Academic literature on the topic 'Organic matrix'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organic matrix.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Organic matrix"

1

Veis, A. "Mineralization in Organic Matrix Frameworks." Reviews in Mineralogy and Geochemistry 54, no. 1 (January 1, 2003): 249–89. http://dx.doi.org/10.2113/0540249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matsushita, Yohsuke, Hiroyuki Shimada, Takuya Miyashita, Miki Shibata, Shigeki Naka, Hiroyuki Okada, and Hiroyoshi Onnagawa. "Organic Bi-function Matrix Array." Japanese Journal of Applied Physics 44, no. 4B (April 21, 2005): 2826–29. http://dx.doi.org/10.1143/jjap.44.2826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nausieda, I., Ryu Kyungbum, I. Kymissis, A. I. Akinwande, V. Bulovic, and C. G. Sodini. "An Organic Active-Matrix Imager." IEEE Transactions on Electron Devices 55, no. 2 (February 2008): 527–32. http://dx.doi.org/10.1109/ted.2007.913081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakaguchi, Yoshikazu, Hiroshi Tada, Kenji Mori, Yuichi Iketsu, and Joji Suzuki. "Color Passive-matrix Organic Electroluminescent Displays." Journal of Photopolymer Science and Technology 15, no. 2 (2002): 247–52. http://dx.doi.org/10.2494/photopolymer.15.247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Eunjin, Jisu Kim, Inseong Choi, Jeongwook Lee, and Woon-Seok Yeo. "Organic matrix-free imaging mass spectrometry." BMB Reports 53, no. 7 (July 31, 2020): 349–56. http://dx.doi.org/10.5483/bmbrep.2020.53.7.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kobayashi, Iwao, and Tetsuro Samata. "Bivalve shell structure and organic matrix." Materials Science and Engineering: C 26, no. 4 (May 2006): 692–98. http://dx.doi.org/10.1016/j.msec.2005.09.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ZURER, PAMELA. "Nanowires isolated in organic polymer matrix." Chemical & Engineering News 74, no. 34 (August 19, 1996): 38. http://dx.doi.org/10.1021/cen-v074n034.p038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pribat, D., and F. Plais. "Matrix addressing for organic electroluminescent displays." Thin Solid Films 383, no. 1-2 (February 2001): 25–30. http://dx.doi.org/10.1016/s0040-6090(00)01645-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arai, Michio, Kenji Nakaya, Osamu Onitsuka, Tetsushi Inoue, Mitsufumi Codama, Masaru Tanaka, and Hiroshi Tanabe. "Passive matrix display of organic LEDs." Synthetic Metals 91, no. 1-3 (December 1997): 21–25. http://dx.doi.org/10.1016/s0379-6779(97)03968-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhu, Bizhong, Yuhong Wu, Herschel H. Reese, Dimitris E. Katsoulis, and Frederick J. McGarry. "Silicone-Organic Resin Hybrid Matrix Composites." Macromolecular Materials and Engineering 291, no. 9 (September 15, 2006): 1052–60. http://dx.doi.org/10.1002/mame.200600042.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Organic matrix"

1

Maccarone, Alan T. "Infrared spectroscopy of matrix isolated organic peroxyl radicals." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3284492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meyer, Jens. "Transparent organic light emitting diodes for active matrix displays." Göttingen Cuvillier, 2008. http://d-nb.info/994852428/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lisuwandi, Eko T. 1977. "Feedback circuit for organic LED active-matrix display drivers." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/16849.

Full text
Abstract:
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.
Includes bibliographical references (leaves 44-45).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
A feedback circuit for an Organic Light Emitting Diode (OLED) based display is proposed and demonstrated. An OLED-based flat panel display is brighter, much lower power, has no viewing angle limitation and potentially cheaper compared to available Liquid Crystal (LC) based displays. Despite these advantages, an OLED-based display is not widely commercialized mainly due to its short practical lifetime. The I-V characteristics of the individual OLED pixels vary over time, temperature and processing-dependent parameters. Moreover, the variation is not uniform across an array of OLED pixels, causing OLED based displays to lose brightness accuracy after a few thousand hours of operation. The proposed feedback circuit is used to compensate for the non-uniformities in the individual OLED characteristics. The resulting display leverages the beneficial aspects of OLED display technology, while maintaining pixel uniformity and grayscale reproducibility. A demonstration system is built proving the feasibility of a flat panel display using direct optical feedback. The feedback loop monitors the output light level using a sensor and adjusts the current fed to the pixels to set the output light power to a digitally set reference level. The system shares a single feedback loop among a number of pixels, saving power and real estate. The demonstration system consists of a 5x5 array of LEDs, a CMOS camera, analog pixel circuitry, driver and feedback loop, as well as a digital controller. The demonstration system also shows the feasibility of time-sharing a feedback loop among a number of output devices.
by Eko T. Lisuwandi.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
4

Abraham, C. J. "Trace-element analysis of metallic and organic matrix materials exploiting RIMS." Thesis, Swansea University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.635842.

Full text
Abstract:
Sputter initiated Resonance Ionisation Spectroscopy (SIRIS) was used to perform trace analysis for a number of elements in various matrices. The system consisted of a reflection time of flight (ToF) mass spectrometer combined with a duoplasmatron primary ion source which was coupled to a Nd:YAG pumped dye laser. External electronics were constructed to synchronise precisely the timing of the laser pulse, primary ion source and dual channel plate detector. The present set-up allowed the utilisation of the simplest of all ionisation routes, namely the one-colour, two-photon RIS schemes. The elements titanium, chromium, nickel, molybdenum, iron and tin were photo-ionised in the 290-300 nm and 280-290 nm range. Various resonances for these elements were obtained providing valuable information on efficient RIS routes, which could be used in trace analysis. The sensitivity of the RIMS technique was demonstrated by the detection of 15 ppm of iron in a nickel host, with an ultimate detection limit of less than 5ppb. Trace detection of potentially toxic elements such as iron and aluminium in brain homogenate tissue was demonstrated for samples, with concentrations of 100 ppm of aluminium and 400 ppm of iron: detection was possible without isobaric interferences. These elements have been linked to the neurological disorders of Alzheimer's disease and Parkinsonian dementia. In a separate application, the detection of 480 ppm of tin in an insulator of silicone gum is shown, demonstrating the diverse range of samples which can be analysed using RIMS. A brief review of the theoretical modelling for ion sputtering and the process of resonance ionisation is given, including the benefits and limitations of the various methods.
APA, Harvard, Vancouver, ISO, and other styles
5

Shahid, Salman. "Polymer-Metal Organic Frameworks (MOFs) Mixed Matrix Membranes For Gas Separation Applications." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS141/document.

Full text
Abstract:
Le comportement plastifiant de polymères purs a été bien étudié dans la littérature. Toutefois, il n'y a eu que peu d'études concernant les membranes à matrices mixtes (MMM). Dans le chapitre 2 de cette thèse, le comportement plastifiant de MMM préparés à partir de nanoparticules mésoporeuses Fe(BTC) et du polymère Matrimid® est étudié avec un gaz pur ou en mélange. Les réseaux métaux-organiques (MOF) sous forme particulaires ont présenté une relativement bonne compatibilité avec le polymère. L'incorporation de Fe(BTC) dans du Matrimid® a permis d'augmenter la perméabilité et la sélectivité des membranes. Pour de faibles pressions de 5 bars, les MMM ont une perméabilité au CO2 de 60% plus grande ainsi qu'une sélectivité de 29% plus grande à comparer à la sélectivité idéale de membranes Matrimid®. Il a été observé que la présence de particules Fe(BTC) retardait l'effet plastifiant vers de plus grandes pressions. De plus, cette pression augmente avec le taux de MOF au sein du matériau. Ce retard est attribué à la mobilité réduite des chaînes polymères dans l'entourage des particules Fe(BTC). Egalement, pour des concentrations en MOF plus élevées, les membranes présentent une sélectivité plus ou moins constante sur toute la gamme de pression étudiée. Le chapitre 3 présente ensuite la préparation et le caractère plastifiant des MMMs basées sur trois types de MOFs (MIL-53(Al) (MOF « repirant »), ZIF-8 (MOF « flexible ») and Cu3(BTC)2 (MOF « rigide »)) dispersés dans le Matrimid®. Les performances en gaz pur ou en mélange ont été étudiées en fonction de la quantité de MOF introduite. Parmi les trois systèmes MOF-MMM, les membranes avec le Cu3(BTC)2 ont présenté la plus haute sélectivité alors que les membranes avec du ZIF-8 ont montré une plus grande perméabilité. Ces améliorations sont essentiellement le fait de la structure cristalline du MOF et de son interaction avec les molécules de CO2. Le chapitre 4 décrit la préparation de membranes à base de mélange Matrimid® polyimide (PI)/polysulfone (PSF) contenant des particules de ZIF-8 pour la séparation gazeuse à haute pression. Un mélange optimisé avec un rapport PI/PSF de 3:1 a été utilisé pour une étude sur la stabilité et la performance de ces MMMs incorporant différentes concentration de ZIF-8. PI et PSF étant miscibles, une bonne compatibilité avec les particules de ZIF-8 est observée. Les MMMs PI/PSF-ZIF-8 ont démontré une amélioration significative de la perméabilité en CO2 lors de l'augmentation de la concentration en ZIF-8, ce qui a été attribué à une augmentation modérée de la capacité de sorption et à une diffusion plus rapide au travers des particules de ZIF-8. Lors des mesures en gaz purs, les membranes PI/PSF (3:1) ont présenté une plastification vers 18 bars alors que l'introduction de ZIF-8 repousse cette valeur à 25 bars. En mélange de gaz, les MMMs PI/PSF-ZIF-8 ont abouti à une suppression de la plastification comme l'a confirmé une mesure constante de la perméabilité et de la sélectivité du CH4, et cet effet est plus accentué avec l'augmentation de la concentration en ZIF-8. Les résultats en séparation des gaz avec les MMMs PI/PSF-ZIF-8 montrent une performance supérieure à celle du Matrimid® ce qui laisse augurer un élargissement du spectre d'application de ces membranes, particulièrement pour la séparation du CO2 à haute pression. Dans le chapitre 5, une nouvelle voie de préparation des MMMs via la fusion contrôlée de particules a été introduite. La modification du Matrimid® par du 1-(3-aminopropyl)-imidazole a permis d'améliorer considérablement la compatibilité avec les particules de ZIF-8. Il a ainsi été possible de préparer des MMMs contenant 30% de MOF sans perte de sélectivité. En augmentant la concentration en ZIF-8, les MMMs ont de meilleures performances dans la séparation de mélange CO2/CH4 à comparer au polymère initial. La perméabilité a augmenté de plus de 200% avec une augmentation de 65% de sélectivité pour le mélange CO2/CH4
The plasticization behavior of pure polymers is well studied in literature. However, there are only few studies on the plasticization behavior of mixed matrix membranes. In Chapter 2 of this thesis, pure and mixed gas plasticization behavior of MMMs prepared from mesoporous Fe(BTC) nanoparticles and the polymer Matrimid® is investigated. All experiments were carried with solution casted dense membranes. Mesoporous Fe(BTC) MOF particles showed reasonably good compatibility with the polymer. Incorporation of Fe(BTC) in Matrimid® resulted in membranes with increased permeability and selectivity. At low pressures of 5 bar the MMMs showed an increase of 60 % in CO2 permeability and a corresponding increase of 29 % in ideal selectivity over pure Matrimid® membranes. It was observed that the presence of Fe(BTC) particles increases the plasticization pressure of Matrimid® based MMMs. Furthermore, this pressure increases more with increasing MOF loading. This delay in plasticization is attributed to the reduced mobility of the polymer chains in the vicinity of the Fe(BTC) particles. Also, at higher Fe(BTC) loadings, the membranes showed more or less constant selectivity over the whole pressure range investigated. Chapter 3 subsequently presented the preparation and plasticization behavior of MMMs based on three distinctively different MOFs (MIL-53(Al) (breathing MOF), ZIF-8 (flexible MOF) and Cu3(BTC)2 (rigid MOF)) dispersed in Matrimid®. The ideal and mixed gas performance of the prepared MMMs was determined and the effect of MOF structure on the plasticization behavior of MMMs was investigated. Among the three MOF-MMMs, membranes based on Cu3(BTC)2 showed highest selectivity while ZIF-8 based membranes showed highest permeability. The respective increase in performance of the MMMs is very much dependent on the MOF crystal structure and its interactions with CO2 molecules. Chapter 4 described the preparation of Matrimid® polyimide (PI)/polysulfone (PSF)-blend membranes containing ZIF-8 particles for high pressure gas separation. An optimized PI/PSF blend ratio (3:1) was used and performance and stability of PI/PSF mixed matrix membranes filled with different concentrations of ZIF-8 were investigated. PI and PSF were miscible and provided good compatibility with the ZIF-8 particles, even at high loadings. The PI/PSF-ZIF-8 MMMs showed significant enhancement in CO2 permeability with increased ZIF-8 loading, which was attributed to a moderate increase in sorption capacity and faster diffusion through the ZIF-8 particles. In pure gas measurements, pure PI/PSF blend (3:1) membranes showed a plasticization pressure of ~18 bar while the ZIF-8 MMMs showed a higher plasticization pressures of ~25 bar. Mixed gas measurements of PI/PSF-ZIF-8 MMMs showed suppression of plasticization as confirmed by a constant mixed gas CH4 permeability and a nearly constant selectivity with pressure but the effect was stronger at high ZIF-8 loadings. Gas separation results of the prepared PI/PSF-ZIF-8 MMMs show an increased commercial viability of Matrimid® based membranes and broadened their applicability, especially for high-pressure CO2 gas separations. In Chapter 5, a novel route for the preparation of mixed matrix membranes via a particle fusion approach was introduced. Surface modification of the polymer with 1-(3-aminopropyl)-imidazole led to an excellent ZIF-8-Matrimid® interfacial compatibility. It was possible to successfully prepare MMMs with MOF loadings as high as 30 wt.% without any non-selective defects. Upon increasing the ZIF-8 loading, MMMs showed significantly better performance in the separation of CO2/CH4 mixtures as compared to the native polymer. The CO2 permeability increased up to 200 % combined with a 65 % increase in CO2/CH4 selectivity, compared to the native Matrimid®. Chapter 6 finally discussed the conclusions and directions for future research based on the findings presented in this thesis
APA, Harvard, Vancouver, ISO, and other styles
6

Ameye, Laurent. "Control of biomineralization in echinoderms :ultrastructure and cytochemistry of the organic matrix." Doctoral thesis, Universite Libre de Bruxelles, 1999. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ude, Mba. "Supercritical fluid extraction of organic species through polymeric systems." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Franks, Jeff. "Sample introduction into ICP-MS systems." Thesis, University of Hull, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xie, Wanqin Ph D. Massachusetts Institute of Technology. "Free approximation of transport properties in organic system using Stochastic Random Matrix Theory." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93040.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Chemistry, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 44-48).
The proposed research is a study and application of Stochastic analysis- Random Matrix Theory(RMT) to fast calculate the transport properties of large static systems with relatively large disorder in mesoscopic size. As a major topic of Random Matrix Theory(RMT), free convolution managed to approximate the distribution of eigenvalues in an Anderson Model.So the next step is trying to expand RMT to approximate other quantities, such as transmission probability, conductivity and etc. Due to the eigenvectors' shifts, RMT works well only for small disorder. System with larger disorder requires to take in account of the changes in eigenvectors directly or through other approximations of the eigenvectors.
by Wanqin Xie.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
10

Keller, Christopher. "Photolysis of 1-(4-azidomethyl-phenyl)-ethanone and matrix/LFP studies of 2-benzoyl-3-methyl-2H-azirine." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1121442210.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Organic matrix"

1

Gigliotti, Marco, Marie-Christine Lafarie-Frenot, Jean-Claude Grandidier, and Matteo Minervino. Mechanical Behavior of Organic Matrix Composites. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119388838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cole, K. C. Physicochemical characterization of high-performance fibre-reinforced organic-matrix composites. Part 6. Methods for quality control of matrix chemistry. Boucherville, Que: Industrial Materials Research Institute, National Research Council Canada, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

service), SpringerLink (Online, ed. Density Matrix Theory and Applications. 3rd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campfens, Jan. A fugacity-based matrix model of organic contaminant behaviour in aquatic food webs. Ottawa: National Library of Canada, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rowe, Barbara L. Volatile organic compound matrix spike recoveries for ground- and surface-water samples, 1997-2001. Reston, Va: U.S. Geological Survey, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gidopoulos, N. I. The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State. Dordrecht: Springer Netherlands, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

You ji hua xue: Gong Zhong yao zhuan ye yong. Shanghai: Shanghai ke xue ji shu chu ban she, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yarnell, Eric. Phytochemistry and pharmacy for practitioners of botanical medicine. Wenatchee, Wa: Healing Mountain Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Musch, Hans. Die Orgel von Matthäus Abbrederis 1690/91 in Neu St. Johann. Näfels: Orgelbau M. Mathis & Söhne, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weidinger, Hermann-Josef. Grüne Oase ums Haus: Das Gartenbuch des Kräuterpfarrers. St. Pölten: Niederösterreichisches Pressehaus, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Organic matrix"

1

Huitema, H. Edzer A., Gerwin H. Gelinck, Erik van Veenendaal, Fred J. Touwslager, and Pieter J. G. van Lieshout. "Roll-up Active-matrix Displays." In Organic Electronics, 344–66. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608753.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nelson, Shelby F., and Lisong Zhou. "Active-matrix Light-emitting Displays." In Organic Electronics, 367–94. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527608753.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zylberberg, Louise. "Bone Cells and Organic Matrix." In Vertebrate Skeletal Histology and Paleohistology, 85–108. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781351189590-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mashinskaya, G. P., and B. V. Perov. "Principles of developing organic-fibre-reinforced plastics for aircraft engineering." In Polymer Matrix Composites, 305–425. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0515-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Veis, Arthur. "9. Mineralization in Organic Matrix Frameworks." In Biomineralization, edited by Patricia M. Dove, James J. De Yoreo, and Steve Weiner, 249–90. Berlin, Boston: De Gruyter, 2003. http://dx.doi.org/10.1515/9781501509346-014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Colin, X., and J. Verdu. "Humid Ageing of Organic Matrix Composites." In Solid Mechanics and Its Applications, 47–114. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7417-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rudzinski, Lech, Leslaw Hebda, and Boguslaw Turlej. "Flexural Process and Electro-Acoustic Emission of Organic Fibres Reinforced Mortars (OFRM)." In Brittle Matrix Composites 3, 226–33. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3646-4_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gigliotti, Marco. "Hygrothermoelastic Stress in Organic Matrix Composite Materials." In Encyclopedia of Continuum Mechanics, 1248–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gigliotti, Marco. "Hygrothermoelastic Stress in Organic Matrix Composite Materials." In Encyclopedia of Continuum Mechanics, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53605-6_94-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huitema, Edzer, Gerwin Gelinck, Erik van Veenendaal, Fred Touwslager, and Pieter van Lieshout. "Rollable Active Matrix Displays with Organic Electronics." In Flexible Flat Panel Displays, 245–62. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470870508.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Organic matrix"

1

Matsushita, Yohsuke, Hiroyuki Shimada, Takuya Miyashita, Miki Shibata, Shigeki Naka, Hiroyuki Okada, and Hiroyoshi Onnagawa. "Organic Bi-Function Matrix Array." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.a-4-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tishchenko, A. V., and A. A. Shcherbakov. "Rigorous S-matrix based modeling of OLEDs." In Solid-State and Organic Lighting. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/soled.2010.sotuc3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peng, Boyu, Jiawei Lin, and Paddy K. L. Chan. "Flexible transistor active matrix array with all screen-printed electrodes." In SPIE Organic Photonics + Electronics, edited by Zhenan Bao, Iain McCulloch, Ruth Shinar, and Ioannis Kymissis. SPIE, 2013. http://dx.doi.org/10.1117/12.2022621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nathan, Arokia. "Design and Integration Challenges of Active Matrix Organic Light Emitting Diode Displays." In Organic Photonics and Electronics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ope.2006.optuc1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hatalis, Miltiadis K., Mark J. Stewart, Ching W. Tang, and John Burtis. "Polysilicon TFT active matrix organic EL displays." In AeroSense '97, edited by Darrel G. Hopper. SPIE, 1997. http://dx.doi.org/10.1117/12.276990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Lisong, Alfred Wanga, Sheng-Chu Wu, Jie Sun, Sungkyu Park, Shelby Nelson, Diane Freeman, Yongtaek Hong, and Thomas N. Jackson. "All-organic active matrix OLED flexible display." In Defense and Security Symposium, edited by James C. Byrd, Daniel D. Desjardins, Eric W. Forsythe, and Henry J. Girolamo. SPIE, 2006. http://dx.doi.org/10.1117/12.666613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Canva, Michael, Anne-Claire Le Duff, Vincent Ricci, Tomas Pliska, George Stegeman, and K. Pong Chan. "Effects of the host matrix on near infrared red tail absorption of chromophore doped polymer waveguides." In Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.sab3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Sangyun, Hyunsik Moon, Do H. Kim, Bon-Won Koo, Eun-Jeong Jeong, Bang-Lin Lee, Joo-Young Kim, et al. "Organic thin-film transistor arrays for active-matrix organic light emitting diode." In Photonic Devices + Applications, edited by Zhenan Bao and David J. Gundlach. SPIE, 2007. http://dx.doi.org/10.1117/12.737008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sano, Takeshi, Yoshiyuki Suzuri, Mitsuhiro Koden, Toshinao Yuki, Hitoshi Nakada, and Junji Kido. "Organic Light Emitting Diodes for Lighting Applications." In 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2019. http://dx.doi.org/10.23919/am-fpd.2019.8830597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fadeev, V. V., T. A. Dolenko, A. A. Banishev, P. N. Litvinov, D. V. Maslov, and E. E. Ostroumov. "Matrix method in laser fluorimetry of organic compounds." In OPTO-Ireland, edited by Hugh J. Byrne, Elfed Lewis, Brian D. MacCraith, Enda McGlynn, James A. McLaughlin, Gerard D. O'Sullivan, Alan G. Ryder, and James E. Walsh. SPIE, 2005. http://dx.doi.org/10.1117/12.604954.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Organic matrix"

1

Simon, N. J. A review of irradiation effects on organic-matrix insulation. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.3999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Simon, N. J. A Review of Irradiation Effects on Organic-Matrix Insulation. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/761714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pittman, Jr, and Charles U. Vapor Grown Carbon Fiber/Hybrid Organic-Inorganic Matrix Composites. Nanometer-sized Silsesquiozane Phase Chemically Bound in a Matrix. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada448639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hanley, L. Mass spectral study of organic sulfur in the polymeric matrix of coal. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6011742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parisien, Lia. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1261808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Knight, J. A. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1134034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gelis, Artem V. Immobilization of Organic Radioactive and Non-Radioactive Liquid Waste in a Composite Matrix - Final CRADA Report. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1329392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pardue, H. L. Synchronous fluorescence/matrix isolation method for trace organic analysis: Annual report, December 1, 1983--November 30, 1984. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6421674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pardue, H. L. Synchronous fluorescence/matrix isolation method for trace organic analysis: Annual report, December 1, 1984--November 30, 1985. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6290949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hershey, Ronald L., and Wyatt Fereday. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1253607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography