Academic literature on the topic 'Organic-inorganic perovskites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organic-inorganic perovskites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Organic-inorganic perovskites"

1

Eperon, Giles E., Giuseppe M. Paternò, Rebecca J. Sutton, Andrea Zampetti, Amir Abbas Haghighirad, Franco Cacialli, and Henry J. Snaith. "Inorganic caesium lead iodide perovskite solar cells." Journal of Materials Chemistry A 3, no. 39 (2015): 19688–95. http://dx.doi.org/10.1039/c5ta06398a.

Full text
Abstract:
The vast majority of perovskite solar cell research has focused on organic–inorganic lead trihalide perovskites; herein, we present working inorganic CsPbI3perovskite solar cells for the first time.
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, Ling, and Yingjie Cao. "A two-dimensional organic–inorganic hybrid perovskite-type semiconductor: poly[(2-azaniumylethyl)trimethylphosphanium [tetra-μ-bromido-plumbate(II)]]." Acta Crystallographica Section C Structural Chemistry 75, no. 3 (February 21, 2019): 354–58. http://dx.doi.org/10.1107/s2053229619001712.

Full text
Abstract:
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three-dimensional hybrid perovskites, such as [CH3NH3]PbX 3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2-azaniumylethyl)trimethylphosphanium [tetra-μ-bromido-plumbate(II)]], {(C5H16NP)[PbBr4]} n , in which an organic cation is embedded in inorganic two-dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ∼2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.
APA, Harvard, Vancouver, ISO, and other styles
3

Akinbami, O., G. N. Ngubeni, F. Otieno, R. Kadzutu-Sithole, E. C. Linganiso, Z. N. Tetana, S. S. Gqoba, K. P. Mubiayi, and N. Moloto. "The effect of temperature and time on the properties of 2D Cs2ZnBr4 perovskite nanocrystals and their application in a Schottky barrier device." Journal of Materials Chemistry C 9, no. 18 (2021): 6022–33. http://dx.doi.org/10.1039/d1tc00264c.

Full text
Abstract:
2D hybrid perovskites are promising materials for solar cell applications, in particular, cesium-based perovskite nanocrystals as they offer the stability that is absent in organic–inorganic perovskites.
APA, Harvard, Vancouver, ISO, and other styles
4

Tochyniuk, Pavlo, Oleg Vyunov, Aleksandr Ishchenko, Irina Kurdyukova, Viktor Vlasyuk, Vitaliy Kostylyov, and Anatolii Belous. "ORGANIC-INORGANIC PEROVSKITE CH3NH3PbI3: MORPHOLOGICAL, STRUCTURAL AND PHOTOELECTROPHYSICAL PROPERTIES." Ukrainian Chemistry Journal 85, no. 9 (October 16, 2019): 31–41. http://dx.doi.org/10.33609/0041-6045.85.9.2019.31-41.

Full text
Abstract:
The organic-inorganic perovskite films CH3N-H3PbI3 were synthesized from solutions with different ratios of initial reagents (PbI2 to CH3NH3I were taken in the ratio 1:1, 1:2 and 1:3). To deposit films of organic-inorganic perovskite, solutions with different ratio of initial reagents were applied to the substrates by the spin-coating method. The organic-inorganic perovskites synthesized were of one chemical composition in spite of the fact that different chemical reactions proceeded during the synthesis. It was found that the formation of perovskite occurs according to different schemes depending on the ra-tio of PbI2 and CH3NH3I: without the formation of intermediate compounds (at ratio 1:1) and with the formation of one (CH3NH3)2PbI4 (1:2) and two intermediate compounds (CH3NH3)3PbI5, (CH3NH3)2PbI4 (1:3).It was established that regardless of the ratio of the initial reagents, organic-inorganic perovskites with different morphology are formed. At the ratio of the initial reagents 1:1, needle particles formed, and at the ratio of 1:2 and 1:3, particles have the form of a maple leaf and round shape, respectively.To improve the film stability, polyvinyl butyral polymer was used. It is an amorphous colorless pol-ymer which is characterized by high optical properties, environmental (in particular, H2O, O2 and O3) and light resistance. The stability of films of organic-inorganic perovskite without and with a polymer were investigated by XRD, fluorescence spectroscopy and non-contact optical methods. The stability of the films was evaluated by the content of the additional phase of PbI2, which is formed due to the degradation of the organic-inorganic perovskite film CH3NH3PbI3. It was established that the presence of a polymer layer results in improved stability of samples and decrease the rate of surface recombination velocity compared to samples without a polymer layer.The diffusion length of minority charge carriers of the organic-inorganic perovskite films with the polymeric layer was estimated by the method of spectral dependences of the surface photovoltage. The spectra of surface photovoltage and the diffusion length of minority charge carriers of organic-inorganic perovskites with a polymer layer were compared with the literature data for samples without a polymer layer. This comparison shown that the characteristics of the samples with polymer layer are somewhat worse. It is determined that the organic-inorganic perovskite with the polymer layer is characterized by a smaller diffusion length (by 10%) of the minority charge carriers. The prepared perovskite films CH3NH3PbI3 are promising for the development of effective solar cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Andrei, Florin, Rodica Zăvoianu, and Ioan-Cezar Marcu. "Complex Catalytic Materials Based on the Perovskite-Type Structure for Energy and Environmental Applications." Materials 13, no. 23 (December 5, 2020): 5555. http://dx.doi.org/10.3390/ma13235555.

Full text
Abstract:
This review paper focuses on perovskite-type materials as (photo)catalysts for energy and environmental applications. After a short introduction and the description of the structure of inorganic and hybrid organic-inorganic perovskites, the methods of preparation of inorganic perovskites both as powders via chemical routes and as thin films via laser-based techniques are tackled with, for the first, an analysis of the influence of the preparation method on the specific surface area of the material obtained. Then, the (photo)catalytic applications of the perovskites in energy production either in the form of hydrogen via water photodecomposition or by methane combustion, and in the removal of organic pollutants from waste waters, are reviewed.
APA, Harvard, Vancouver, ISO, and other styles
6

Kajal, Sandeep, Gi-Hwan Kim, Chang Woo Myung, Yun Seop Shin, Junu Kim, Jaeki Jeong, Atanu Jana, Jin Young Kim, and Kwang S. Kim. "A thermally stable, barium-stabilized α-CsPbI3 perovskite for optoelectronic devices." Journal of Materials Chemistry A 7, no. 38 (2019): 21740–46. http://dx.doi.org/10.1039/c9ta07827d.

Full text
Abstract:
The all-inorganic perovskite CsPbI3 has emerged as an alternative photovoltaic material to organic–inorganic hybrid perovskites due to its non-volatile composition and comparable photovoltaic performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Cheng, Dan, Zhaohai Yang, and Yilan Liang. "Preparation and Energy Storage Performance of Perovskite Luminescent Materials by an Electrochemiluminescence Method." Adsorption Science & Technology 2022 (October 3, 2022): 1–10. http://dx.doi.org/10.1155/2022/3092941.

Full text
Abstract:
In recent years, metal halide perovskites have become attractive photosensitive materials due to their excellent optoelectronic properties. Due to its good characteristics, perovskites are used in solar photovoltaic power generation, light-emitting diodes, photodetectors, photocatalysis, and sensors and many other fields. Considering the wide application of perovskites and the study of potential bifunctional devices, the application of perovskites in energy storage devices is relatively small, and a small number of studies focus on organic-inorganic hybrid lead-halide perovskites. However, the related energy storage research on all-inorganic lead-halide perovskites with better stability, which has also been widely concerned, is very scarce. And nontoxic all-inorganic nonperovskite has zero research in energy storage. Based on the above situation, this paper selects the lead-free perovskite Cs2AgSbCl6, and two lead halide perovskites with different dimensions, -0-dimensional Cs4PbBr6 and 3-dimensional CsPbBr3, these three all-inorganic perovskites. It was for electrochemical performance testing.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Meiying, Fengmin Wu, Dan Chi, Keli Shi, and Shihua Huang. "High-efficiency perovskite solar cells with poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer." Materials Advances 1, no. 4 (2020): 617–24. http://dx.doi.org/10.1039/d0ma00028k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shin, Jiwon, Kyeong-Yoon Baek, Jonghoon Lee, Woocheol Lee, Jaeyoung Kim, Juntae Jang, Jaehyoung Park, Keehoon Kang, Kyungjune Cho, and Takhee Lee. "Proton irradiation effects on mechanochemically synthesized and flash-evaporated hybrid organic–inorganic lead halide perovskites." Nanotechnology 33, no. 6 (November 18, 2021): 065706. http://dx.doi.org/10.1088/1361-6528/ac34a7.

Full text
Abstract:
Abstract A hybrid organic–inorganic halide perovskite is a promising material for developing efficient solar cell devices, with potential applications in space science. In this study, we synthesized methylammonium lead iodide (MAPbI3) perovskites via two methods: mechanochemical synthesis and flash evaporation. We irradiated these perovskites with highly energetic 10 MeV proton-beam doses of 1011, 1012, 1013, and 4 × 1013 protons cm−2 and examined the proton irradiation effects on the physical properties of MAPbI3 perovskites. The physical properties of the mechanochemically synthesized MAPbI3 perovskites were not considerably affected after proton irradiation. However, the flash-evaporated MAPbI3 perovskites showed a new peak in x-ray diffraction and an increased fluorescence lifetime in time-resolved photoluminescence under high-dose conditions, indicating considerable changes in their physical properties. This difference in behavior between MAPbI3 perovskites synthesized via the abovementioned two methods may be attributed to differences in radiation hardness associated with the bonding strength of the constituents, particularly Pb–I bonds. Our study will help to understand the radiation effect of proton beams on organometallic halide perovskite materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Maafa, Ibrahim M. "All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges." Nanomaterials 12, no. 10 (May 12, 2022): 1651. http://dx.doi.org/10.3390/nano12101651.

Full text
Abstract:
Organic–inorganic metal-halide-based hybrid perovskite solar cells (SCs) have attracted a great deal of attention from researchers around the globe with their certified power conversion efficiencies (PCEs) having now increased to 25.2%. Nevertheless, organic–inorganic hybrid halide perovskite SCs suffer the serious drawback of instability with respect to moisture and heat. However, all-inorganic perovskite SCs have emerged as promising candidates to tackle the thermal instability problem. Since the introduction of all-inorganic perovskite materials to the field of perovskite photovoltaics in 2014, a plethora of research articles has been published focusing on this research topic. The PCE of all-inorganic PSCs has climbed to a record 18.4% and research is underway to enhance this. In this review, I survey the gradual progress of all-inorganic perovskites, their material design, the fabrication of high-quality perovskite films, energetics, major challenges and schemes opening new horizons toward commercialization. Furthermore, techniques to stabilize cubically phased low-bandgap inorganic perovskites are highlighted, as this is an indispensable requirement for stable and highly efficient SCs. In addition, I explain the various energy loss mechanisms at the interface and in the bulk of perovskite and charge-selective layers, and recap previously published reports on the curtailment of charge-carrier recombination losses.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Organic-inorganic perovskites"

1

Niu, Wendy Wanru. "Excitons in 2D organic-inorganic lead iodide perovskites." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heller, Kyle Jeffrey. "CRYSTALLOGRAPHY OF TITANIUM BASED ORGANIC-INORGANIC HALIDE PEROVSKITES." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2798.

Full text
Abstract:
Kyle Heller, for the Master of Science degree in Mechanical Engineering, presented on October 2020, at Southern Illinois University Carbondale.MAJOR PROFESSOR: Dr. Kanchan Mondal Using powder X-ray diffraction, a material can have its crystalline structure identified. Powder X-ray diffraction alone is not enough if a material is unknown. Usually the exact chemical formula of the material is known, or a secondary analytical method is used to extract additional data in order to analyze the crystalline structure using Bragg’s law and the interplanar relationships. Secondary analytical methods are not as easy or inexpensive though. Generic values could be placed into the more basic structure types to obtain a rough idea of potential crystal types including space groups for the material based on its diffraction peaks. However, with a material that has an unknown spacing between its atoms (d-spacing) this is harder to implement. Thus, the use of a secondary software was employed to further analyze the possibilities. In this thesis, the software used for data extraction and refining were Expo 2014 and CrystalMaker X paired with CrystalDiffract and the final visualization was achieved using Endeavor. Two different titanium based organic inorganic halide perovskites (Dye 3 and Dye 4) prepared at different temperatures were evaluated to identify the crystallographic structure using only x-ray data available. The crystal parameters were calculated, and potential unit cells were visualized. Both the materials were found to be 4 (ABX3) type perovskites. The organic component for Dye 3 was methyl ammonium ion and that of Dye 4 was formamidinium ion. These perovskites have shown potential for use as sensitizers in visible light photovoltaic cells. It was concluded that Dye 4 was orthorhombic with a space grouping of C m c a (space group 64). The associated values were a = b =7.94 Å and c =11.55 Å. Dye 3 was also found to be orthorhombic with space grouping of P c c n (space group 56) being a better fit than C m c a. The associated values were a=b=16 Å and c=11 Å.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Michael M. "Organic-inorganic hybrid photovoltaics based on organometal halide perovskites." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9384fc54-30de-4f0d-86fc-71c22d350102.

Full text
Abstract:
This thesis details the development of a novel photovoltaic device based on organometal halide perovskites. The initial focus of this thesis begins with the study of lighttrapping strategies in solid-state dye-sensitised solar cells (detailed in chapter 3). While I report enhancement in device performance through the application of near and far-field light-trapping techniques, I find that improvements remain step-wise due to fundamental limitations currently employed in dye-sensitised solar cell technology— notably, the available light-sensitising materials. I found a promising yet under researched family of materials in the methyl ammonium tri-halide plumbate perovskite (detailed in chapter 4). The perovskite light-sensitiser was applied to the traditional mesoscopic sensitised solar cell device architecture as a replacement to conventional dye yielding world-record breaking photo-conversion e!ciencies for solid-state sensitised solar cells as high as 8.5%. The system was further developed leading to the conception of a novel device architecture, termed the mesoporous superstructured solar cell (MSSC), this new architecture replaces the conventional mesoporous titanium dioxide semiconductor with a porous insulating oxide in aluminium oxide, resulting in very low fundamental losses evidenced through high photo-generated open-circuit voltages of over 1.1 V. This development has delivered striking photo-conversion ef- ficiencies of 10.9% (detailed in chapter 6).
APA, Harvard, Vancouver, ISO, and other styles
4

Azarhoosh, Pooya. "The optical and electronic properties of organic-inorganic hybrid perovskites." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/the-optical-and-electronic-properties-of-organicinorganic-hybrid-perovskites(7ee3095e-05fa-49b9-9404-d481147c67b4).html.

Full text
Abstract:
The primary focus of this thesis is the study of a novel family of materials known as organicinorganic hybrid Perovskites (OIHP), which have recently demonstrated to possess remarkable photovoltaic efficiency. The fundamental properties of these materials related to photovoltaic (PV) applications are studied to characterise electronic and optical behaviours. An all-electron implementation of the Quasi-particle Self-consistent GW (QSGW) is used to perform first principles calculations. The quasi-particle energy bands are analysed for a number of Perovskites, to identify trends and characteristics within this family of materials, and to understand the dielectric response. The dielectric function and refractive index were studied for 4 OIHP and compared to experimental work carried out collaboratively with Leguy et al. [1]. It is found that the relativistic effects are extremely important in characterisation of these materials. The presence of strong spin-orbit interaction combined with significant internal electric fields yields anomalously large Rashba splitting of both valence and conduction states near the band edges. This significantly perturbs the electronic and optical properties of these materials. Such effects have not been previously investigated in the context of photovoltaic materials. The effect of the Rashba splitting on the radiative recombination lifetime of charge carriers is investigated. A model for reciprocal space trapping mechanism of carriers was developed and implemented within the Questaal package. The slightly indirect gap induced by Rashba splitting results in a strongly suppressed photoluminescence when compared to conventional III-V direct-gap semiconductors with an otherwise approximately similar band structure. Such suppression of the radiative recombination enhances the diffusion length and can significantly increase the power conversion efficiency of a solar cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Zu, Fengshuo. "Electronic properties of organic-inorganic halide perovskites and their interfaces." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20396.

Full text
Abstract:
Über die besonders hohe Effizienz von Halid-Perowskit (HaP)-basierten optoelektronischen Bauteilen wurde bereits in der Literatur berichtet. Um die Entwicklung dieser Bauteile voranzutreiben, ist ein umfassendes und verlässliches Verständnis derer elektronischen Struktur, sowie der Energielevelanordnung (ELA) an HaP Grenzflächen von größter Bedeutung. Demzufolge beschäftigt sich die vorliegende Arbeit mit der Untersuchung i) der Bandstruktur von Perowskit-Einkristallen, um ein solides Fundament für die Darlegung der elektronischen Eigenschaften von polykristallinen Dünnschichten zu erarbeiten, und mit ii) den Einflüssen von Oberflächenzuständen auf die elektronische Struktur der Oberfläche, sowie deren Rolle bei der Kontrolle von ELA an HaP Grenzflächen. Die Charakterisierung erfolgt überwiegend mithilfe von Photoelektronenspektroskopie (PES) und ergänzenden Messmethoden wie Beugung niederenergetischer Elektronen an Oberflächen, UV-VIS-Spektroskopie, Rasterkraftmikroskopie und Kelvin-Sonde. Erstens weist die Banddispersion von zwei prototypischen Perowskit-Einkristallen eine starke Dispersion des jeweiligen oberen Valenzbandes (VB) auf, dessen globales Maximum in beiden Fällen am R-Punkt in der Brillouin-Zone liegt. Dabei wird eine effektive Lochmasse von 0.25 m0 für CH3NH3PbBr3, bzw. von ~0.50 m0 für CH3NH3PbI3 bestimmt. Basierend auf diesen Ergebnissen werden die elektronischen Spektren von polykristallinen Dünnschichten konstruiert und es wird dadurch aufgezeigt, dass eine Bestimmung der Valenzbandkantenposition ausgehend von einer logarithmischen Intensitätsskala aufgrund von geringer Zustandsdichte am VB Maximum vorzuziehen ist. Zweitens stellt sich bei der Untersuchung der elektronischen Struktur von frisch präparierten Perowskit-Oberflächen heraus, dass die n-Typ Eigenschaft eine Folge der Bandverbiegung ist, welche durch donatorartige Oberflächenzustände hervorgerufen wird. Des Weiteren weisen die PES-Messungen an Perowskiten mit unterschiedlichen Zusammensetzungen aufgrund von Oberflächenphotospannung eine Anregungslichtintensitätsabhängigkeit der Energieniveaus von bis zu 0.7 eV auf. Darüber hinaus wird die Kontrolle von ELA durch gezielte Variation der Oberflächenzustandsdichte gezeigt, wodurch sich unterschiedliche ELA-Lagen (mit Abweichungen von über 0.5 eV) an den Grenzflächen mit organischen Akzeptormolekülen erklären lassen. Die vorliegenden Ergebnisse verhelfen dazu, die starke Abweichung der in der Literatur berichteten Energieniveaus zu erklären und somit ein verfeinertes Verständnis des Funktionsprinzips von perowskit-basierten Bauteilen zu erlangen.
Optoelectronic devices based on halide perovskites (HaPs) and possessing remarkably high performance have been reported. To push the development of such devices even further, a comprehensive and reliable understanding of their electronic structure, including the energy level alignment (ELA) at HaPs interfaces, is essential but presently not available. In an attempt to get a deep insight into the electronic properties of HaPs and the related interfaces, the work presented in this thesis investigates i) the fundamental band structure of perovskite single crystals, in order to establish solid foundations for a better understanding the electronic properties of polycrystalline thin films and ii) the effects of surface states on the surface electronic structure and their role in controlling the ELA at HaPs interfaces. The characterization is mostly performed using photoelectron spectroscopy, together with complementary techniques including low-energy electron diffraction, UV-vis absorption spectroscopy, atomic force microscopy and Kelvin probe measurements. Firstly, the band structure of two prototypical perovskite single crystals is unraveled, featuring widely dispersing top valence bands (VB) with the global valence band maximum at R point of the Brillouin zone. The hole effective masses there are determined to be ~0.25 m0 for CH3NH3PbBr3 and ~0.50 m0 for CH3NH3PbI3. Based on these results, the energy distribution curves of polycrystalline thin films are constructed, revealing the fact that using a logarithmic intensity scale to determine the VB onset is preferable due to the low density of states at the VB maximum. Secondly, investigations on the surface electronic structure of pristine perovskite surfaces conclude that the n-type behavior is a result of surface band bending due to the presence of donor-type surface states. Furthermore, due to surface photovoltage effect, photoemission measurements on different perovskite compositions exhibit excitation-intensity dependent energy levels with a shift of up to 0.7 eV. Eventually, control over the ELA by manipulating the density of surface states is demonstrated, from which very different ELA situations (variation over 0.5 eV) at interfaces with organic electron acceptor molecules are rationalized. Our findings further help to explain the rather dissimilar reported energy levels at perovskite surfaces and interfaces, refining our understanding of the operational principles in perovskite related devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Kovalsky, Anton. "PHOTOVOLTAIC AND THERMAL PROPERTIES OF HYBRID ORGANIC-INORGANIC METAL HALIDE PEROVSKITES." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1500584556606705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akbarian-Tefaghi, Sara. "Microwave-Assisted Topochemical Manipulation of Layered Oxide Perovskites: From Inorganic Layered Oxides to Inorganic-Organic Hybrid Perovskites and Functionalized Metal-Oxide Nanosheets." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2287.

Full text
Abstract:
Developing new materials with desired properties is a vital component of emerging technologies. Functional hybrid compounds make an important class of advanced materials that let us synergistically utilize the key features of the organic and inorganic counterparts in a single composite, providing a very strong tool to develop new materials with ”engineered” properties. The research presented here, summarizes efforts in the development of facile and efficient methods for the fabrication of three- and two-dimensional inorganic-organic hybrids based on layered oxide perovskites. Microwave radiation was exploited to rapidly fabricate and modify new and known materials. Despite the extensive utilization of microwaves in organic syntheses as well as the fabrication of the inorganic solids, the work herein was among the first reported that used microwaves in topochemical modification of the layered oxide perovskites. Our group specifically was the first to perform rapid microwave-assisted reactions in all of the modification steps including proton exchange, grafting, intercalation, and exfoliation, which decreased the duration of multi-step modification procedures from weeks to only a few hours. Microwave-assisted grafting and intercalation reactions with n-alkyl alcohols and n-alkylamines, respectively, were successfully applied on double-layered Dion-Jacobson and Ruddlesden-Popper phases (HLaNb2O7, HPrNb2O7, and H2CaTa2O7), and with somewhat more limited reactivity, applied to triple-layered perovskites (HCa2Nb3O10 and H2La2Ti3O10). Performing neutron diffraction on n-propoxy-LaNb2O7, structure refinement of a layered hybrid oxide perovskite was then tried for the first time. Furthermore, two-dimensional hybrid oxides were efficiently prepared from HLnNb2O7 (Ln = La, Pr), HCa2Nb3O10, HCa2Nb2FeO9, and HLaCaNb2MnO10, employing facile microwave-assisted exfoliation and post-exfoliation surface-modification reactions for the first time. A variety of surface groups, saturated or unsaturated linear and cyclic organics, were successfully anchored onto these oxide nanosheets. Properties of various functionalized metal-oxide nanosheets, as well as the polymerization of some monomer-grafted nanosheets, were then investigated for the two-dimensional hybrid systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Shijing. "Synthesis, characterization and properties of hybrid organic-inorganic perovskites for photovaltaic applications." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267739.

Full text
Abstract:
The hybrid organic-inorganic perovskites (HOIPs), e.g. methylammonium and formamidinium lead halide (MA/FAPbX3, X = I, Br or Cl), are a class of materials that has recently achieved remarkable performances in photovoltaic applications. This thesis describes the synthesis, structure and properties of this class of perovskites, with particular focus on their crystal chemistry, mechanical responses and structural diversity. Understanding the unique crystal chemistry of HOIPs is crucial for device design. While MA-based perovskites have been widely studied, there are still many open questions on the crystal chemistry of FA-based perovskites. In this work, FAPbX3 (X= Br or I) was shown to undergo a cubic (Pm3 ̅m) to tetragonal (P4/mbm) transition on cooling. Studies on the high-pressure crystallography of FAPbI3 exhibited a similar trend and further illustrated band gap tuning via external stimuli. In addition, the cubic lattice of FAPbBr3 was found to be more strained than its MA counterpart. The observed intrinsic strain was modelled with anisotropic line broadening and < 100 > was found to be the least strained direction. To explore potential applications in flexible devices, crystals of single (Pb-based) and double (Bi-based) perovskites were probed by nanoindentation and their mechanical properties, such as Young’s moduli (E) (10 – 20 GPa) and hardnesses (H) (0.2 -0.5 GPa), were determined. The mechanical responses of MA- and FA-based hybrid perovskites correlated well with the chemical and structural variations in these analogues, showing a general trend of ECl > EBr > EI and EPb > EBi. By analogy with classical inorganic perovskites, the hybrid phases can crystallise in both three-dimensional (3D) and low dimensional perovskite-like forms. To improve the stability and remove the toxicity in the current prototypical hybrid perovskites, compositional engineering was applied, focusing on non-toxic bismuth (Bi) as a viable alternative to lead (Pb) in future photovoltaic materials. We report a new layered perovskite, (NH4)3Bi2I9, which exhibits a band gap of 2.0 eV, comparable to MAPbBr3 and FAPbBr3. This work contributes to the materials design goal of more stable and eco-friendly perovskite devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Vega, Fleitas Erica. "Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/113402.

Full text
Abstract:
[ES] Las perovskitas orgánicas-inorgánicas de haluros de metilamonio y plomo y sus mezclas han mostrado propiedades optoelectrónicas óptimas como absorbente ideal para aplicaciones fotovoltaicas. Los dispositivos solares basados en perovskita han evolucionado rápidamente, desde una eficiencia del 3.9% en 2009, al 22.7% en 2017 y con un coste de fabricación más bajo que las células solares de silicio. Una desventaja del uso de absorbentes de perovskita en dispositivos fotovoltaicos es su baja estabilidad. Las células con un alto rendimiento, pierden su eficiencia y se degradan rápidamente. Para poder producir estos materiales industrialmente es necesario realizar estudios en profundidad que mejoren la eficiencia y estabilidad. Una vía de mejora es la ingeniería composicional, estrategia que hemos empleado en la elaboración de esta tesis y que consiste en la investigación y mejora de las propiedades optoelectrónicas y morfológicas, derivadas de la sustitución y/o combinación de cationes y aniones, que constituyen el material de perovskita. Se sintetizaron polvos puros de perovskita de I, Br, Cl, a partir de los cuales se prepararon capas puras y mixtas MAPbX3-xYx, con el objetivo de mejorar sus propiedades optoelectrónicas y estructurales. Los análisis de difracción de rayos X mostraron las propiedades estructurales de los polvos cristalinos y capas puras y mixtas. Los análisis de UV-vis y fotoluminiscencia mostraron que el rango de absorción varía a lo largo del espectro visible en función del contenido del haluro en las capas. Los análisis de fotoluminiscencia y calorimetría diferencial de barrido muestran los cambios de fase de las perovskitas puras a distintas temperaturas, coincidiendo dichos cambios en ambos análisis. El análisis FESEM de las perovskitas puras mostró las diferencias morfológicas entre los polvos y capas. Siguiendo esta línea de investigación, se estudiaron con más detalle las perovskitas mixtas de yodo-bromo, con un contenido de bromo de hasta el 33%, consiguiendo ajustar el bandgap para evitar pérdidas en la absorción y mejorar las propiedades optoelectrónicas, estructurales y morfológicas. A pesar de las buenas propiedades optoelectrónicas de las perovskitas de metilamonio, el catión orgánico disminuye su estabilidad, lo que llevó a investigar otros cationes inorgánicos. Las perovskitas de cesio son una alternativa prometedora, y por esta razón hemos sintetizado capas finas de perovskitas de cesio mixtas, CsPbBr3-xIx, para determinar los efectos que produce la sustitución parcial del yodo en las propiedades físicas y la estabilidad. Se obtuvieron capas con una buena resistencia a la humedad y temperatura, favoreciendo su aplicación en el campo fotovoltaico. Se ha estudiado la sustitución parcial del catión de metilamonio con otros cationes orgánicos, como el guanidinio e imidiazolio. Se demostró que pequeñas cantidades de guanidinio mejoran la estabilidad de las capas y su morfología. Se estableció el límite de solubilidad del guanidinio en el 20%, aproximadamente, y se determinó la estructura cristalina de las mezclas. La intensidad del pico de fotoluminiscencia aumentó para mezclas por debajo del límite de solubilidad. Se obtuvieron resultados similares para la sustitución del metilamonio con pequeñas cantidades de imidazolio. Los análisis de rayos X establecieron el límite de solubilidad en aproximadamente el 10% y una mejora en la cristalinidad. Los resultados de fotoluminiscencia sugieren que pequeñas cantidades de imidazolio reducen significativamente las recombinaciones no radiativas, actuando como un pasivador efectivo. Finalmente, se muestra el proceso de fabricación de dispositivos basados en MAPbI3 y sintetizados en función de las condiciones ambientales y empleando el dietil éter como anti-solvente. Los dispositivos mostraron una eficiencia máxima del 14.73%. Se ha probado que la oxidación del spiro-OMeTAD, bajo condiciones cont
[FR] Les perovskites orgàniques-inorgàniques de halurs de metilamoni i plom i les seues mescles han mostrat propietats optoelectròniques òptimes com a absorbent ideal per a aplicacions fotovoltaiques. Els dispositius solars basats en perovskita han evolucionat ràpidament, passant d'una eficiència del 3.9% en 2009, fins al 22.7% en 2017, i amb un cost de fabricació més baix que les cèl·lules solars de silici. No obstant això, un dels desavantatges de l'ús de absorbents de perovskita és la baixa estabilitat. En general, les cèl·lules que mostren un alt rendiment, perden la seua eficiència i es degraden ràpidament. Per a que aquestos materials puguen ser produits industrialment a gran escala és necessari estudiar-los en profunditat per millorar la eficiència i estabilitat. Una de les vies de millora és l'enginyeria composicional, estratègia que hem emprat en l'elaboració d'aquesta tesi i que consisteix en la investigació i la millora de les propietats optoelectròniques i morfològiques, derivades de la substitució i/o combinació de cations i anions, que constitueixen el material de perovskita. S'han sintetitzat pols purs de perovskita per a I, Br, Cl, a partir d'els quals es van preparar capes pures i mixtes MAPbX3-xYx per a millorar les propietats optoelectròniques i estructurals. Mitjançant anàlisi de difracció de raigs X, s'estudiaren les propietats estructurals del pols cristalins i capes pures i mixtes. Els anàlisis d'UV-vis i fotoluminiscència, mostren que el rang d'absorció varia al llarg de l'espectre visible en funció del contingut de l'halur. Les anàlisis de fotoluminiscència i calorimetria diferencial mostren els canvis de fase de les perovskites pures a diferents temperatures, coincidint aquestos canvis en totes dues anàlisis. L'anàlisi FESEM de les perovskites pures, mostra les diferències morfològiques entre els pols i capes. Seguint aquesta línia d'investigació, s'estudiaren les perovskites mixtes de iode-brom, amb un contingut de brom de fins el 33%, ajustant el bandgap per a evitar pèrdues en l'absorció i millorar les propietats optoelectròniques, estructurals i morfològiques. Malgrat les bones propietats optoelectròniques de les perovskites de metilamoni, el catió orgànic disminueix la estabilitat, la qual cosa ha portat a investigar l'ús d'altres cations inorgànics. Les perovskites de cesi són una alternativa prometedora, i per aquesta raó hem sintetitzat capes fines de perovskites de cesi mixtes, CsPbBr3-xIx, per tal de determinar els efectes de la substitució parcial del iode en les propietats físiques i l'estabilitat. Es van obtenir capes amb una bona resistència a la humitat i a la temperatura, afavorint la seua aplicació en el camp fotovoltaic. S'ha estudiat també la substitució parcial del catió de metilamoni amb altres cations orgànics, com el guanidini i imidiazoli. S'ha demostrat que petites quantitats de guanidini milloren l'estabilitat i la morfologia de les capes. S'ha establert que el límit de solubilitat del guanidini es del 20%, aproximadament, i s'ha determinat l'estructura cristal·lina de les mescles. S'ha observat un augment en la intensitat del pic de fotoluminiscència per a mescles per sota del límit de solubilitat. Es van obtenir resultats similars per a la substitució del metilamoni amb petites quantitats de imidazoli. Les anàlisis de difracció de raigs X van establir el límit de solubilitat en aproximadament el 10% i una millora en la cristalinitat. Els resultats de fotoluminiscència suggereixen que petites quantitats de imidazoli redueixen les recombinacions no radiatives, actuant com un pasivador efectiu. Finalment, es mostra el procés de fabricació de dispositius basats en MAPbI3 i sintetitzats en funció de les condicions ambientals, especialment la humitat relativa i utilitzant el dietil èter com anti-solvent. Els dispositius van mostrar una eficiència màx
[EN] Organic-inorganic methylammonium lead halides perovskites and their mixtures have shown optimal optoelectronic properties as an ideal absorber for photovoltaic applications. In the last decade, solar devices based on perovskite have evolved rapidly, going from an initial efficiency of only 3.9% in 2009, to an efficiency of 22.7% in 2017 and being, at the same time, more cost-effective than silicon solar cells. However, one of the main disadvantages when using perovskite absorbents in photovoltaic devices is their low stability. In general, cells that show high performance lose their efficiency and degrade rapidly. For these materials to be scalable it is necessary to carry out in-depth studies aiming at improved efficiency and stability. One of the main sources to improve stability and efficiency is compositional engineering, a strategy employed in the elaboration of this thesis, consisting of the investigation and improvement of the optoelectronic and morphological properties, derived from the substitution and / or combination of cations and anions, which constitute the perovskite material. Pure powders of perovskite were synthesized, for I, Br, Cl, from which pure and mixed MAPbX3-xYx films were prepared in order to improve their optoelectronic and structural properties. By means of X-ray diffraction analysis, the structural properties of crystalline powders and pure and mixed films were studied. Employing UV-vis and photoluminescence analysis, it was observed that the absorption range varied along the visible spectrum as a function of the halide content in the thin films. Both, photoluminescence and differential scanning calorimetry analysis showed the changes of phase of the pure perovskites at different temperatures. FESEM characterization of the pure perovskites showed the morphological differences between the powders and the films. Following this line of research, mixed perovskites of iodine-bromine with a bromine content of up to 33% were studied in more detail. The bandgap was tuned to avoid significant losses in absorption and improve the optoelectronic, structural and morphological properties. Despite the excellent optoelectronic properties of the methylammonium perovskite, the presence of the organic cation decreases its stability, which prompted research into the use of other inorganic cations. Cesium perovskites, are a very promising alternative, and for this reason we synthesized thin films of mixed cesium perovskites, CsPbBr3-xIx, to determine the effects of the partial substitution of iodine on physical properties and stability. Films with a very good resistance to moisture and temperature were obtained, which will favor the application of this type of perovskites in the photovoltaic field. The partial replacement of the methylammonium cation with other organic cations, such as guanidinium and imidiazolium, was also studied, showing that small amounts of guanidinium significantly improve the stability of the films and their morphology. It was established that the solubility limit of guanidinium is approximately 20%, and the crystalline structure of the mixtures was determined. An increase in the intensity of the photoluminescence peak for mixtures below the solubility limit was observed. Similar results were obtained for the substitution of methylammonium with small amounts of imidazolium. X-ray diffraction analyzes established the solubility limit at approximately 10% and an improvement in crystallinity. Photoluminescence results suggest that small amounts of imidazolium significantly reduce nonradiative recombinations, acting as an effective passivator. Finally, the manufacturing process of devices based on MAPbI3 and synthesized according to environmental conditions, especially relative humidity and using diethyl ether as anti-solvent is shown. The devices presented a maximum efficiency of 14.73%, proving that the oxidation of spiro-OMeTAD, under controlled humidity conditions, can improve efficiency.
Vega Fleitas, E. (2018). Study and Characterization of Hybrid Organic-Inorganic Perovskites for Solar Cells Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113402
TESIS
APA, Harvard, Vancouver, ISO, and other styles
10

