre di polistirene sindiotattico, se sottoposti ad uno specifico trattamento con solventi, cristallizzano nella forma cristallina delta nanoporosa. In questo modo si ottiene un materiale che coniuga le proprietà dei sistemi porosi con le caratteristiche dei polimeri quali resistenza, basso costo, durabilità e facile processabilità. Il processo di adsorbimento di sostanze volatili in matrici acquose è generalmente condotto in colonne a letto fisso. La ricerca eseguita si può suddividere in due fasi, distinte innanzitutto da una specifica di progetto cioè la quantità di materiale adsorbente caricato in colonna. L’utilizzo di quantità di polimero piuttosto differenti, anche in termini di volume, ha reso necessario lo svolgimento delle prove con un diverso apparato sperimentale e ha permesso la valutazione di aspetti differenti del fenomeno.
APA, Harvard, Vancouver, ISO, and other styles
9

Carrella, Cecilia <1987&gt. "Caratterizzazione di batteri aerobi eterotrofi aggiunti ad un impianto pilota di biofiltrazione per la degradazione di composti organici volatili (COV)." Master's Degree Thesis, Università Ca' Foscari Venezia, 2013. http://hdl.handle.net/10579/3489.

Full text
Abstract:
Negli ultimi anni, l’aumentata sensibilità per le problematiche ambientali ha orientato l’attenzione verso la qualità dell’aria. Gli studi epidemiologici e la consapevolezza che le condizioni di salute della popolazione siano direttamente correlate alla concentrazione di inquinanti presenti in atmosfera, hanno fatto sì che venisse affrontata più concretamente la questione delle emissioni. In particolare le emissioni di solventi organici rappresentano un problema concreto a causa del loro ampio utilizzo in diversi settori industriali. All’interno di un contesto normativo che tutela la qualità dell’aria imponendo soglie e limiti, gli operatori dei settori produttivi devono adeguarsi a tecnologie più consone al rispetto ambientale. Una tecnica di abbattimento biologico come la Biofiltrazione può rispondere a queste esigenze sfruttando la capacità dei microrganismi di degradare i composti organici che compongono i gas esausti. Il lavoro descritto in questo elaborato di tesi è consistito nell’isolamento di microrganismi in grado di catabolizzare i più comuni solventi organici e nella verifica della loro attività inoculandoli in reattori simulanti un biofiltro. Lo scopo è stato quello di individuare popolazioni idonee all’arricchimento del pool catabolico di impianti di biofiltrazione in fase di avviamento. A partire da tre campioni si sono quindi isolati ceppi sotto la pressione selettiva positivi alla catabolisi dei composti target attraverso l’esposizione dei microrganismi al solvente in fase vapore. Successivamente ogni ceppo isolato è stato sottoposto a test di positività sulla capacità di biodegradazione della molecola induttrice attraverso un sistema respirometrico proposto da Bartha et al. (1965) che valuta l’attività catabolica mediante la produzione di CO2. Infine si è analizzata l’azione di questi microrganismi all’interno di reattori pilota simulanti l’attività di un biofiltro misurando l’efficienza di abbattimento con un sistema in discontinuo (Fialette a carboni attivi ed analisi gas-cromatografica GC FID) e con alcuni confronti con un fotoionizzatore in continuo (PID).
APA, Harvard, Vancouver, ISO, and other styles
10

Marino, Luis Fernando Bruno <1967&gt. "Emissione di sostanze organiche volatili (SOV) provenienti dalla cottura di piastrelle ceramiche. Studio delle relazioni fra additivi organici, condizioni di cottura ed emissione di SOV." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/89/1/Tesi_Marino.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Organici Volatili"

1

1959-, Albalak Ramon J., ed. Polymer devolatilization. New York: M. Dekker, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

chairman, Bennett Andrew F., and Field Barry chairman, eds. Volatile organic compounds. London: HMSO, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

F, Bennett Andrew, and Field Barry, eds. Volatile organic compounds. London: HMSO, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Volatile organic compounds. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. Environmental Protection Agency. Office of Drinking Water., ed. Volatile organic compounds. Chelsea, Mich: Lewis Publishers, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

H, James Ruby, and Air and Energy Engineering Research Laboratory, eds. Simplified volatile organics sampler. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Atmospheric Research and Exposure Assessment Laboratory (U.S.), ed. Theoretical evaluation of stability of volatile organic chemicals and polar volatile organic chemicals in canisters. Research Triangle Park, NC: Atmospheric Research and Exposure Assessment Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, W., JL Schnoor, and J. Doi, eds. Volatile Organic Compounds in the Environment. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1996. http://dx.doi.org/10.1520/stp1261-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harrison, R. M., and R. E. Hester, eds. Volatile Organic Compounds in the Atmosphere. Cambridge: Royal Society of Chemistry, 1995. http://dx.doi.org/10.1039/9781847552310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koppmann, Ralf, ed. Volatile Organic Compounds in the Atmosphere. Oxford, UK: Blackwell Publishing Ltd, 2007. http://dx.doi.org/10.1002/9780470988657.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Organici Volatili"

1

Richardson, Stephen, and Nigel Gibson. "Volatile organics." In Industrial Air Pollution Monitoring, 157–70. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-009-1435-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Uragami, Tadashi. "Volatile Organic Compounds." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_596-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sarkar, Tapan, and Ashok Mulchandani. "Volatile Organic Compounds." In Environmental Analysis by Electrochemical Sensors and Biosensors, 1023–46. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1301-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patnaik, Pradyot. "Volatile Organic Compounds." In Handbook of Environmental Analysis, 361–72. Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151946-63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hess-Kosa, Kathleen. "Volatile Organic Compounds." In Indoor Air Quality, 137–64. Third edition. | Boca Raton : CRC Press/Taylor & Francis, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315098180-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lacaze, Pierre Camille, and Jean-Christophe Lacroix. "Organic and Non-Volatile Electronic Memories." In Non-Volatile Memories, 201–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118789988.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shepson, Paul B. "Organic Nitrates." In Volatile Organic Compounds in the Atmosphere, 269–91. Oxford, UK: Blackwell Publishing Ltd, 2007. http://dx.doi.org/10.1002/9780470988657.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hoffmann, Thorsten, and Jörg Warnke. "Organic Aerosols." In Volatile Organic Compounds in the Atmosphere, 342–87. Oxford, UK: Blackwell Publishing Ltd, 2007. http://dx.doi.org/10.1002/9780470988657.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaecker-Voirol, A. "VOC: Volatile Organic Compounds." In Pollutants from Combustion, 241–61. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4249-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jianyin, Xiong, and Shaodan Huang. "Volatile Organic Compounds (VOCs)." In Handbook of Indoor Air Quality, 71–98. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7680-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Organici Volatili"

1

Peck, Jay, Zhenhong Yu, Hsi-Wu Wong, Richard Miake-Lye, David Liscinsky, Archer Jennings, and Bruce True. "Experimental and Numerical Studies of Sulfate and Organic Condensation on Aircraft Engine Soot." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25227.

Full text
Abstract:
To study the condensation of sulfates and organics on aircraft engine soot, a systematic measurement of particulate matter was performed using a sector rig combustor at various operation conditions and sampling configurations. The condensation of organics increased with increasing soot loading, although the initial vapor phase concentration was lower for the high soot condition. The condensation rate of the organic species is much slower than that of the sulfates, and therefore the availability of the soot surfaces becomes a rate-limiting factor. On the other hand, because the sulfates are nearly completely condensed on soot surfaces even for the low soot conditions, more soot did not significantly increase the condensation of sulfates. The experimental results were explained with a microphysical simulation by using a 6-species surrogate model to represent volatile aircraft emissions. Using the relative composition of the volatile organics based on saturation vapor concentration, and the dry mass accommodation coefficient derived from the correlation to water solubility, the proposed surrogate model was able to match the experimental measurements both qualitatively and quantitatively.
APA, Harvard, Vancouver, ISO, and other styles
2

Syed, Yasir I., Chris Phillips, Davide Deganello, and Keir E. Lewis. "Exhaled Volatile Organic Compounds In COPD Exhaled Volatile Organic Compounds & COPD." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a4598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cosseddu, Piero, Giulia Casula, Stefano Lai, and Annalisa Bonfiglio. "Flexible non-volatile memory devices based on organic semiconductors." In SPIE Organic Photonics + Electronics, edited by Emil J. W. List Kratochvil. SPIE, 2015. http://dx.doi.org/10.1117/12.2187537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Graf, John C. "Photocatalytic Oxidation of Volatile Organic Contaminants." In International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yost, C., B. Pacolay, and L. Coyne. "348. Monitoring Volatile Organic Compounds Samplers." In AIHce 2002. AIHA, 2002. http://dx.doi.org/10.3320/1.2766288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wolff, Marcus, Henry Bruhns, and Wenyi Zhang. "Photoacoustic detection of volatile organic compounds." In SPIE Optics + Optoelectronics, edited by Francesco Baldini, Jiri Homola, Robert A. Lieberman, and Kyriacos Kalli. SPIE, 2011. http://dx.doi.org/10.1117/12.888966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Henley, Michael V., William R. Bradley, Sheryl E. Wyatt, G. M. Graziano, and J. R. Wells. "Atmospheric transformation of volatile organic compounds." In AeroSense 2000, edited by Patrick J. Gardner. SPIE, 2000. http://dx.doi.org/10.1117/12.394076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gordon, John D., Richard H. Selfridge, and Stephen M. Schultz. "D-Fiber volatile organic compound sensor." In The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Vijay K. Varadan. SPIE, 2007. http://dx.doi.org/10.1117/12.715298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xia, Jiangnan, and Yuanyuan Hu. "Organic ferroelectric non-volatile memory transistors." In 2022 IEEE International Flexible Electronics Technology Conference (IFETC). IEEE, 2022. http://dx.doi.org/10.1109/ifetc53656.2022.9948506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nau, Sebastian, Christoph Wolf, Stefan Sax, and Emil J. W. List-Kratochvil. "Non-volatile resistive photo-switches for flexible image detector arrays." In SPIE Organic Photonics + Electronics, edited by Emil J. W. List Kratochvil. SPIE, 2015. http://dx.doi.org/10.1117/12.2187007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Organici Volatili"

1

Vogel, R. E. Sitewide railroad ties volatile organic package. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10187040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laguna, G. R., F. J. Peter, A. D. Stuart, and V. M. Loyola. Volatile organic monitor for industrial effluents. Office of Scientific and Technical Information (OSTI), July 1993. http://dx.doi.org/10.2172/10177056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, B., and R. L. Siegrist. Alkaline dechlorination of chlorinated volatile organic compounds. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/419269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

John F. Schabron, Jr Joseph F. Rovani, and Theresa M. Bomstad. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/820761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

John F. Schabron, Joseph F. Rovani Jr., and Theresa M. Bomstad. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/822157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maskarinec, M. P., C. K. Bayne, R. A. Jenkins, L. H. Johnson, and S. K. Holladay. Stability of volatile organics in environmental soil samples. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/7064388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barletta, R. E., and J. T. Veligdan. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10185780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Edward G. Gatliff, Ph D., Ph D. Laura R. Skubal, and Ph D. Michael C. Vogt. Monitoring Volatile Organic Tank Waste Using Cermet Microsensors. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/877280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zylkowski, Steve, and Charles Frihart. Volatile organic compound emissions from engineered wood products. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2017. http://dx.doi.org/10.2737/fpl-rn-350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hodgson, A. T., J. D. Wooley, and J. M. Daisey. Volatile organic chemical emissions from carpets. Final report. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10182618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography