Academic literature on the topic 'Organic Hybrid Porous Materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Organic Hybrid Porous Materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Organic Hybrid Porous Materials"
Sosa, Joshua, Timothy Bennett, Katherine Nelms, Brandon Liu, Roberto Tovar, and Yangyang Liu. "Metal–Organic Framework Hybrid Materials and Their Applications." Crystals 8, no. 8 (August 14, 2018): 325. http://dx.doi.org/10.3390/cryst8080325.
Full textLoy, Douglas A., and Kenneth J. Shea. "Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials." Chemical Reviews 95, no. 5 (July 1995): 1431–42. http://dx.doi.org/10.1021/cr00037a013.
Full textOpanasenko, Maksym, Mariya Shamzhy, Fengjiao Yu, Wuzong Zhou, Russell E. Morris, and Jiří Čejka. "Zeolite-derived hybrid materials with adjustable organic pillars." Chemical Science 7, no. 6 (2016): 3589–601. http://dx.doi.org/10.1039/c5sc04602e.
Full textWang, Shaolei, Liangxiao Tan, Chengxin Zhang, Irshad Hussain, and Bien Tan. "Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies." Journal of Materials Chemistry A 3, no. 12 (2015): 6542–48. http://dx.doi.org/10.1039/c4ta06963c.
Full textShi, Jun, Li Zhang, Yingliang Liu, Shengang Xu, and Shaokui Cao. "Biomineralized organic–inorganic hybrids aiming for smart drug delivery." Pure and Applied Chemistry 86, no. 5 (May 19, 2014): 671–83. http://dx.doi.org/10.1515/pac-2013-0112.
Full textCasas-Solvas, Juan M., and Antonio Vargas-Berenguel. "Porous Metal–Organic Framework Nanoparticles." Nanomaterials 12, no. 3 (February 3, 2022): 527. http://dx.doi.org/10.3390/nano12030527.
Full textChongdar, Sayantan, Sudip Bhattacharjee, Piyali Bhanja, and Asim Bhaumik. "Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications." Chemical Communications 58, no. 21 (2022): 3429–60. http://dx.doi.org/10.1039/d1cc06340e.
Full textZhang, Dan-Dan, Sheng-Zhen Zu, and Bao-Hang Han. "Inorganic–organic hybrid porous materials based on graphite oxide sheets." Carbon 47, no. 13 (November 2009): 2993–3000. http://dx.doi.org/10.1016/j.carbon.2009.06.052.
Full textLoy, Douglas A., Gregory M. Jamison, Brigitta M. Baugher, Edward M. Russick, Roger A. Assink, S. Prabakar, and Kenneth J. Shea. "Alkylene-bridged polysilsesquioxane aerogels: highly porous hybrid organic-inorganic materials." Journal of Non-Crystalline Solids 186 (June 1995): 44–53. http://dx.doi.org/10.1016/0022-3093(95)00032-1.
Full textLOY, D. A., and K. J. SHEA. "ChemInform Abstract: Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials." ChemInform 26, no. 46 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199546289.
Full textDissertations / Theses on the topic "Organic Hybrid Porous Materials"
Jones, James Thomas Anthony. "Synthesis and characterisation of porous organic/inorganic hybrid materials." Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533999.
Full textVITTONI, CHIARA. "Hybrid Organic-Inorganic Materials for CO2 Capture and Utilization." Doctoral thesis, Università del Piemonte Orientale, 2018. http://hdl.handle.net/11579/97188.
Full textHaryadi, Haryadi Chemistry Faculty of Science UNSW. "Porous hybrid organic-inorganic silica materials: preparation, structural and transport properties." Awarded by:University of New South Wales. School of Chemistry, 2005. http://handle.unsw.edu.au/1959.4/28806.
Full textErigoni, Andrea. "Organic-Inorganic Hybrid Catalysts for Chemical Processes of Industrial Interest." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165238.
Full text[CA] El treball de recerca descrit en aquesta tesi doctoral es va desenvolupar en el marc del projecte europeu MULTI2HYCAT (grant agreement N. 720783) i se centra en la sínte-si i la caracterització de catalitzadors híbrids mono i multifuncionals amb àcid, base o redox actius llocs. S'han desenvolupat diverses línies d'investigació en paral·lel per dissenyar múltiples catalitzadors híbrids per a diferents processos catalítics, basant-se en les necessitats dels socis industrials. A causa del caràcter col·laboratiu del projecte, cada soci acadèmic es va centrar princi-palment en un aspecte de tot el procés. Institut de Tecnologia Química (ITQ-CSIC), on es va desenvolupar aquesta tesi, està principalment centrat en el disseny i síntesi de catalitzadors híbrids. Per això, part dels resultats de caracterització reportats al Capítol 3 s'han dut a terme a la Università del Piemonte Orientale (IT), durant una estada d'un mes. Alguns dels resultats catalítics reportats al Capítol 3 i al Capítol 5 han estat reali-tzats per la Universitat de Southampton (Regne Unit). En el Capítol 3, s'ha descrit la síntesi de dos catalitzadors heterogenis híbrids que pre-senten molècules d'àcid aril-sulfònic en la composició. En un d'ells, l'anell aromàtic presentarà àtoms de fluor en posició 2, 3, 5, 6. S'han dut a terme dues estratègies de síntesi multi-etapes, a través de la síntesi dels precursors alkoxi-silans, mitjançant pro-cessos de condensació al costat d'un precursor de sílice (en absència d'agents directors d'estructura, a pH neutre i temperatures baixes) i d'una reacció de tethering. Els mate-rials híbrids han estat caracteritzats mitjançant diferents tècniques. Les propietats texturals, l'estabilitat tèrmica i la composició química dels catalitzadors ha sigut estudiada. A més, molècules sondes han estat adsorbides en els materials híbrids i les interaccions entre ells han estat estudiades mitjançant espectroscòpies FTIR i RMN multi-nuclear. El catalitzador híbrid en que l'anell aromàtic estava fluorat va resultar ser el més actiu catalíticament en la reacció de formació d'acetal entre benzaldehid i etilenglicol. Una versió dels híbrids en que la superfície havia estat pasivada amb grups metilos també va ser obtinguda. Les propietats dels materials híbrids passivats van ser comparades, per poder estudiar l'efecte de la polaritat de la superfície del suport sobre l'activitat catalítica. En el Capítol 4 es descriu la síntesi d'organo-catalitzadors híbrids obtinguts per ancoratge de precursors de silici funcionalitzats amb grups bàsics sobre un suport del tipus MCM-41. Els catalitzadors han estat caracteritzats i empleats en diferents reaccions de formació d'enllaços C-C, com la condensació de Knoevenagel i l'addició de Michael. Finalment, els catalitzadors híbrids han estat emprats en la condensació entre furfural i metil isobutil cetona. El catalitzador més actiu ha estat seleccionat per a ser funcionalitzat posteriorment amb nanoparticules de pal·ladi i emprat en un procés catalític en cascada. Mecanismes de reacció han estat proposat per a cada procés catalític. L'efecte beneficiós a causa de la presència dels grups silanols en la superfície de suport també va ser analitzat. En el Capítol 5, la síntesi de catalitzadors híbrids multi-funcionals va ser descrita. Basant-se en els resultats obtinguts en el Capítol 4, s'ha preparat un catalitzador que presenti grups aminopropil- i nanopartícules de palladi. Les propietats estructurals i texturals han estat estudiades. A més, a través de la microscòpia electrònica de trans-missió, la distribució dimensional de les nanoparticulas ha estat estimada, resultant en una grandària mitjana equivalent a la dimensió dels canals mesoporosos del suport, MCM-41. El material ha estat emprat com a catalitzador multi-funcional.
[EN] The research work described in this Doctoral Thesis was developed within the frame of the MULTI2HYCAT European Project (grant agreement N. 720783) and it is focused on the synthesis and characterization of mono- and multi-functional hybrid catalysts featuring acid, base or redox active sites. Several research lines have been developed in parallel to design multiple hybrid catalysts for different catalytic processes, building upon the needs of the industrial partners. Due to the collaborative nature of the project, each academic partners mainly focused on one aspect of the whole process. Instituto de Tecnología Química (ITQ-CSIC), where this Thesis was developed, mostly focused on the design and synthesis of the hybrid catalysts. For that, part of the characterization results reported in Chapter 3 have been carried out at Università del Piemonte Orientale (IT), during a one month stay. Some of the catalytic results reported in Chapter 3 and Chapter 5 have been car-ried out by the University of Southampton (UK). In Chapter 3 the synthesis of two different heterogeneous hybrid catalysts carrying aryl-sulfonic moieties, in which the aromatic ring was either fluorinated or not, is re-ported. Two multi-step synthetic approaches were developed, involving the synthesis of the silyl-derivative precursor, template-free one-pot co-condensation (at low tem-perature and neutral pH) and tethering reaction. A multi-technique approach was im-plemented to characterize the hybrid catalysts. Textural properties, thermal stability and chemical makeup of the materials were studied. Moreover, probe molecules were adsorbed onto the hybrids and the interaction were studied with multi-nuclear NMR and FTIR spectroscopies. The catalytic activity of the two hybrids showed superior performances for the fluoro-aryl-sulfonic acid, compared to the non-fluorinated mate-rial, in the acetal formation between benzaldehyde and ethylene glycol. Silanol-capped versions of the hybrids have also been prepared and their properties have been com-pared with those of hydrophilic hybrids, to study the effect of the polarity of the sur-face on the overall catalytic activity of the hybrids. In Chapter 4, the synthesis of hybrid mesoporous organocatalysts, obtained by graft-ing of commercial and custom-made silyl-derivatives onto MCM-41 supports, is re-ported. The hybrid catalysts were characterized and tested for different reactions in-volving C-C bond formation, such as Knoevenagel condensations and Michael addi-tion. Finally, the catalysts were tested in the condensation between furfural and methyl isobutyl ketone and the most performing catalyst was selected for the synthesis of a multi-functional hybrid. Reaction mechanisms have been proposed and the beneficial effect of the surface silanol groups on the catalytic activity was demonstrated. In Chapter 5, the synthesis of hybrid multi-functional catalysts is reported. Building upon the results reported in Chapter 4, a hybrid catalyst featuring aminopropyl moie-ties and palladium nanoparticles was developed. Structural and textural properties of the catalysts were accessed. Moreover, transmission electron microscopy showed a narrow nanoparticles distribution, centered a value equivalent to the size of the meso-porous channels of the support. The catalyst was tested in a tandem process involving the aldol condensation between furfural and methyl isobutyl ketone followed by hy-drogenation of the aldol adduct. The influence of several variables on the activity of the multi-functional catalyst was explored, with the scope of paving the way for more thorough studies to be carried out in flow regime. Lastly, proof-of-concept syntheses of multi-functional hybrid catalysts featuring base sites and supported metal complex are reported.
The research work described in this Doctoral Thesis was developed within the frame of the MULTI2HYCAT European Project (grant agreement N. 720783). I would like to thank la Caixa foundation for my PhD scholarship.
Erigoni, A. (2021). Organic-Inorganic Hybrid Catalysts for Chemical Processes of Industrial Interest [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165238
TESIS
Dedecker, Kevin. "Multifunctional Hybrid materials for the capture and detection of volatile organic Compounds : Application to the preservation of cultural heritage objects." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV003.
Full textDuring their storage or their exhibition, the cultural heritage objects undergo physicochemical alteration processes related to their environment and in particular to the action of primary (e.g. sulfur dioxide, nitric oxides), secondary (ozone) pollutants or Volatile Organic Compounds (VOCs). It has been demonstrated that these gases/vapors are involved in hydrolysis and oxidation reactions. Among the most common VOCs encountered in museums, Acetic acid has a significant and recognized role in the deterioration of cultural heritage objects such as photographic films. In order to face this issue, this Ph.D. thesis focused on the design of new porous multifunctional hybrid materials denoted « Metal-Organic Frameworks » (MOFs) for the selective capture of acetic acid in the presence of moisture (40% relative humidity) and at room temperature. The remarkable adsorption properties (sensitivity, selectivity and capacity) and the great versatility of MOFs (hydrophicity/hydrophobicity balance, size/shape of pores,…) were used to preconcentrate selectively the acetic acid in humid conditions. The most performing materials were then prepared as nanoparticles and then used for the elaboration of high optical quality thin films in order to study the coadsorption (acetic acid/water) properties of MOFs by ellipsometry. The incorporation of plasmonic metal nanoparticles was then carried out in order to design a colorimetric sensor. The final objective is to devise a novel type of adsorbent that integrates a high VOC adsorption capacity and selectivity under humid conditions and an easy on-line monitoring of their saturation capacityin order to anticipate its replacement and therefore ensure the preservation of the stored and exhibited objects in museums
Sanderyd, Viktor. "Novel Hybrid Nanomaterials : Combining Mesoporous Magnesium Carbonate with Metal-Organic Frameworks." Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355366.
Full textMohamed, Mona Hanafy. "Organic-Inorganic Hybrid Materials Based on Oxyanion Linkers for Selective Adsorption of Polarizable Gases." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5811.
Full textKitschke, Philipp, Marc Walter, Tobias Rüffer, Andreas Seifert, Florian Speck, Thomas Seyller, Stefan Spange, et al. "Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries." Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-197302.
Full textDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Ordon, Karolina. "Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1006/document.
Full textThe search for new materials as photocatalysts invisible light for the depollution of the environment (waters, atmospheres) is a very active field of research and attracts the interest of a large scientific community in Physics, Chemistry and Materials Science. Recent research developpements are conducted to improve the photocatalytic efficiency of certain classes of known photoactive materials, and to develop the synthesis of new functional materials. In this context, photoactive oxide semiconductors based on bismuth vanadate (BiVO4) having an electronic band in the middle of the visible spectrum, offer a serious alternative to efficient conventional photocatalysts (TiO2, ZnO) whose photo-excitation requires only the UV fraction of the solar spectrum.The work done in this thesis is therefore dedicated toBiVO4-based materials in the form of mesoporous architectures or hybrid assemblies associating organic groups with charge transfer processes. Two major contributions have been developed, one of which is the experimental realization of novel mesoporous architectures, functionalized by sensitizing organic groups and the study of their electronic and optical properties in order to optimize their photocatalytic efficiencies. The second part deals with numerical simulations of hybrid nanostructures using approaches as the DFT method, ab-initio or quantum chemistry codes. Model systems have been constructed associating BiVO4nanoclusters (NC) and organic groups (GO). The electronic and optical properties as well as the structural and vibrational characteristics of the systems (NC-GO) were determined and compared with the experimental data. The charge transfer phenomena involved between the organic groups and the inorganic structure were characterized as well as their role in the efficiency of photo-catalytic responses of hybrid systems
Ebert, T., A. Wollbrink, A. Seifert, R. John, and S. Spange. "Multiple polymerization – formation of hybrid materials consisting of two or more polymers from one monomer." Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-220106.
Full textDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Books on the topic "Organic Hybrid Porous Materials"
O, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.
Find full textO, Sŏng-gŭn. Kobunja ka pʻyomyŏn e kyŏrhap toen tagongsŏng mugi ipcha rŭl iyong han suso chŏjang maegaechʻe kaebal =: Development of hydrogen-storage system using a porous organic/inorganic hybrid material. [Seoul]: Sanŏp Chawŏnbu, 2008.
Find full textC, Klein Lisa, ed. Organic/inorganic hybrid materials II. Warrendale, Penn: Materials Research Society, 1999.
Find full textLi, Quan, ed. Functional Organic and Hybrid Nanostructured Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.
Full text1934-, Mark James E., Lee C. Y.-C. 1947-, Biancini P. A. 1957-, and American Chemical Society. Division of Polymeric Materials: Science and Engineering., eds. Hybrid organic-inorganic composites. Washington, D.C: American Chemical Society, 1995.
Find full textZhu, Yun-Pei, and Zhong-Yong Yuan. Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45634-7.
Full textGrewal, Paramjit. Computational studies of inorganic-organic hybrid materials. Portsmouth: University of Portsmouth, 2004.
Find full textGladkov, S. O. Dielectric Properties of Porous Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Find full textRurack, Knut, and Ramón Martínez-Máñez, eds. The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470552704.
Full textKnut, Rurack, and Martínez-Máñez Ramón, eds. The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, N.J: Wiley, 2010.
Find full textBook chapters on the topic "Organic Hybrid Porous Materials"
Hüsing, Nicola, and Ulrich Schubert. "Porous Inorganic-Organic Hybrid Materials." In Functional Hybrid Materials, 86–121. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch4.
Full textHüsing, Nicola, and Sarah Hartmann. "Inorganic–Organic Hybrid Porous Materials." In Hybrid Nanocomposites for Nanotechnology, 131–71. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-30428-1_3.
Full textSakaushi, Ken. "Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions." In Functional Organic and Hybrid Nanostructured Materials, 419–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807369.ch11.
Full textMal, N. K., and K. Hinokuma. "Proton Conducting Membrane from Hybrid Inorganic Organic Porous Materials for Direct Methanol Fuel Cell." In Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives, 201–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23394-4_43.
Full textJesionowski, Teofil, Beata Michalska, Marcin Wysokowski, and Łukasz Klapiszewski. "The Use of Spray Drying in the Production of Inorganic-Organic Hybrid Materials with Defined Porous Structure." In Lecture Notes on Multidisciplinary Industrial Engineering, 169–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73978-6_12.
Full textKepert, Cameron J. "Metal-Organic Framework Materials." In Porous Materials, 1–67. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470711385.ch1.
Full textKundu, Tanay, Leisan Gilmanova, Wai Fen Yong, and Stefan Kaskel. "Metal-Organic Frameworks for Environmental Applications." In Porous Materials, 1–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65991-2_1.
Full textMitzi, David B. "Hybrid Organic-Inorganic Electronics." In Functional Hybrid Materials, 347–86. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch10.
Full textRamachandran, Sasikumar, and Alagar Muthukaruppan. "Porous Hybrid Materials with POSS." In Polymer/POSS Nanocomposites and Hybrid Materials, 255–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02327-0_8.
Full textDoménech-Carbó, Antonio. "Electrochemistry of Metal-Organic Frameworks." In Electrochemistry of Porous Materials, 101–12. 2nd ed. Names: Domeénech-Carboó, Antonio, author. Title: Electrochemistry of porous materials / Antonio Domeénech Carboó. Description: Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429351624-6.
Full textConference papers on the topic "Organic Hybrid Porous Materials"
Tokranova, Natalya, Igor A. Levitsky, Bai Xu, James Castracane, and William B. Euler. "Hybrid solar cells based on organic material embedded into porous silicon." In Integrated Optoelectronic Devices 2005, edited by James G. Grote, Toshikuni Kaino, and Francois Kajzar. SPIE, 2005. http://dx.doi.org/10.1117/12.590945.
Full textCalvo, Mauricio, Andrea Rubino, Miguel Anaya, Juan Francisco Galisteo, and Hernan Miguez. "ABX3 perovskite nanocrystals templated in porous matrices." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.088.
Full textMal, Nawal Kishor, and Koichiro Hinokuma. "Inorganic Organic Hybrid Porous Silica for Fuel Cell Technology." In 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI). IEEE, 2011. http://dx.doi.org/10.1109/nstsi.2011.6111805.
Full textArmani, Andrea M., Jinghan He, Andre Kovach, and Hyungwoo Choi. "Hybrid Organic/Inorganic Integrated Photonics." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/noma.2019.nom2b.2.
Full textLim, JiHyun, Min-Sung Kim, Woongsik Jang, Jin Kuen Park, and Dong Hwan Wang. "Three-dimensional carrier pathway by triazine-based porous organic polymer for efficient inverted perovskite solar cells." In Organic, Hybrid, and Perovskite Photovoltaics XXI, edited by Kwanghee Lee, Zakya H. Kafafi, Paul A. Lane, Harald W. Ade, and Yueh-Lin (Lynn) Loo. SPIE, 2020. http://dx.doi.org/10.1117/12.2571637.
Full textMíguez, Hernán. "Ligand-free perovskite quantum dots embedded in porous matrices: synthesis, properties and optoelectronic devices." In International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hopv.2022.301.
Full textKim, Yun-Hi, and Soon-Ki Kwon. "Development of new organic semiconducting materials for organic photovoltaics (Conference Presentation)." In Organic, Hybrid, and Perovskite Photovoltaics XIX, edited by Kwanghee Lee, Zakya H. Kafafi, and Paul A. Lane. SPIE, 2018. http://dx.doi.org/10.1117/12.2322554.
Full textNguyen, Thuc-Quyen. "Novel materials for organic electrochemical transistors." In Organic and Hybrid Field-Effect Transistors XX, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2021. http://dx.doi.org/10.1117/12.2597204.
Full textZhang, Hang, Chongxiong Duan, Feier Li, and Hongxia Xi. "Rapid room-temperature synthesis of hierarchical porous metal organic frameworks." In MATERIALS SCIENCE, ENERGY TECHNOLOGY AND POWER ENGINEERING II (MEP2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5041118.
Full textKatayama, Junko, Shigeru Yamaki, Masahiro Mitsuyama, and Makoto Hanabata. "Organic-inorganic hybrid materials for nanoimprint lithography." In SPIE 31st International Symposium on Advanced Lithography, edited by Michael J. Lercel. SPIE, 2006. http://dx.doi.org/10.1117/12.655053.
Full textReports on the topic "Organic Hybrid Porous Materials"
Ziolo, Ronald F., Eduardo Arias, and Ivana Moggio. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada596284.
Full textHaddad, Tim, and Shawn Phillips. Nanostructured Hybrid Organic/Inorganic Materials. Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada409298.
Full textFrancis, Matthew. Virus-Based Scaffolds for Organic/Inorganic Hybrid Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada455770.
Full textHaddad, Timothy S., Russell Stapleton, Hong G. Jeon, Patrick T. Mather, and Joseph D. Lichtenhan. Nanostructured Hybrid Organic/Inorganic Materials, Silsesquioxane Modified Plastics. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada386916.
Full textBulovic, Vladimir. Integrated Vacuum Growth System for Hybrid Organic-Inorganic Materials. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada422230.
Full textPhillips, Shawn H., Timothy S. Haddad, and Rusty L. Blanski. New Multi-Functional Materials Using Versatile Hybrid (Inorganic/Organic) POSS Nanotechnology. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada410570.
Full textJamison, G. M., D. A. Loy, R. S. Saunders, and T. M. Alam. LDRD final report on polyphosphaacetylenes, new hybrid conducting organic-inorganic materials. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/270675.
Full textBulovic, Vladimir. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada547102.
Full textBlack, Hayden T., and Katharine Lee Harrison. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330204.
Full textBlanksi, Rusty L., Shawn H. Phillips, Kevin Chaffee, Joseph Lichtenhan, and Andre Lee. The Synthesis of Hybrid Materials by the Blending of Polyhedral Oligosilsesquioxanes into Organic Polymers. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada409297.
Full text