Ghanavi, Saman. "Organic-inorganic hybrid perovskites as light absorbing/hole conducting material in solar cells." Thesis, Uppsala universitet, Fysikalisk kemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205605.

Full text
Abstract:
Solar cells involving two different perovskites were manufactured and analyzed. The perovskites were (CH3NH3)PbI3 and (CH3NH3)SnI3. Both perovskites have a shared methyl ammonium group (MA) and are used as both light absorbing material and hole conducting material (HTM) in this project. The preparation procedures for the complete device were according to previous attempts to make stable organic-inorganic hybrid perovskites and involved different layers and procedures. Both perovskites were manufactured by mixing methyl ammonium iodide with either lead iodide or tin iodide in different concentrations. This was then deposited on a 600nm thick mesoporous TiO2 layer. Deposition of the hole-transporting material (HTM) was done by spin-coating 2,2´,7,7´-tetrakis-(N,N-dip-methoxyphenylamine) 9,9´-spirobifluorene, also called spiro-OMeTAD. Lastly thermal evaporation was used to deposit a silver electrode. Different measurements were done on the light absorbing materials. The lead perovskite solar cell device was subjected to illumination with Air Mass 1.5 sunlight (100mW/cm2) which produced an open circuit voltage Voc of 0.645 V, a short circuit photocurrent Jsc of about 7 mA/cm2, and a fill factor FF of 0.445. This resulted in a power conversion efficiency (PCE) of about 2% and an incident photon to current efficiency (IPCE) of up to 60%. The tin perovskite has not been used in solar cells before and the initial results presented here shows low performance using the same device construction as for the lead perovskite. However, the incident photon to electron conversion affirms that there is a current in the visible region, and IPCE of 12.5 % was observed at 375nm. UV-visible NIR measurement was used to analyze the light absorption of the perovskite structures and a broader light absorption was observed for the lead perovskite compared to the tin perovskite. X-ray diffraction (XRD) analyzing was done on both perovskite materials using different concentrations and both with and without nanoporous TiO2 film. Both perovskites demonstrate very similar peaks with some exceptions. Photo-induced absorption (PIA) measurement was used for the purpose of showing the magnitude of charge separation or hole transfer in the light absorbing material, both when using the perovskites as a light absorber and a hole conductor. This is measured by analyzing the hole injection from the excited light absorber into the HTM. Hole transfer was observed for the lead perovskite (when used as light absorber) and tin perovskite (when used as hole conductor).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Organic-inorganic perovskites"

1

Park, Nam-Gyu, and Hiroshi Segawa. Multifunctional Organic-Inorganic Halide Perovskite. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003275930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Park, Nam-Gyu, Michael Grätzel, and Tsutomu Miyasaka, eds. Organic-Inorganic Halide Perovskite Photovoltaics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Wei, Song Gao, Alessandro Stroppa, and Zhe-ming Wang. Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Incorporated, John, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Wei, Song Gao, Alessandro Stroppa, and Zhe-ming Wang. Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Incorporated, John, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Limited, John, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny, and Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny, and Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny, and Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vardeny, Zeev Valy, Matt C. Beard, Zeev Valy Vardeny, and Matt C. Beard. Hybrid Organic Inorganic Perovskites. World Scientific, 2022. http://dx.doi.org/10.1142/12387-vol3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Wei, Song Gao, Alessandro Stroppa, and Zhe-ming Wang. Hybrid Organic-Inorganic Perovskites. Wiley & Sons, Incorporated, John, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Organic-inorganic perovskites"

1

Fujimoto, Shohei, Takemasa Fujiseki, Masato Tamakoshi, Akihiro Nakane, Tetsuhiko Miyadera, Takeshi Sugita, Takurou N. Murakami, Masayuki Chikamatsu, and Hiroyuki Fujiwara. "Organic-Inorganic Hybrid Perovskites." In Spectroscopic Ellipsometry for Photovoltaics, 471–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95138-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Chuang, Dali Sun, and Zeev V. Vardeny. "Novel Spin Physics in Organic-Inorganic Perovskites." In Halide Perovskites, 249–71. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527800766.ch4_01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maddalena, Francesco, Pablo P. Boix, Chin Xin Yu, Nripan Mathews, Cesare Soci, and Subodh Mhaisalkar. "Charge Transport in Organometal Halide Perovskites." In Organic-Inorganic Halide Perovskite Photovoltaics, 201–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sarritzu, Valerio, Nicola Sestu, Daniela Marongiu, Xueqing Chang, Francesco Quochi, Michele Saba, Andrea Mura, and Giovanni Bongiovanni. "Optical Excited-State Properties of Halide Perovskites." In Multifunctional Organic-Inorganic Halide Perovskite, 35–67. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003275930-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yan, Yanfa, Wan-Jian Yin, Tingting Shi, Weiwei Meng, and Chunbao Feng. "Defect Physics of CH3NH3PbX3 (X = I, Br, Cl) Perovskites." In Organic-Inorganic Halide Perovskite Photovoltaics, 79–105. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Frost, Jarvist M., and Aron Walsh. "Molecular Motion and Dynamic Crystal Structures of Hybrid Halide Perovskites." In Organic-Inorganic Halide Perovskite Photovoltaics, 1–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gregori, Giuliano, Tae-Youl Yang, Alessandro Senocrate, Michael Grätzel, and Joachim Maier. "Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior." In Organic-Inorganic Halide Perovskite Photovoltaics, 107–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Oliveira, Anne Esther Ribeiro Targino Pereira, and Annelise Kopp Alves. "Organic-Inorganic Hybrid Perovskites for Solar Cells Applications." In Nanomaterials for Eco-friendly Applications, 89–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26810-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

You, Peng, and Feng Yan. "Organic-Inorganic Hybrid Perovskites for Solar Energy Conversion." In Ferroelectric Materials for Energy Applications, 95–117. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807505.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mitzi, David B. "Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials." In Progress in Inorganic Chemistry, 1–121. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470166499.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Organic-inorganic perovskites"

1

Nickel, N. H., F. Lang, S. Kilian Kilian, and J. Rappich. "Improved Stability of Organic-inorganic Halide Perovskites." In nanoGe International Conference on Perovskite Solar Cells, Photonics and Optoelectronics. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nipho.2019.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gélvez-Rueda, María, Eline Hutter, Duyen Cao, Nicolas Renaud, Constantinos Stoumpos, Joseph Hupp, Tom Savenije, Mercouri Kanatzidis, and Ferdinand Grozema. "Effect of the organic cation on 2D organic-inorganic Perovskites." In 3rd International Conference on Perovskite Thin Film Photovoltaics, Photonics and Optoelectronics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.abxpvperopto.2018.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dou, Letian. "Two-dimensional organic-inorganic hybrid perovskites (Conference Presentation)." In Oxide-based Materials and Devices X, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2516752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abdou, Rana, Mohamed alHor, Zubair Ahmed, and Noora Althani. "Development of organic–inorganic Halide Perovskites (OHPs) based Memristors." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0017.

Full text
Abstract:
Organic – inorganic halide perovskite (OHP) has drawn researchers’ attention working in the field of optoelectronics from last ten years due to its remarkable optical properties such as adjustable band gap, ambipolar charge transport, high optical absorption coefficients, and extended carrier diffusion lengths. OHP based memristors (memory + resistors) are a newly introduced passive two-terminal, nonlinear device used for information storage. In this work we have fabricated methyl ammonium lead iodide (MAPbI3) crystals-based device from MAPbI3 crystals. The crystals have been developed by simple solution process-based method. Developed crystals have shown highly porous geometry and trap charges across these pores facilitates higher conductivity. The fabricated device exhibits ~2.7 milli second response recovery time, which enabled elevated speed and showed hysteresis in the I-V characteristics thus demonstrating superior storage capacities. Hence, the developed device has been potential tool for next-generation non-volatile memories.
APA, Harvard, Vancouver, ISO, and other styles
5

Magill, Brenden A., Giti Khodaparast, Kai Wang, Tao Ye, Carlos G. Garcia, Stephen A. McGill, and Shashank Priya. "Photoluminescence and Time Resolved Photoluminescence of Organic-inorganic Halide Perovskites." In Low-Dimensional Materials and Devices 2021, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2021. http://dx.doi.org/10.1117/12.2595623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Correa-Baena, Juan-Pablo. "Elemental distribution influence local electronic properties in organic-inorganic perovskites." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mitzi, David. "Organic-Inorganic Perovskites: Unrivaled Versatility for Semiconductor Design and Fabrication." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Herzig, Eva M., Greve Christopher, Meike Kuhn, and Oliver Filonik. "Resolving Nanostructure Formation during Processing of Hybrid Organic-Inorganic Perovskites." In nanoGe Fall Meeting 2021. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mitzi, David. "Organic-Inorganic Perovskites: Unrivaled Versatility for Semiconductor Design and Fabrication." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Van Gompel, Wouter, Melissa Van Landeghem, María Gélvez-Rueda, Ferdinand Grozema, Sabine Van Doorslaer, Etienne Goovaerts, Laurence Lutsen, and Dirk Vanderzande. "Functional organic cations in low-dimensional hybrid organic-inorganic perovskites: charge transfer processes." In Organic Electronics and Photonics: Fundamentals and Devices III, edited by Sebastian Reineke, Koen Vandewal, and Wouter Maes. SPIE, 2022. http://dx.doi.org/10.1117/12.2622226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography