Dissertations / Theses on the topic 'Ore deposit formation'

To see the other types of publications on this topic, follow the link: Ore deposit formation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 28 dissertations / theses for your research on the topic 'Ore deposit formation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kamenov, George Dimitrov. "Magmatism and ore deposit formation in SW Pacific Island arcs." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0008250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, Iain Kerr. "Ore depositional processes in the formation of the Navan zinc/lead deposit, Co. Meath, Ireland." Thesis, University of Strathclyde, 1990. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=23503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boucher, Stéphanie. "Ore Petrology and Alteration of the West Ansil Volcanic-hosted Massive Sulphide Deposit of the Noranda Mining Camp, Rouyn-Noranda, Quebec." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19786.

Full text
Abstract:
The West Ansil deposit was the first Cu discovery in 25 years in the Noranda Central Camp. It has a combined indicated and inferred resource of ~1.2 Mt. Grades for the indicated resource are 3.4% Cu, 0.4% Zn, 1.4 g/t Au and 9.2 g/t Ag. The bulk of the resource is located in three massive sulphide lenses (Upper, Middle and Lower) that are entirely within the Rusty Ridge Formation above the Lewis exhalite. The mineralization in all three ore lenses consists of massive pyrrhotite + chalcopyrite + magnetite. Semi-massive sphalerite is restricted to the upper and lower parts of the Middle lens. Massive magnetite occurs at the center of the Upper and Middle lenses, where it replaces massive pyrrhotite. A striking feature of West Ansil is the presence of abundant colloform and nodular pyrite (+marcasite) in the massive sulphides. Late-stage replacement of massive pyrrhotite by colloform pyrite and marcasite, occurs mostly along the upper and lower contacts of the lenses.
APA, Harvard, Vancouver, ISO, and other styles
4

Pacanovsky, Aaron James. "Petrology of Gold Ore-Bearing Carbonates of the Helen Zone, Cove Deposit, Lander County, Nevada." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1398682471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blake, Kevin L. "The petrology, geochemistry and association to ore formation of the host rocks of the Kiirunavaara magnetite-apatite deposit, northern Sweden." Thesis, Cardiff University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hammond, Napoleon Quaye. "The geochemistry of ore fluids and control of gold mineralization in banded iron-formation at the Kalahari Goldridge deposit, Kraaipan greenstone belt, South Africa." Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1008370.

Full text
Abstract:
The Kalahari Goldridge mine is located within the Archaean Kraaipan Greenstone Belt about 60 km SW of Mafikeng in the Northwestern Province, South Africa. Several gold deposits are located within approximately north - south-striking banded iron-formation (BIF). Current opencast mining operations are focused on the largest of these (D Zone). The orebody is stratabound and hosted primarily in the BIF, which consists of alternating chert and magnetite-chloritestilpnomelane-sulphide-carbonate bands ranging from mm to cm scale. The ore body varies in thickness from 15 to 45 m along a strike length of about 1.5 km. The BlF is sandwiched between a sericite-carbonate-chlorite schist at the immediate footwall and carbonaceous meta-pelites in the hanging-wall. Further west in the footwall, the schists are underlain by mafic meta-volcanic amphibolite. Overlying the hanging-wall carbonaceous metapeiites are schist units and meta-greywackes that become increasingly conglomeratic up the stratigraphy. Stilpnomelane-, chlorite- and minnesotaite-bearing assemblages in the BlFs indicate metamorphic temperatures of 300 - 450°C and pressures of less than 5 kbars. The BIF generally strikes approximately 3400 and dips from 60 to 75°E. Brittle-ductile deformation is evidenced by small-scale isoclinal folds, brecciation, extension fractures and boudinaging of cherty BIF units. Fold axial planes are sub-parallel to the foliation orientation with sub-vertical plunges parallel to prominent rodding and mineral lineation in the footwall. Gold mineralization at the Kalahari Goldridge deposit is associated with two generations of subhorizontal quartz-carbonate veins dips approximately 20 to 40°W. The first generation consists of ladder vein sets (Group lIA) preferentially developed in Fe-rich meso bands, whilst the second generation consists of large quartz-carbonate veins (Group lIB), which crosscut the entire ore body extending into the footwall and hanging-wall in places. Major structures that control the ore body are related to meso-scale isoclinal folds with fold axes subparallel to mineral elongation lineations, which plunge approximately 067°E. These linear structures form orthogonal orientation with the plane of the mineralized shallowdipping veins indicating stretching and development of fluid - focusing conduits. A second-order controlling feature corresponds to the intersection of the mineralized veins and foliation planes of host rock, plunging approximately 008°N and trending 341°. G0ld is closely associated with sulphides, mainly pyrite and pyrrhotite and to a lesser extent with bismuth tellurides, and carbonate gangue. The ore fluid responsible for the gold deposition is in the C-O-H system with increased CH₄ contents attributed to localized hydrolysis reaction between interbedded carbonaceous sediment and ore fluid. The fluid is characterized by significant C0₂ contents and low salinities below 7.0 wt % NaCl equivalent (averages of 3.5 and 3.0 wt % NaCl equivalent for the first and second episodes of the mineralization respectively) . Calculated values of f0₂. ranging from 10⁻²⁹·⁹⁸ to 10⁻³²·⁹⁶ bars, bracket the C0₂-CH₄ and pyrite-pyrrhotite-magnetite buffer boundaries and reveal the reducing nature of the ore fluid at deposition. Calculated total sulphur content in the ore fluid (mΣs), ranges from 0.011 to 0.018M and is consistent with the range (10⁻³·⁵ to 10⁻¹M) reported for subamphibolite facies ore fluids. The close association of sulphides with the Au and nature of the fluid also give credence that the Au was carried in solution by the Au(HS)₂ - complex. Extensive epigenetic replacement of magnetite and chlorite in BIF and other meta-pelitic sediments in the deposit by sulphides and carbonates, both on meso scopic and microscopic scales gives evidence of an interaction by a CO₂- and H₂S-bearing fluid with the Fe-rich host rocks in the deposit. This facilitated Au precipitation due to changes in the physico-chemical conditions of the ore fluid such as a decrease in the mΣs and pH leading to the destabilization of the reduced sulphur complexes. Local gradients in f0₂ may account for gold precipitation in places within carbonaceous sediments. The fineness of the gold grams (1000*Au/(Au + Ag) ranges from 823 to 921. This compares favourably with the fineness reported for some Archaean BIFhosced deposits (851 - 970). Mass balance transfer calculations indicate that major chemical changes associated with the hydrothermal alteration of BIF include enrichment of Au, Ag, Bi, Te, volatiles (S and CO₂), MgO, Ba, K and Rb but significant depletion of SiO₂ and minor losses of Fe₂O₃. In addition, anomalous enrichment of Sc (average, 1247%) suggests its possible use as an exploration tool in the ferruginous sediments in the Kraaipan greenstone terrane. Evidence from light stable isotopes and fluid inclusions suggests that the mineralized veins crystallized from a single homogeneous fluid source during the two episodes of mineralization under the similar physicochemical conditions. Deposition occurred at temperatures rangmg from 350 to 400°C and fluid pressures ranging from 0.7 to 2.0kbars. Stable isotope constraints indicate the following range for the hydrothermal fluid; θ¹⁸H₂O = 6.65 to 10.48%0, 8¹³CΣc = -6.0 to -8.0 %0 and 8³⁴SΣs = + 1.69 to + 4.0%0 . These data do not offer conclusive evidence for the source of fluid associated with the mineralization at the Kalahari Goldridge deposit as they overlap the range prescribed for fluid derived from devolatization of deep-seated volcano-sedimentary piles near the brittle-ductile transition in greenstone belts during prograde metamorphism, and magmatic hydrothermal fluids.
KMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO, and other styles
7

Taylor, Mackenzie C. "GOLD FROM THE TYPE 4 ORE OF ROUND MOUNTAIN, NEVADA: A TEXTURAL AND MINERALOGICAL STUDY OF MACROCRYSTALLINE GOLD VS. DISSEMINATED GOLD." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1512407677037903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kampmann, Tobias Christoph. "3D structural framework and constraints on the timing of hydrothermal alteration and ore formation at the Falun Zn-Pb-Cu-(Au-Ag) sulphide deposit, Bergslagen, Sweden." Licentiate thesis, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26483.

Full text
Abstract:
The Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, situated in the Palaeoproterozoic (1.9–1.8 Ga) Bergslagen lithotectonic unit in the south-western part of the Fennoscandian Shield, is one of the major base and minor precious metal sulphide deposits in Sweden. Host rocks to the deposit as well as the ores and altered rocks were metamorphosed and affected by heterogeneous ductile strain during the Svecokarelian orogeny the total duration of which was 2.0–1.8 Ga. These processes both reworked the mineral assemblages of the original hydrothermal alteration system and reshaped the structural geometry of the deposit, following formation of the ores and the associated hydrothermal alteration.In order to study primary geological and ore-forming processes at Falun, it is necessary firstly to investigate the nature of the tectonothermal modification. In this licentiate thesis, a three-dimensional modelling approach is used in order to evaluate geometric relationships between lithologies at the deposit. This study demonstrates the polyphase character (D1 and D2) of the strong ductile deformation at Falun. The major rock-forming minerals in the silicate alteration rocks are quartz, biotite/phlogopite, cordierite, anthophyllite, chlorite, and minor almandine and andalusite. On the basis of microstructural investigations, it is evident that these minerals grew during distinct periods in the course of the tectonic evolution, with major static grain growth between D1 and D2, and also after D2. Furthermore, the occurrence of F2 sheath folds along steeply south-south-east plunging axes is suggested as a key deformation mechanism, forming cylindrical, rod-shaped ore bodies which pinch out at depth. The sheath folding also accounts for the same stratigraphic level (footwall) on both the eastern and western sides of the massive sulphide ores. A major, sulphide-bearing high-strain zone defines a tectonic boundary at the deposit and bounds the massive sulphide ores to the north.The geological evolution in the Falun area involved emplacement of felsic sub-volcanic intrusive and volcanic rocks and some carbonate sedimentation; followed by hydrothermal alteration, ore formation and the intrusion of dykes and plutons of variable composition after burial of the supracrustal rocks. Secondary Ion Mass Spectrometry (SIMS) U-Pb (zircon) geochronology of key lithologies in and around the Falun base metal sulphide deposit indicates a rapid sequence of development of different magmatic pulses with individual age determinations overlapping within their uncertainties. The intense igneous activity, as well as the feldspar-destructive hydrothermal alteration and ore formation are constrained by two 207Pb-206Pb weighted average (zircon) ages of 1894 ± 3 Ma for a sub-volcanic host rock not affected by this type of alteration and 1891 ± 3 Ma for a felsic dyke, which cross-cuts the hydrothermally altered zone and is also unaffected by this alteration. All other ages, including the granitic plutonic rocks, fall in the interval between these ages.The lithological, structural and geochronological observations have implications for the environment and the conditions of ore formation at the Falun deposit. Several aspects argue for an ore system resembling a classic volcanogenic massive sulphide (VMS) system in terms of type of alteration, metal zonation, the pyritic character of massive sulphides and an inferred vent-proximal location in relation to the convection-driving magmatic system. The bowl-shaped, sub-seafloor feeder part of such a system might have served as an initial inhomogeneity in the strata for the later development of strong stretching along steep axes and sheath fold formation during ductile strain. Possible discordant relationships along the margins of the massive sulphide ores, coupled with the syn-magmatic, pre-tectonic timing of ore formation are in accordance with a general VMS-type model for the Falun base metal sulphide deposit. These results provide a compromise solution to the previous debate around two opposing models of strictly syn-genetic vs. epigenetic, post-deformational carbonate-replacement processes for ore formation at the deposit.
The Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, situated in the Palaeoproterozoic (1.9–1.8 Ga) Bergslagen lithotectonic unit in the south-western part of the Fennoscandian Shield, is one of the major base and minor precious metal sulphide deposits in Sweden. Host rocks to the deposit as well as the ores and altered rocks were metamorphosed and affected by heterogeneous ductile strain during the Svecokarelian orogeny (2.0–1.8 Ga). These processes both reworked the mineral assemblages of the original hydrothermal alteration system and reshaped the structural geometry of the deposit, following formation of the ores and the associated hydrothermal alteration.In order to study primary geological and ore-forming processes at Falun, it is necessary firstly to investigate the nature of the strong tectonothermal modification. In this licentiate thesis, a three-dimensional modelling approach is used in order to evaluate geometric relationships between lithologies at the deposit. This study demonstrates the polyphase character (D1 and D2) of the ductile deformation at Falun. The major rock-forming minerals in the silicate alteration rocks are quartz, biotite/phlogopite, cordierite, anthophyllite, chlorite, and minor almandine and andalusite. On the basis of microstructural investigations, it is evident that these minerals grew during distinct periods in the course of the tectonic evolution, with major static grain growth between D1 and D2, and also after D2. Furthermore, the occurrence of F2 sheath folds along steeply south-south-east plunging axes is suggested as a key deformation mechanism, forming cylindrical, rod-shaped ore bodies which pinch out at depth. The sheath folding also accounts for the same stratigraphic level on both the eastern and western sides of the massive sulphide ores. A major, sulphide-bearing high-strain zone defines a tectonic boundary inside the deposit and bounds the massive sulphide ores to the north. A precursor to this zone can have played a central role as a metal-bearing fluid conduit during ore genesis, prior to reactivation of the zone in the ductile regime.The geological evolution in the Falun area involved emplacement of felsic volcanic and sub-volcanic rocks and some carbonate sedimentation, followed by ore formation and hydrothermal alteration as well as the intrusion of dykes and plutons of variable composition. U-Pb zircon geochronology of key lithologies in and around the Falun base metal sulphide deposit indicates a rapid sequence of development of different magmatic phases with individual age determinations overlapping within their uncertainties. The igneous activity is constrained between a zircon U-Pb concordia age of 1899 ± 7 Ma for a sub-volcanic host rock and a zircon 207Pb-206Pb weighted average age of 1891 ± 3 Ma for a felsic dyke, with all other reliable ages, including the quartz-rich plutonic rocks, falling in the interval between them. This interval also included the hydrothermal alteration and ore formation at Falun.It is suggested that the bowl-shaped, sub-seafloor feeder part of a high-sulphidation and Au-bearing volcanogenic massive sulphide ore system, with replacement of carbonates and (sub)-volcanic rocks, served as an initial inhomogeneity in the strata for the later development of strong stretching along steep axes and sheath fold formation during ductile strain. The observation of discordant relationships along the margins of the massive sulphide ores, coupled with the syn-magmatic, pre-tectonic timing of ore formation, corroborate this hypothesis, providing a compromise solution to the previous debate around two opposing models of strictly syn-genetic vs. epigenetic, post-deformational carbonate-replacement processes of ore formation at the Falun base metal sulphide deposit.
Godkänd; 2015; 20150212 (tobkam); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Tobias Christoph Kampmann Ämne: Malmgeologi/Ore Geology Uppsats: 3D Structural Framework and Constraints on the Timing of Hudrothermal Alteration and Ore Formation at the Falun Zn-Pb-Cu-(Au-Ag) Sulphide Deposit, Bergslagen, Sweden Examinator: Professor Pär Weihed Institutionen för samhällsbyggnad och naturresurser, Avdelning Geovetenskap och miljöteknik, Luleå tekniska universitet Diskutant: Docent, adjungerad professor Pietari Skyttä, University of Turku, Department of Geography and Geology, Turun Yliopisto, Finland Tid: Torsdag 23 april 2015 kl 10.00 Plats: F531, Luleå tekniska universitet
Structural evolution, hydrothermal alteration and tectonic setting of the Falun base metal and gold deposit, Bergslagen region, Sweden
APA, Harvard, Vancouver, ISO, and other styles
9

Shellnutt, John Gregory. "A-type granites of the Permian Emeishan large igneous province (SW China) implications for the formation of the giant magmatic oxide deposits /." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B39634498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Botha, André Erasmus. "Towards modelling the formation of ore bodies initial results dealing with the fluid mechanical aspects of magma chamber convection." Thesis, Rhodes University, 1999. http://hdl.handle.net/10962/d1005278.

Full text
Abstract:
This thesis forms part of a larger effort which aims to establish the means of assessing the fluid mechanical behaviour of magma 1 as it cools inside a magma chamber surrounded by porous country rock. The reason for doing so is to advance the understanding of some types of mineral deposits; for example,the Platinum Group Elements (PGEs). The magma is modelled with the governing equations for a single-phase incompressible Newtonian fluid with variable viscosity and density. In this thesis, thermal conductivity and specific heat are approximated as constants and the country rock is treated as a conducting solid so as to save on computational time in the initial phases of the project. A basic review of the relevant literature is presented as background material and three basic models of magma chambers are discussed: crystal settling, compositional convection and double diffusive convection.The results presented in this thesis are from finite element calculations by a commercial computer code: ANSYS 5.4. This code has been employed in industry for over 26 years and has a long and successful benchmark history. In this context, finite element methods that are applicable to the code are discussed in chapter 5. In chapter 6, results that were obtained in the course of this research are presented. The thesis concludes with an indication of the possible geological significance of the results and various refinements that should be made to future models.
APA, Harvard, Vancouver, ISO, and other styles
11

Shellnutt, John Gregory. "A-type granites of the Permian Emeishan large igneous province (SW China): implications for the formation of thegiant magmatic oxide deposits." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39634498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gapara, Cornwell Sine. "A review of the deposition of iron-formation and genesis of the related iron ore deposits as a guide to exploration for Precambrian iron ore deposits in southern Africa." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005610.

Full text
Abstract:
Iron-formations are ferruginous sedimentary rocks which have their source from fumarolic activity associated with submarine volcanism, with deposition of iron as oxides, hydroxides, and hydrous oxide-silicate minerals in shallow and/or deep marine sedimentary systems. The Precambrian ironformations of southern Africa have a wide age range, but are more prominently developed before 1.SGa. These iron formations occur in greenstone belts of the Kaapvaal and Zimbabwean cratons, in the Limpopo mobile belt, in cratonic basins and in the Damara mobile belt. The Archaean-Proterozoic sedimentary basins and greenstone belts host iron ore deposits in iron-formation. Iron formations have a lengthy geological history. Most were subjected to intense, and on occasions repeated, tectonic and metamorphic episodes which also included metasomatic processes at times to produce supergene/hypogene high grade iron ores. Iron-formations may be enriched by diagenetic, and metamorphic processes to produce concentrating-grade ironformations. Uplift, weathering and denudation, have influenced the mineral association and composition of the ores, within which magnetite, haematite and goethite constitute the major ore minerals. The iron resources of the southern Africa region include the Sishen deposits, hosting to about 1200 Mt of high grade direct shipping ore, at >63% Fe. Deposits of Zimbabwe have more than 33 000 Mt of beneficiable iron-formation. The evaluation of an iron ore prospect involves many factors which must be individually assessed in order to arrive at an estimate of the probable profitability of the deposit. Many of these are geological and are inherent in the deposit itself. Other factors are inherent aspects of the environment in which the ore is formed. Although the geological character of the ore does not change, technological advances in the processing techniques may have a great effect on the cost of putting the ore into marketable form. Geochemical, geophysical and remote sensing methods would be used for regional exploration. Chip sampling and drilling are useful for detailed exploration. Purely geological exploration techniques are applicable on a prospect scale in the exploration of iron ore deposits. Regional exploration targeting should choose late Archaean greenstone belts containing oxide facies iron-formation or Early Proterozoic basins located at craton margins as they are both known to host high-grade haematite orebodies formed by supergene/hypogene enrichment. Most types of iron ore deposits in southern Africa are described and classified. An attempt is made to emphasize the major controls on mineralisation, in the hope that these may be applicable to exploration both in the southern African region and within analogous settings around the world.
APA, Harvard, Vancouver, ISO, and other styles
13

Carignan, Jean. "Les isotopes du Pb en métallogénie : chronomètres et traceurs du mode de formation de gites de Mo, Au, Ni, Cu et Pb dans les provinces du Supérieur et de Grenville du Bouclier Canadien /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1992. http://theses.uqac.ca.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Törmänen, T. (Tuomo). "Ore mineralogy, geochemistry, and formation of the sediment-hosted sea floor massive sulfide deposits at Escanaba Trough, NE Pacific, with emphasis on the transport and deposition of gold." Doctoral thesis, University of Oulu, 2004. http://urn.fi/urn:isbn:9514276264.

Full text
Abstract:
Abstract Recent sea floor sulfide deposits form when seawater, heated within the oceanic crust, discharges to the sea floor. Upon mixing with cold seawater, sulfide-forming elements such as sulfur, iron, copper, and zinc are precipitated from the fluid. Actively forming sea floor massive sulfide deposits are found from different lithologic and tectonic environments varying from mid-ocean ridges to back-arc spreading centers. At a few localities, sulfide deposits are associated with turbiditic sediments that cover the axial valley of the spreading center. The southern part (Escanaba Trough) of the Gorda Ridge (NE Pacific) is one such example. At Escanaba Trough, massive sulfide deposits are associated with small sediment hills, which were uplifted by the intrusion of sills and laccoliths within the sediments. Hydrothermal deposits are dominated by pyrrhotite-rich massive sulfides, with subordinate amounts of sulfate-rich precipitates and polymetallic sulfides. Compared to deposits hosted by volcanites, Escanaba Trough sulfides contain relatively low amounts of copper and zinc. However, the average gold concentration is relatively high for a sediment-hosted deposit, and is comparable with other, Au-enriched, sea floor sulfide deposits. Despite the relatively high Au concentration in many volcanic-hosted sea floor sulfide deposits, discrete Au grains are rare. They occur mostly with sphalerite, pyrite, chalcopyrite and tetrahedrite-tennantite. Sixteen of the pyrrhotite-rich samples from Escanaba Trough were found to contain visible Au grains. They occur mostly with native Bi and various BiTe phases, and to lesser degree, with Fe-Co sulfarsenides. Transport of Au in sea floor hydrothermal systems is attributed to the presence of Au(HS)2- complex, which is destabilized when the fluid mixes with seawater. Hydrothermal fluids are generally undersaturated with respect to Au complexes and additional mechanisms, such as remobilizing earlier precipitated Au is required to explain the high Au concentrations encountered in many deposits. At Escanaba Trough the mechanism is attributed to early precipitation of Bi as melt droplets, at temperatures greater its melting temperature, as liquid Bi is capable of collecting Au even from an undersaturated fluid. Upon cooling Au is exsolved from the Bi host as native Au or maldonite (Au2Bi).
APA, Harvard, Vancouver, ISO, and other styles
15

Dittrich, Thomas. "Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite Mineralisations." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-228968.

Full text
Abstract:
Lithium Cesium Tantalum (LCT) pegmatites are important resources for rare metals like Cesium, Lithium or Tantalum, whose demand increased markedly during the past decade. At present, Cs is known to occur in economic quantities only from the two LCT pegmatite deposits at Bikita located in Zimbabwe and Tanco in Canada. Host for this Cs mineralisation is the extreme rare zeolite group mineral pollucite. However, at Bikita and Tanco, pollucite forms huge massive, lensoid shaped and almost monomineralic pollucite mineralisations that occur within the upper portions of the pegmatite. In addition, both pegmatite deposits have a comparable regional geological background as they are hosted within greenstone belts and yield a Neoarchean age of about 2,600 Ma. Furthermore, at present the genesis of these massive pollucite mineralisations was not yet investigated in detail. Major portions of Western Australia consist of Meso- to Neoarchean crustal units (e.g., Yilgarn Craton, Pilbara Craton) that are known to host a large number of LCT pegmatite systems. Among them are the LCT pegmatite deposits Greenbushes (Li, Ta) and Wodgina (Ta, Sn). In addition, small amounts of pollucite were recovered from one single diamond drill core at the Londonderry pegmatite field. Despite that, no systematic investigations and/or exploration studies were conducted for the mode of occurrence of Cs and especially that of pollucite in Western Australia. In the course of the present study nineteen individual pegmatites and pegmatite fields located on the Yilgarn Craton, Pilbara Craton and Kimberley province have been visited and inspected for the occurrence of the Cs mineral pollucite. However, no pollucite could be detected in any of the investigated pegmatites. Four of the inspected LCT-pegmatite systems, namely the Londonderry pegmatite field, the Mount Deans pegmatite field, the Cattlin Creek LCT pegmatite deposit (Yilgarn Craton) and the Wodgina LCT pegmatite deposit (Pilbara Craton) was sampled and investigated in detail. In addition, samples from the Bikita pegmatite field (Zimbabwe Craton) were included into the present study in order to compare the Western Australian pegmatites with a massive pollucite mineralisation bearing LCT pegmatite system. This thesis presents new petrographical, mineralogical, mineralchemical, geochemical, geochronological, fluid inclusion and stable and radiogenic isotope data. The careful interpretation of this data enhances the understanding of the LCT pegmatite systems in Western Australia and Zimbabwe. All of the four investigated LCT pegmatite systems in Western Australia, crop out in similar geological settings, exhibit comparable internal structures, geochemistry and mineralogy to that of the Bikita pegmatite field in Zimbabwe. Furthermore, in all LCT pegmatite systems evidences for late stage hydrothermal processes (e.g., replacement of feldspars) and associated Cs enrichment (e.g., Cs enriched rims on mica, beryl and tourmaline) is documented. With the exception of the Wodgina LCT pegmatite deposit, that yield a Mesoarchean crystallisation age (approx. 2,850 Ma), all other LCT pegmatite systems gave comparable Neoarchean ages of 2,630 Ma to 2,600 Ma. The almost identical ages of the LCT pegmatite systems of the Yilgarn and Zimbabwe cratons suggests, that the process of LCT pegmatite formation at the end of the Neoarchean was active worldwide. Nevertheless, essential distinguishing feature of the Bikita pegmatite field is the presence of massive pollucite mineralisations that resulted from a process that is not part of the general development of LCT pegmatites and is associated with the extreme enrichment of Cs. The new findings of the present study obtained from the Bikita pegmatite field and the Western Australian LCT pegmatite systems significantly improve the knowledge of Cs behaviour in LCT pegmatite systems. Therefore, it is now possible to suggest a genetical model for the formation of massive pollucite mineralisations within LCT pegmatite systems. LCT pegmatites are generally granitic in composition and are interpreted to represent highly fractionated and geochemically specialised derivates from granitic melts. Massive pollucite mineralisation bearing LCT pegmatites evolve from large and voluminous pegmatite melts that intrude as single body along structures within an extensional tectonic setting. After emplacement, initial crystallisation will develop the border and wall zone of the pegmatites, while due to fractionated crystallisation immobile elements (i.e., Cs, Rb) become enriched within the remaining melt and associated hydrothermal fluids. Following this initial crystallisation, a relatively small portion (0.5–1 vol.%) of immiscible melt or fluid will separate during cooling. This immiscible partial melt/fluid is enriched in Al2O3 and Na2O, as well as depleted in SiO2 and will crystallise as analcime. In addition, this melt might allready contains up to 1–2 wt.% Cs2O. However, due to the effects of fluxing components (e.g., H2O, F, B) this analcime melt becomes undercooled which prevents crystallisation of the analcime as intergranular grains. Since this analcime melt exhibits a lower relative gravity when compared to the remaining pegmatite melt the less dense analcime melt will start to ascent gravitationally and accumulate within the upper portion of the pegmatite sheet. At the same time, the remaining melt will start to crystallise separately and form the inner portions of the pegmatite. This crystallisation is characterised by still ongoing fractionation and enrichment of incompatible elements (i.e., Cs, Rb) within the last crystallising minerals (e.g., lepidolite) or concentration of these incompatible elements within exsolving hydrothermal fluids. As analcime and pollucite form a continuous solid solution series, the analcime melt is able to incorporate any available Cs from the melt and/or associated hydrothermal fluids and crystallise as Cs-analcime in the upper portion of the pegmatite sheet. Continuing hydrothermal activity and ongoing substitution of Cs will then start to shift the composition from Cs-analcime composition towards Na-pollucite composition. In addition, if analcime is cooled below 400 °C it is subjected to a negative thermal expansion of about 1 vol.%. This contraction results in the formation of a prominent network of cracks that is filled by late stage minerals (e.g., lepidolite, quartz, feldspar and petalite). Certainly, prior to filling, this network of cracks enhances the available conduits for late stage hydrothermal fluids and the Cs substitution mechanism within the massive pollucite mineralisation. Furthermore, during cooling of the pegmatite, prominent late stage mineral replacement reactions (e.g., replacement of K-feldspar by lepidolite, cleavelandite, and quartz) as well as subsolidus self organisation processes in feldspars take place. These processes are suggested to release additional incompatible elements (e.g., Cs, Rb) into late stage hydrothermal fluids. As feldspar forms large portions of pegmatite a considerable amount of Cs is released and transported via the hydrothermal fluids towards the massive pollucite mineralisation in the upper portion of the pegmatite. Consequently, the initial analcime can accumulate enough Cs in order to shift its composition from the Cs-analcime member (>2 wt.% Cs2O) towards the Na-pollucite member (23–43 wt.% Cs2O) of the solid solution series. The timing of this late stage Cs enrichment is interpreted to be quasi contemporaneous or immediately after the complete crystallisation of the pegmatite melt. However, much younger hydrothermal events that overprint the pegmatite are also interpreted to cause similar results. Hence, it has been demonstrated that the combination of this magmatic and hydrothermal processes is capable to generate an extreme enrichment in Cs in order to explain the formation of massive pollucite mineralisations within LCT pegmatite systems. This genetic model can now be applied to evaluate the potential for occurrences of massive pollucite mineralisations within LCT pegmatite systems in Western Australia and worldwide
Lithium-Caesium-Tantal-(LCT) Pegmatite repräsentieren eine bedeutende Quelle für seltene Metalle, deren Bedarf im letzten Jahrzehnt beträchtlich angestiegen ist. Im Falle von Caesium sind zurzeit weltweit nur zwei LCT-Pegmatitlagerstätten bekannt, die abbauwürdige Vorräte an Cs enthalten. Dies sind die LCT-Pegmatitlagerstätten Bikita in Simbabwe und Tanco in Kanada. Das Wirtsmineral für diese Cs-Mineralisation ist das extrem selten auftretende Zeolith-Gruppen-Mineral Pollucit. In den Lagerstätten Bikita und Tanco bildet Pollucit dagegen massive, linsenförmige und fast monomineralische Pollucitmineralisationen, die in den oberen Bereichen der Pegmatitkörper anstehen. Zusätzlich befinden sich beide Lagerstätten in geologisch vergleichbaren Einheiten. Die Nebengesteine sind Grünsteingürtel die ein neoarchaisches Alter von ca. 2,600 Ma aufweisen. Die Bildung derartiger massiver Pollucitmineralisationen ist bis jetzt noch nicht detailliert untersucht worden. Große Bereiche von Westaustralien werden von meso- bis neoarchaischen Krusteneinheiten (z.B. Yilgarn Kraton, Pilbara Kraton) aufgebaut, von denen auch eine große Anzahl an LCT-Pegmatitsystemen bekannt sind. Darunter befinden sich unter anderem die LCT-Pegmatitlagerstätten Greenbushes (Li, Ta) und Wodgina (Ta, Sn). Zusätzlich wurden kleine Mengen an Pollucit in einer einzigen Kernbohrung im Londonderry Pegmatitfeld angetroffen. Ungeachtet dessen, wurden in Westaustralien bis jetzt keine systematischen Untersuchungen und/oder Explorationskampagnen auf Vorkommen von Cs und speziell der von Pollucit durchgeführt. Im Verlauf dieser Studie wurden insgesamt neunzehn verschiedene Pegmatitvorkommen und Pegmatitfelder des Yilgarn Kratons, Pilbara Kratons und der Kimberley Provinz auf das Vorkommen des Minerals Pollucit untersucht. Allerdings konnte in keinem der untersuchten LCT-Pegmatitsystemen Pollucit nachgewiesen werden. Von vier der untersuchten LCT-Pegmatitsystemen, dem Londonderry Pegmatitfeld, dem Mount Deans Pegmatitfeld, der Cattlin Creek LCT-Pegmatitlagerstätte (Yilgarn Kraton) und der Wodgina LCT-Pegmatitlagerstätte (Pilbara Kraton) wurden detailliert Proben entnommen und weitergehend untersucht. Zusätzlich wurden die massiven Pollucitmineralisationen im Bikita Pegmatitfeld beprobt und in die detailierten Untersuchungen einbezogen. Der Probensatz aus dem Bikita Pegmatitfeld dient als Referenzmaterial mit dem die Pegmatitproben aus Westaustralien verglichen werden. Die vorliegende Arbeit fasst die wesentlichen Ergebnisse der petrographischen, mineralogischen, mineralchemischen, geochemischen und geochronologischen Untersuchungen sowie der Flüssigkeitseinschlussuntersuchungen und stabilen und radiogenen Isotopenzusammensetzungen zusammen. Alle vier der in Westaustralien untersuchten LCT-Pegmatitsysteme kommen in geologisch ähnlichen Rahmengesteinen vor, weisen einen vergleichbaren internen Aufbau, geochemische Zusammensetzung und Mineralogie zu dem des Bikita Pegmatitfeldes in Simbabwe auf. Weiterhin konnten in allen LCT-Pegmatitsystemen Hinweise für späte hydrothermale Prozesse (z.B. Verdrängung von Feldspat) nachgewiesen werden, die einhergehend mit einer Anreicherung von Cs verbunden sind (z.B. Cs-angereicherte Säume um Glimmer, Beryll und Turmalin). Mit der Ausnahme der Wodgina LCT-Pegmatitlagerstätte, in der ein mesoarchaisches Kristallisationsalter (ca. 2,850 Ma) nachgewiesen wurde, lieferten die Altersdatierungen in den anderen LCT-Pegmatitsystemen übereinstimmende neoarchaische Alter von 2,630 Ma bis 2,600 Ma. Diese fast identischen Alter der LCT-Pegmatitsysteme des Yilgarn und Zimbabwe Kratons suggerieren, dass die Prozesse, die zur LCT-Pegmatitbildung am Ende des Neoarchaikums führten, weltweit aktiv waren. Ungeachtet dessen stellt das Vorhandensein von massiver Pollucitmineralisation das Alleinstellungsmerkmal des Bikita Pegmatitfeldes dar, welche sich infolge eines Prozesses gebildet haben der nicht Bestandteil der üblichen LCT-Pegmatitentwicklung ist und sich durch eine extreme Anreicherung an Cs unterscheidet. Die neuen Ergebnisse die in dieser Studie von den Bikita Pegmatitfeld und den Westaustralischen LCT-Pegmatitsystemen gewonnen wurden, verbessern das Verständnis des Verhaltens von Cs in LCT-Pegmatitsystemen deutlich. Somit ist es nun möglich, ein genetisches Modell für die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen vorzustellen. LCT-Pegmatite weisen im Allgemeinen eine granitische Zusammensetzung auf und werden als Kristallisat von hoch fraktionierten und geochemisch spezialisierten granitischen Restschmelzen interpretiert. Die Bildung von massiven Pollucitmineralisationen ist nur aus großen und voluminösen Pegmatitschmelzen, die als einzelner Körper entlang von Störungen in extensionalen Stressregimen intrudieren möglich. Nach Platznahme der Schmelze bildet die beginnende Kristallisation zunächst die Kontakt- und Randzone des Pegmatits, wobei infolge von fraktionierter Kristallisation die immobilen Elemente (v.a. Cs, Rb) in der verbleibenden Restschmelze angereichert werden. Im Anschluss an diese erste Kristallisation entmischt sich nach Abkühlung eine sehr kleine Menge (0.5–1 vol.%) Schmelze und/oder Fluid von der Restschmelze. Diese nicht mischbare Teilschmelze/-fluid ist angereichert an Al2O3 und Na2O sowie verarmt an SiO2 und kristallisiert als Analcim. Zusätzlich kann diese Schmelze bereits mit 1–2 wt.% Cs2O angereichert sein. Aufgrund der Auswirkung von Flussmitteln (z.B. H2O, F, B) wird allerdings der Schmelzpunkt dieser Analcimschmelze herabgesetzt und so die Kristallisation des Analcims als intergranulare Körner verhindert. Da diese Analcimschmelze im Vergleich zu der restlichen Schmelze eine geringere relative Dichte besitzt, beginnt sie gravitativ aufzusteigen und sich in den oberen Bereichen des Pegmatitkörpers zu akkumulieren. Währenddessen beginnt die restliche Schmelze separat zu kristallisieren und die inneren Bereiche des Pegmatits zu bilden. Diese Kristallisation ist einhergehend mit fortschreitender Fraktionierung und der Anreicherung von inkompatiblen Elementen (v.a. Cs, Rb) in den sich als letztes bildenden Mineralphasen (z.B. Lepidolit) oder der Konzentration der inkompatiblen Element in die sich entmischenden hydrothermalen Fluiden. Da Analcim und Pollucit eine lückenlose Mischungsreihe bilden, ist die Analcimschmelze in der Lage, alles verfügbare Cs von der Restschmelze und/oder assoziierten hydrothermalen Fluiden an sich zu binden und als Cs-Analcim im oberen Bereich des Pegmatitkörpers zu kristallisieren. Fortschreitende hydrothermale Aktivität und Substitution von Cs verschiebt dann die Zusammensetzung des Analcims von der Cs-Analcim- zu Na-Pollucitzusammensetzung. Zusätzlich erfährt der Analcim bei Abkühlung unter 400 °C eine negative thermische Expansion von ca. 1 vol.%. Diese Kontraktion führt zu der Bildung des markanten Rissnetzwerkes das durch späte Mineralphasen (z.B. Lepidolit, Quarz, Feldspat und Petalit) gefüllt wird. Vor der Mineralisation allerdings, erhöht dieses Netzwerk an Rissen die verfügbaren Wegsamkeiten für die späten hydrothermalen Fluide und begünstigt somit den Cs-Substitutionsmechanismus in der massiven Pollucitmineralisation. Weiterhin kommt es bei der Abkühlung des Pegmatits zu späten Mineralverdrängungsreaktionen (z.B. Verdrängung von K-Feldspat durch Lepidolit, Cleavelandit und Quarz), sowie zu Subsolidus-Selbstordnungsprozessen in Feldspäten. Diese Prozesse werden weiterhin interpretiert inkompatible Elemente (z.B. Cs, Rb) in die späten hydrothermalen Fluide freizusetzen. Da Feldspäte große Teile der Pegmatite bilden, kann somit eine beträchtliche Menge an Cs freigeben werden und durch die späten hydrothermalen Fluide in die massive Pollucitmineralisation in den oberen Bereichen des Pegmatitkörpers transportiert werden. Infolgedessen ist es möglich, dass genügend Cs frei gesetzt werden kann, um die Zusammensetzung innerhalb der Mischkristallreihe von Cs-Analcim (>2 wt.% Cs2O) zu Na-Pollucit (23–43 wt.% Cs2O) zu verschieben. Die zeitliche Einordnung dieser späten Cs-Anreicherung wird als quasi zeitgleich oder im direkten Anschluss an die vollständige Kristallisation der Pegmatitschmelze interpretiert. Es kann allerdings nicht vernachlässigt werden, dass auch jüngere hydrothermale Ereignisse, die den Pegmatitkörper nachträglich überprägen, ähnliche hydrothermale Prozesse hervorrufen können. Somit konnte gezeigt werden, dass es durch Kombination dieser magmatischen und hydrothermalen Prozessen möglich ist, genügend Cs anzureichern, um die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen zu ermöglichen. Dieses genetische Modell kann nun dazu genutzt werden, um das Potential von Vorkommen von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen in Westaustralien und weltweit besser einzuschätzen
APA, Harvard, Vancouver, ISO, and other styles
16

Matzat, Hans-Werner. "Mineralogical, petrological and geochemical features of the ore formation of Savage River, Tasmania (Australia), including a comparison with the Kiruna-Iron Mtn. type of iron ore deposits /." Heidelberg : [Ruprecht-Karls-Universität], 1986. http://catalogue.bnf.fr/ark:/12148/cb374293233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kelka, Ulrich. "Pattern formation in Mississippi valley-type deposits : identifying one of nature's fundamental processes in geologic systems." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8146/.

Full text
Abstract:
Nature has a range of distinct mechanisms that cause initially heterogeneous systems to break their symmetry and form patterns. The study of pattern formation and the behaviour of non-linear systems have interested scientists across many disciplines from physics, chemistry, biology, and economics to geosciences. In study, a new mechano-chemical process that leads to the formation of complex periodic wave- or stripe-like zebra patterns in rocks will be presented. The genesis of periodically banded dolostones, which host lead-zinc mineralization, has been studied for several years, because an evolutionary relationship between the banded dolomites and mineralized areas is highly likely. To date, a complete generic model has not been formulated for the formation of these zebra rocks and there is an ongoing debate on the exact processes leading to the genesis of the pattern. In the first part of this work, new analytical findings obtained from zebra dolomites from Peru and Germany will be presented. The zebra dolomites from Germany have never been described before and represent the first known zebra dolomite deposit in Germany. Based on the analytical finding, a numerical and an analytical model were developed in the second part of this thesis. The combination of the numerical and the analytical model yields a new approach to the zebra pattern formation based on one of nature’s fundamental processes for wave-like pattern formation in geological systems. This approach also includes a new inversion routine based on the spacing of the respective pattern.
APA, Harvard, Vancouver, ISO, and other styles
18

Harnois, Luc Carleton University Dissertation Geology. "Geochemistry of the ore chimney formation and associated metavolcanic rocks and gold deposits in the Flinton-Harlowe area, Grenville province, southeastern Ontario." Ottawa, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Badenhorst, Jaco Cornelis. "The precambrian iron-formations in the Limpopo belt as represented by the magnetite quartzite deposits at Moonlight, Koedoesrand area, Northern Transvaal." Thesis, Rhodes University, 1991. http://hdl.handle.net/10962/d1013309.

Full text
Abstract:
This dissertation is based largely on data that was accumulated during the execution of an exploration program by Iscor Ltd in the Northern Transvaal. The program included geological mapping, geophysical surveys and drilling, on Precambrian iron-formations in the Central Zone of the Limpopo Belt. The structure, stratigraphy, metamorphism, and economic importance of the magnetite quartzites and associated lithologies of the Moonlight prospect are discussed. The lithologies underlying the Moonlight prospect area consist of various pink- and grey-banded gneisses and pink granulite, together with a variety of metasedimentary supracrustal rock-types and concordant serpentinite bodies. The gneissic rock-types consist of chlorite-quartz-feldspar gneiss, chlorite-quartz-feldspar augen gneiss, hornblende-quartz-feldspar gneiss, biotite-quartz-feldspar gneiss, felsic and mafic granulite, and foliated amphibolite. The metasedimentary lithologies are represented by calc-silicates and marble, white quartz-feldspar granulite, magnetite quartzite, metaquartzite and garnet-bearing granulite and gneiss (metapelites). The concordant ultramafic bodies consist of serpentinite with lesser amphibolite, dunite, and chromitite. Intrusive pegmatites and diabase dykes are also present in the prospect area. Metamorphism reached granulite-facies, and more than one retrqgrade metamorphic event is recognized . Amphibolite-facies assemblages are present, but it is uncertain whether they represent another retrograde event . Polyphase deformation has produced intense and complex folding , resulting in irregular magnetite quartzite orebodies. The high metamorphic grades have resulted in medium- grained recrystallization of the magnetite-quartzites with a loss of prominent banding often associated with these rock-types . The magnetite quartzite occurs as three seperate but related ore zones, consisting of one or more ore-bands seperated by other lithologies. All three zones form poor outcrops and suboutcrops in a generally flat lying and sand covered area. · Although representing a low-grade iron ore (32% total Fe), the magnetite quartzite deposits at Moonlight are regarded as potentially viable due to the large opencast tonnages available at low stripping ratios, and the relatively cheap and easy beneficiation process needed to produce a magnetite concentrate with 69-70% total Fe.
APA, Harvard, Vancouver, ISO, and other styles
20

Hodkiewicz, Paul. "The interplay between physical and chemical processes in the formation of world-class orogenic gold deposits in the Eastern Goldfields Province, Western Australia." University of Western Australia. Centre for Global Metallogeny, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0057.

Full text
Abstract:
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] The formation of world-class Archean orogenic gold deposits in the Eastern Goldfields Province of Western Australia was the result of a critical combination of physical and chemical processes that modified a single and widespread ore-fluid along fluid pathways and at the sites of gold deposition. Increased gold endowment in these deposits is associated with efficient regional-scale fluid focusing mechanisms and the influence of multiple ore-depositional processes at the deposit-scale. Measurement of the complexity of geologic features, as displayed in high-quality geologic maps of uniform data density, can be used to highlight areas that influence regional-scale hydrothermal fluid flow. Useful measurements of geological complexity include fractal dimensions of map patterns, density and orientation of faults and lithologic contacts, and proportions of rock types. Fractal dimensions of map patterns of lithologic contacts and faults highlight complexity gradients. Steep complexity gradients, between domains of high and low fractal dimensions within a greenstone belt, correspond to district-scale regions that have the potential to focus the flow of large volumes of hydrothermal fluid, which is critical for the formation of significant orogenic gold mineralization. Steep complexity gradients commonly occur in greenstone belts where thick sedimentary units overly more complex patterns of lithologic contacts, associated with mafic intrusive and mafic volcanic units. The sedimentary units in these areas potentially acted as seals to the hydrothermal Mineral Systems, which resulted in fluid-pressure gradients and increased fluid flow. The largest gold deposits in the Kalgoorlie Terrane and the Laverton Tectonic Zone occur at steep complexity gradients adjacent to thick sedimentary units, indicating the significance of these structural settings to gold endowment. Complexity gradients, as displayed in surface map patterns, are an indication of three-dimensional connectivity along fluid pathways, between fluid source areas and deposit locations. Systematic changes in the orientation of crustal-scale shear zones are also significant and measurable map features. The largest gold deposits along the Bardoc Tectonic Zone and Boulder-Lefroy Shear Zone, in the Eastern Goldfields Province, occur where there are counter-clockwise changes in shear zone orientation, compared to the average orientation of the shear zone along its entire length. Sinistral movement along these shear zones resulted in the formation of district-scale dilational jogs and focused hydrothermal fluid-flow at the Golden Mile, New Celebration and Victory-Defiance deposits. Faults and lithologic contacts are the dominant fluid pathways in orogenic gold Mineral Systems, and measurements of the density of faults and contacts are also a method of quantifying the complexity of geologic map patterns on high-quality maps. Significantly higher densities of pathways in areas surrounding larger gold deposits are measurable within 20- and 5-kilometer search radii around them. Large variations in the sulfur isotopic composition of ore-related pyrites in orogenic gold deposits in the Eastern Goldfields Province are the result of different golddepositional mechanisms and the in-situ oxidation of a primary ore fluid in specific structural settings. Phase separation and wall-rock carbonation are potentially the most common mechanisms of ore-fluid oxidation and gold precipitation. The influence of multiple gold-depositional mechanisms increases the potential for significant ore-fluid oxidation, and more importantly, provides an effective means of increasing gold endowment. This explains the occurrence of negative δ34S values in ore-related pyrites in some world-class orogenic gold deposits. Sulfur isotopic compositions alone cannot uniquely define potential gold endowment. However, in combination with structural, hydrothermal alteration and fluid inclusion studies that also seek to identify multiple ore-forming processes, they can be a useful indicator. The structural setting of a deposit is also a potentially important factor controlling ore-fluid oxidation and the distribution of δ34S values in ore-related pyrites. At Victory-Defiance, the occurrence of negative δ34S(py) values in gently-dipping dilational structures, compared to more positive δ34S(py) values in steeply-dipping compressional structures, is potentially associated with different gold-depositional mechanisms that developed as a result of fluid-pressure fluctuations during different stages of the fault-valve cycle. During the pre-failure stage, when fluids are discharging from faults, fluid-rock interaction is the dominant gold-depositional mechanism. Phase separation and back-mixing of modified ore-fluid components are dominant during and immediately after faulting. Under appropriate conditions, any, or all, of these three mechanisms can oxidize orogenic gold fluids and cause gold deposition. The influence of multiple gold-depositional mechanisms during fault-valve cycles at dilational jogs, where fluid pressure fluctuations are interpreted to be most severe, can potentially explain both the large gold endowment of the giant to world-class Golden Mile, New Celebration and Victory-Defiance deposits along the Boulder-Lefroy Shear Zone, and the presence of gold-related pyrites with negative δ34S values in these deposits. This study highlights the interplay that exists between physical and chemical processes in orogenic gold Mineral Systems, during the transport of ore fluids in pathways from original fluid reservoirs to deposit sites. Potentially, a single and widespread orogenic ore-fluid could become oxidized, and lead to the formation of ore-related sulfides with variable sulfur isotopic compositions, depending on the nature and orientation of major fluid pathways, the nature of wall-rocks through which it circulates, and the precise ore-depositional processes that develop during fault-valve cycles.
APA, Harvard, Vancouver, ISO, and other styles
21

Stone, Michelle Susanne. "Depositional history and mineralisation of tertiary channel iron deposits at Yandi, Eastern Pilbara, Australia." University of Western Australia. School of Earth and Geographical Sciences, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0082.

Full text
Abstract:
[Truncated abstract] Detailed sedimentological, petrographical, geochemical and palynological studies have provided insight into the source rocks and the processes that operated during formation of the Tertiary Yandi channel iron deposit (CID) of the eastern Pilbara, Western Australia. Yandi is the largest and most valuable CID in the world, accounting for more than 2.5% of global iron production in 2003, and is the type-example of CID. The Yandi CID occupies the palaeo-Marillana Creek in the central Hamersley Ranges. It is near-coincident-with the modern Marillana Creek which incised Proterozoic bedrock of the Weeli Wolli Formation (Hamersley Group) and associated dolerite intrusions. Three lithostratigraphic units fill the palaeo-Marillana Creek and comprise the Marillana Formation. The units in stratigraphic order are the: (1) Munjina Member; (2) Barimunya Member, which hosts the majority of the iron resource; and (3) Iowa Eastern Member. Fossil pollen and spores in organic-rich claystones in the Munjina Member indicate that deposition of the Marillana Formation most likely commenced in the Early Oligocene in response to erratic seasonal flows with high energy flood events and intervening quiescent suspension settling of clays. The Marillana Formation consists of twelve facies. These conglomerate and clay facies form three facies associations. The basal facies association is composed of polymictic conglomerate, clay and interbedded CID that represents a lag deposit along the base of the palaeochannel. This facies association characterises the Munjina Member. The second facies association consists of iron-rich conglomerate sheets, bars and subordinate scour-fills and characterises the Barimunya Member. Channel iron deposits of the overlying Iowa Eastern member consist of reworked Barimunya Member iron conglomerates. The upper facies association is polymictic conglomerate with clay that characterises the remainder of the Iowa Eastern Member. Polymictic iron conglomerate in the Munjina and Barimunya Members contains Weeli Wolli Formation and dolerite clasts indicating local derivation. Rare earth element profiles of the other iron conglomerate facies indicate derivation of the Barimunya and Iowa Eastern CID from a different source. These iron conglomerates are characterised by relatively flat LREE profiles. The LREE exhibit an enriched profile approaching the MREE [(average La/Nd)N = 0.7], and the HREE profile shows minor enrichment approaching ytterbium [(average Dy/Yb)N = 0.9]. Comparison of iron conglomerate REE profiles to those of the bedrock indicates that these conglomerates were most probably derived from the Joffre Formation BIF of the Hamersley Group
APA, Harvard, Vancouver, ISO, and other styles
22

Olivo, Gema Ribeiro. "Les gites d'or palladifères des mines de Caue et de Conceicao, dans les formations de fer du type lac Supérieur du district d'Itabira, Craton Sao Francisco, Bresil : structure, minéralogie, géochronologie et métallogenie = (Palladium-bearing gold deposits of the caue and conceicao mines, hosted by lake superior-type iron-formations of the Itabira district, Sao Francisco craton, Brazil : structure, mineralogy, geochronology and metallogeny) /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1994. http://theses.uqac.ca.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Epp, Tatjana [Verfasser], and Gregor [Akademischer Betreuer] Markl. "Halogen (F, Cl, Br, I) cycling in the critical zone : Formation of primary ore deposits, their supergene weathering and the fate of halogens in soil and along the hydrological flow path / Tatjana Epp ; Betreuer: Gregor Markl." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1213720664/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Edou-Minko, Ambroise. "Pétrologie et géochimie des latérites à "stone-line" du gite d'or d'Ovala : application à la prospection en milieu équatorial humide (Gabon)." Poitiers, 1988. http://www.theses.fr/1988POIT2333.

Full text
Abstract:
Des ensembles d'alterations sont distingues, et les processus majeurs de formations des horizons type isalterite a kaolinite, gibbsite, hematite et goethite sont decrits. Les mineralisations en or associees a ces formations sont de differents types. Une methode de prospection de l'or dans les materiaux lateritiques en milieu equatorial humide est proposee
APA, Harvard, Vancouver, ISO, and other styles
25

Gomes, Gonçalo Laurentino. "Spatial simulation of the W-Sn ore grades of São Pedro das Águias skarn mineral deposit (Tabuaço, northern Portugal)." Master's thesis, 2016. http://hdl.handle.net/10362/18446.

Full text
Abstract:
The purpose of this study is the W-Sn grades simulation of São Pedro das Águias skarn ore deposit (Tabuaço, northern Portugal). This skarn deposit hosts a mineralization of scheelite and cassiterite. The grades modelling constrained by lens-shaped skarns is challenging, because they are numerous, thin, constrained to the structure shape and orientation, and recognized only in the drill-holes without indication of interconnections. Despite of the complexity, the proposed methodology constructs a geological model of the lens-shaped skarns, and generates a conditional model of the grades. The geological model construction begins with the automatic simulation of scenarios of the interconnections between the lens-shaped intersected by the drill-holes, conditioned to the orientation of the structure. For the simulated geometry scenarios represented by polylines in several cross-sections thicknesses are added according to the drill-cores, and the skarn relative proportion of each block is evaluated. Finally, the grid blocks between the cross-sections are filled using direct the DSS algorithm with local means from the skarn proportion variable (continuous variable). So long as the skarn thicknesses are much smaller than the blocks size, the morphological model reports the skarn proportion variable. The W-Sn grades model encompasses the local histograms estimation conditional to the geological model, and uses the PFS algorithm to generate the final images. The local histograms estimation results of a grades mixture according to the calculated skarn proportion between each block, and of a simple W-Sn simulated images conditional to the skarn and no-skarn lithological groups. The simulated grades are finally compared with the equivalent resources obtained by ordinary kriging. The simulated images enable the evaluation of the local uncertainty, and may be used for mine planning and optimizations.
APA, Harvard, Vancouver, ISO, and other styles
26

Dittrich, Thomas. "Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite Mineralisations." Doctoral thesis, 2016. https://tubaf.qucosa.de/id/qucosa%3A23157.

Full text
Abstract:
Lithium Cesium Tantalum (LCT) pegmatites are important resources for rare metals like Cesium, Lithium or Tantalum, whose demand increased markedly during the past decade. At present, Cs is known to occur in economic quantities only from the two LCT pegmatite deposits at Bikita located in Zimbabwe and Tanco in Canada. Host for this Cs mineralisation is the extreme rare zeolite group mineral pollucite. However, at Bikita and Tanco, pollucite forms huge massive, lensoid shaped and almost monomineralic pollucite mineralisations that occur within the upper portions of the pegmatite. In addition, both pegmatite deposits have a comparable regional geological background as they are hosted within greenstone belts and yield a Neoarchean age of about 2,600 Ma. Furthermore, at present the genesis of these massive pollucite mineralisations was not yet investigated in detail. Major portions of Western Australia consist of Meso- to Neoarchean crustal units (e.g., Yilgarn Craton, Pilbara Craton) that are known to host a large number of LCT pegmatite systems. Among them are the LCT pegmatite deposits Greenbushes (Li, Ta) and Wodgina (Ta, Sn). In addition, small amounts of pollucite were recovered from one single diamond drill core at the Londonderry pegmatite field. Despite that, no systematic investigations and/or exploration studies were conducted for the mode of occurrence of Cs and especially that of pollucite in Western Australia. In the course of the present study nineteen individual pegmatites and pegmatite fields located on the Yilgarn Craton, Pilbara Craton and Kimberley province have been visited and inspected for the occurrence of the Cs mineral pollucite. However, no pollucite could be detected in any of the investigated pegmatites. Four of the inspected LCT-pegmatite systems, namely the Londonderry pegmatite field, the Mount Deans pegmatite field, the Cattlin Creek LCT pegmatite deposit (Yilgarn Craton) and the Wodgina LCT pegmatite deposit (Pilbara Craton) was sampled and investigated in detail. In addition, samples from the Bikita pegmatite field (Zimbabwe Craton) were included into the present study in order to compare the Western Australian pegmatites with a massive pollucite mineralisation bearing LCT pegmatite system. This thesis presents new petrographical, mineralogical, mineralchemical, geochemical, geochronological, fluid inclusion and stable and radiogenic isotope data. The careful interpretation of this data enhances the understanding of the LCT pegmatite systems in Western Australia and Zimbabwe. All of the four investigated LCT pegmatite systems in Western Australia, crop out in similar geological settings, exhibit comparable internal structures, geochemistry and mineralogy to that of the Bikita pegmatite field in Zimbabwe. Furthermore, in all LCT pegmatite systems evidences for late stage hydrothermal processes (e.g., replacement of feldspars) and associated Cs enrichment (e.g., Cs enriched rims on mica, beryl and tourmaline) is documented. With the exception of the Wodgina LCT pegmatite deposit, that yield a Mesoarchean crystallisation age (approx. 2,850 Ma), all other LCT pegmatite systems gave comparable Neoarchean ages of 2,630 Ma to 2,600 Ma. The almost identical ages of the LCT pegmatite systems of the Yilgarn and Zimbabwe cratons suggests, that the process of LCT pegmatite formation at the end of the Neoarchean was active worldwide. Nevertheless, essential distinguishing feature of the Bikita pegmatite field is the presence of massive pollucite mineralisations that resulted from a process that is not part of the general development of LCT pegmatites and is associated with the extreme enrichment of Cs. The new findings of the present study obtained from the Bikita pegmatite field and the Western Australian LCT pegmatite systems significantly improve the knowledge of Cs behaviour in LCT pegmatite systems. Therefore, it is now possible to suggest a genetical model for the formation of massive pollucite mineralisations within LCT pegmatite systems. LCT pegmatites are generally granitic in composition and are interpreted to represent highly fractionated and geochemically specialised derivates from granitic melts. Massive pollucite mineralisation bearing LCT pegmatites evolve from large and voluminous pegmatite melts that intrude as single body along structures within an extensional tectonic setting. After emplacement, initial crystallisation will develop the border and wall zone of the pegmatites, while due to fractionated crystallisation immobile elements (i.e., Cs, Rb) become enriched within the remaining melt and associated hydrothermal fluids. Following this initial crystallisation, a relatively small portion (0.5–1 vol.%) of immiscible melt or fluid will separate during cooling. This immiscible partial melt/fluid is enriched in Al2O3 and Na2O, as well as depleted in SiO2 and will crystallise as analcime. In addition, this melt might allready contains up to 1–2 wt.% Cs2O. However, due to the effects of fluxing components (e.g., H2O, F, B) this analcime melt becomes undercooled which prevents crystallisation of the analcime as intergranular grains. Since this analcime melt exhibits a lower relative gravity when compared to the remaining pegmatite melt the less dense analcime melt will start to ascent gravitationally and accumulate within the upper portion of the pegmatite sheet. At the same time, the remaining melt will start to crystallise separately and form the inner portions of the pegmatite. This crystallisation is characterised by still ongoing fractionation and enrichment of incompatible elements (i.e., Cs, Rb) within the last crystallising minerals (e.g., lepidolite) or concentration of these incompatible elements within exsolving hydrothermal fluids. As analcime and pollucite form a continuous solid solution series, the analcime melt is able to incorporate any available Cs from the melt and/or associated hydrothermal fluids and crystallise as Cs-analcime in the upper portion of the pegmatite sheet. Continuing hydrothermal activity and ongoing substitution of Cs will then start to shift the composition from Cs-analcime composition towards Na-pollucite composition. In addition, if analcime is cooled below 400 °C it is subjected to a negative thermal expansion of about 1 vol.%. This contraction results in the formation of a prominent network of cracks that is filled by late stage minerals (e.g., lepidolite, quartz, feldspar and petalite). Certainly, prior to filling, this network of cracks enhances the available conduits for late stage hydrothermal fluids and the Cs substitution mechanism within the massive pollucite mineralisation. Furthermore, during cooling of the pegmatite, prominent late stage mineral replacement reactions (e.g., replacement of K-feldspar by lepidolite, cleavelandite, and quartz) as well as subsolidus self organisation processes in feldspars take place. These processes are suggested to release additional incompatible elements (e.g., Cs, Rb) into late stage hydrothermal fluids. As feldspar forms large portions of pegmatite a considerable amount of Cs is released and transported via the hydrothermal fluids towards the massive pollucite mineralisation in the upper portion of the pegmatite. Consequently, the initial analcime can accumulate enough Cs in order to shift its composition from the Cs-analcime member (>2 wt.% Cs2O) towards the Na-pollucite member (23–43 wt.% Cs2O) of the solid solution series. The timing of this late stage Cs enrichment is interpreted to be quasi contemporaneous or immediately after the complete crystallisation of the pegmatite melt. However, much younger hydrothermal events that overprint the pegmatite are also interpreted to cause similar results. Hence, it has been demonstrated that the combination of this magmatic and hydrothermal processes is capable to generate an extreme enrichment in Cs in order to explain the formation of massive pollucite mineralisations within LCT pegmatite systems. This genetic model can now be applied to evaluate the potential for occurrences of massive pollucite mineralisations within LCT pegmatite systems in Western Australia and worldwide.:Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Versicherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction 1 1.1. Motivation and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Fundamentals 7 2.1. The Alkali Metal Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Distribution of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2. Mineralogy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3. Geochemical Behaviour of Cesium . . . . . . . . . . . . . . . . . . . . 13 2.1.4. Economy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. Pollucite – (Cs,Na)2Al2Si4O12×H2O . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1. Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. Analcime–Pollucite–Series . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3. Formation of Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4. Pollucite Occurences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3. Pegmatites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1. General Characteristics of Pegmatites . . . . . . . . . . . . . . . . . . 34 2.3.2. Controls on Pegmatite Formation and Evolution . . . . . . . . . . . . . 40 2.3.3. Pegmatite Age Distribution and Continental Crust Formation . . . . . . 43 3. Geological Settings of Archean Cratons 47 3.1. Zimbabwe Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1. Tectonostratigraphic Subdivision . . . . . . . . . . . . . . . . . . . . . 48 3.1.2. Tectonometamorphic Evolution of the Northern Limpopo Thrust Zone . 49 3.1.3. Pegmatites within the Zimbabwe Craton . . . . . . . . . . . . . . . . . 52 3.1.4. Masvingo Greenstone Belt . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.5. Geological Setting of the Bikita Pegmatite District . . . . . . . . . . . . 58 3.2. Yilgarn Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1. Tectonostratigraphic Framework and Geological Development . . . . . 62 3.2.2. Tectonic Models for the Development . . . . . . . . . . . . . . . . . . . 70 3.2.3. Pegmatites within the Yilgarn Craton . . . . . . . . . . . . . . . . . . . 76 3.2.4. Geological setting of the Londonderry Pegmatite Field . . . . . . . . . . 76 3.2.5. Geological Setting of the Mount Deans Pegmatite Field . . . . . . . . . 85 3.2.6. Geological Setting of the Cattlin Creek Pegmatite Deposit . . . . . . . . 91 3.3. Pilbara Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3.1. Tectonostratigraphic Framework and Geological Development . . . . . 99 3.3.2. Tectonic Model for the Development . . . . . . . . . . . . . . . . . . . 101 3.3.3. Pegmatites within the Pilbara Craton . . . . . . . . . . . . . . . . . . . 105 3.3.4. Geological Setting of the Wodgina Pegmatite District . . . . . . . . . . 106 4. Fieldwork and Sampling of Selected Pegmatites and Pegmatite Fields 115 4.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2.1. Londonderry Feldspar Quarry Pegmatite . . . . . . . . . . . . . . . . . 115 4.2.2. Lepidolite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.2.3. Tantalite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.1. Type I – Flat Lying Pegmatites . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.2. Type II – Steeply Dipping Pegmatites . . . . . . . . . . . . . . . . . . . 120 4.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5. Wodgina LCT-Pegmatite Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.5.1. Mount Tinstone Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.2. Mount Cassiterite Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . 123 5. Petrography and Mineralogy 139 5.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 141 5.2. Mineralogical and Petrographical Characteristics of Individual Mineral Groups . 141 5.2.1. Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.2. Quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.3. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.4. Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.2.5. Petalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.6. Spodumene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.7. Beryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.8. Tourmaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.9. Apatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.2.10. Ta-, Nb- and Sn-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3. Reconstruction of the General Crystallisation Sequence . . . . . . . . . . . . . 162 6. Geochemistry 165 6.1. Major Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.2. Selected Minor and Trace Elements . . . . . . . . . . . . . . . . . . . . . . . . 174 6.3. Fractionation Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4. Rare Earth Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7. Geochronology 193 7.1. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.1.2. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.3. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.2. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.2.1. Monazite Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.3. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 203 7.3.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8. Fluid Inclusion Study 211 8.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.2. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.3. Carbon Isotope Analysis on Fluid Inclusion Gas of Selected Mineral Phases . . 212 9. Stable and Radiogenic Isotopes 217 9.1. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.1.1. New Whole Rock Sm/Nd Data . . . . . . . . . . . . . . . . . . . . . . 217 9.2. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 220 9.2.1. New Lithium Isotope Data . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.Discussion 227 10.1. Regional Geological and Tectonomagmatic Development . . . . . . . . . . . . 227 10.1.1. Constraints from Field Evidence . . . . . . . . . . . . . . . . . . . . . . 227 10.1.2. Petrographical and Mineralogical Constraints . . . . . . . . . . . . . . 229 10.1.3. Geochemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.1.4. Isotopic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 10.1.5. Constraints from Fluid Inclusion Data . . . . . . . . . . . . . . . . . . . 233 10.1.6. Geochronological Constrains . . . . . . . . . . . . . . . . . . . . . . . 233 10.2. Massive Pollucite Mineralisations . . . . . . . . . . . . . . . . . . . . . . . . . . 243 10.2.1. Unique Characteristics of Massive Pollucite Mineralisations . . . . . . . 243 10.2.2. New Concepts for the Formation of Massive Pollucite Mineralisations . . 252 10.3. Genetic Model for the Formation of Massive Pollucite Mineralisations within LCT Pegmatite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 11.Summary and Conclusions 267 References 273 Lists of Abbreviations 309 General Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Mineral Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 List of Figures 311 List of Tables 315 Appendix 317 A. Legend for Topographic Maps 319 B. Sample List 323 C. Methodology 331 C.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 331 C.2. Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 C.3. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.4. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.5. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 336 C.6. Fluid Inclusion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 C.7. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 C.8. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 338 D. Data – Mineral Liberation Analysis 341 E. Data – Geochemistry 345 F. Data – Geochronology 349 G. Data – Stable and Radiogenic Isotopes 353
Lithium-Caesium-Tantal-(LCT) Pegmatite repräsentieren eine bedeutende Quelle für seltene Metalle, deren Bedarf im letzten Jahrzehnt beträchtlich angestiegen ist. Im Falle von Caesium sind zurzeit weltweit nur zwei LCT-Pegmatitlagerstätten bekannt, die abbauwürdige Vorräte an Cs enthalten. Dies sind die LCT-Pegmatitlagerstätten Bikita in Simbabwe und Tanco in Kanada. Das Wirtsmineral für diese Cs-Mineralisation ist das extrem selten auftretende Zeolith-Gruppen-Mineral Pollucit. In den Lagerstätten Bikita und Tanco bildet Pollucit dagegen massive, linsenförmige und fast monomineralische Pollucitmineralisationen, die in den oberen Bereichen der Pegmatitkörper anstehen. Zusätzlich befinden sich beide Lagerstätten in geologisch vergleichbaren Einheiten. Die Nebengesteine sind Grünsteingürtel die ein neoarchaisches Alter von ca. 2,600 Ma aufweisen. Die Bildung derartiger massiver Pollucitmineralisationen ist bis jetzt noch nicht detailliert untersucht worden. Große Bereiche von Westaustralien werden von meso- bis neoarchaischen Krusteneinheiten (z.B. Yilgarn Kraton, Pilbara Kraton) aufgebaut, von denen auch eine große Anzahl an LCT-Pegmatitsystemen bekannt sind. Darunter befinden sich unter anderem die LCT-Pegmatitlagerstätten Greenbushes (Li, Ta) und Wodgina (Ta, Sn). Zusätzlich wurden kleine Mengen an Pollucit in einer einzigen Kernbohrung im Londonderry Pegmatitfeld angetroffen. Ungeachtet dessen, wurden in Westaustralien bis jetzt keine systematischen Untersuchungen und/oder Explorationskampagnen auf Vorkommen von Cs und speziell der von Pollucit durchgeführt. Im Verlauf dieser Studie wurden insgesamt neunzehn verschiedene Pegmatitvorkommen und Pegmatitfelder des Yilgarn Kratons, Pilbara Kratons und der Kimberley Provinz auf das Vorkommen des Minerals Pollucit untersucht. Allerdings konnte in keinem der untersuchten LCT-Pegmatitsystemen Pollucit nachgewiesen werden. Von vier der untersuchten LCT-Pegmatitsystemen, dem Londonderry Pegmatitfeld, dem Mount Deans Pegmatitfeld, der Cattlin Creek LCT-Pegmatitlagerstätte (Yilgarn Kraton) und der Wodgina LCT-Pegmatitlagerstätte (Pilbara Kraton) wurden detailliert Proben entnommen und weitergehend untersucht. Zusätzlich wurden die massiven Pollucitmineralisationen im Bikita Pegmatitfeld beprobt und in die detailierten Untersuchungen einbezogen. Der Probensatz aus dem Bikita Pegmatitfeld dient als Referenzmaterial mit dem die Pegmatitproben aus Westaustralien verglichen werden. Die vorliegende Arbeit fasst die wesentlichen Ergebnisse der petrographischen, mineralogischen, mineralchemischen, geochemischen und geochronologischen Untersuchungen sowie der Flüssigkeitseinschlussuntersuchungen und stabilen und radiogenen Isotopenzusammensetzungen zusammen. Alle vier der in Westaustralien untersuchten LCT-Pegmatitsysteme kommen in geologisch ähnlichen Rahmengesteinen vor, weisen einen vergleichbaren internen Aufbau, geochemische Zusammensetzung und Mineralogie zu dem des Bikita Pegmatitfeldes in Simbabwe auf. Weiterhin konnten in allen LCT-Pegmatitsystemen Hinweise für späte hydrothermale Prozesse (z.B. Verdrängung von Feldspat) nachgewiesen werden, die einhergehend mit einer Anreicherung von Cs verbunden sind (z.B. Cs-angereicherte Säume um Glimmer, Beryll und Turmalin). Mit der Ausnahme der Wodgina LCT-Pegmatitlagerstätte, in der ein mesoarchaisches Kristallisationsalter (ca. 2,850 Ma) nachgewiesen wurde, lieferten die Altersdatierungen in den anderen LCT-Pegmatitsystemen übereinstimmende neoarchaische Alter von 2,630 Ma bis 2,600 Ma. Diese fast identischen Alter der LCT-Pegmatitsysteme des Yilgarn und Zimbabwe Kratons suggerieren, dass die Prozesse, die zur LCT-Pegmatitbildung am Ende des Neoarchaikums führten, weltweit aktiv waren. Ungeachtet dessen stellt das Vorhandensein von massiver Pollucitmineralisation das Alleinstellungsmerkmal des Bikita Pegmatitfeldes dar, welche sich infolge eines Prozesses gebildet haben der nicht Bestandteil der üblichen LCT-Pegmatitentwicklung ist und sich durch eine extreme Anreicherung an Cs unterscheidet. Die neuen Ergebnisse die in dieser Studie von den Bikita Pegmatitfeld und den Westaustralischen LCT-Pegmatitsystemen gewonnen wurden, verbessern das Verständnis des Verhaltens von Cs in LCT-Pegmatitsystemen deutlich. Somit ist es nun möglich, ein genetisches Modell für die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen vorzustellen. LCT-Pegmatite weisen im Allgemeinen eine granitische Zusammensetzung auf und werden als Kristallisat von hoch fraktionierten und geochemisch spezialisierten granitischen Restschmelzen interpretiert. Die Bildung von massiven Pollucitmineralisationen ist nur aus großen und voluminösen Pegmatitschmelzen, die als einzelner Körper entlang von Störungen in extensionalen Stressregimen intrudieren möglich. Nach Platznahme der Schmelze bildet die beginnende Kristallisation zunächst die Kontakt- und Randzone des Pegmatits, wobei infolge von fraktionierter Kristallisation die immobilen Elemente (v.a. Cs, Rb) in der verbleibenden Restschmelze angereichert werden. Im Anschluss an diese erste Kristallisation entmischt sich nach Abkühlung eine sehr kleine Menge (0.5–1 vol.%) Schmelze und/oder Fluid von der Restschmelze. Diese nicht mischbare Teilschmelze/-fluid ist angereichert an Al2O3 und Na2O sowie verarmt an SiO2 und kristallisiert als Analcim. Zusätzlich kann diese Schmelze bereits mit 1–2 wt.% Cs2O angereichert sein. Aufgrund der Auswirkung von Flussmitteln (z.B. H2O, F, B) wird allerdings der Schmelzpunkt dieser Analcimschmelze herabgesetzt und so die Kristallisation des Analcims als intergranulare Körner verhindert. Da diese Analcimschmelze im Vergleich zu der restlichen Schmelze eine geringere relative Dichte besitzt, beginnt sie gravitativ aufzusteigen und sich in den oberen Bereichen des Pegmatitkörpers zu akkumulieren. Währenddessen beginnt die restliche Schmelze separat zu kristallisieren und die inneren Bereiche des Pegmatits zu bilden. Diese Kristallisation ist einhergehend mit fortschreitender Fraktionierung und der Anreicherung von inkompatiblen Elementen (v.a. Cs, Rb) in den sich als letztes bildenden Mineralphasen (z.B. Lepidolit) oder der Konzentration der inkompatiblen Element in die sich entmischenden hydrothermalen Fluiden. Da Analcim und Pollucit eine lückenlose Mischungsreihe bilden, ist die Analcimschmelze in der Lage, alles verfügbare Cs von der Restschmelze und/oder assoziierten hydrothermalen Fluiden an sich zu binden und als Cs-Analcim im oberen Bereich des Pegmatitkörpers zu kristallisieren. Fortschreitende hydrothermale Aktivität und Substitution von Cs verschiebt dann die Zusammensetzung des Analcims von der Cs-Analcim- zu Na-Pollucitzusammensetzung. Zusätzlich erfährt der Analcim bei Abkühlung unter 400 °C eine negative thermische Expansion von ca. 1 vol.%. Diese Kontraktion führt zu der Bildung des markanten Rissnetzwerkes das durch späte Mineralphasen (z.B. Lepidolit, Quarz, Feldspat und Petalit) gefüllt wird. Vor der Mineralisation allerdings, erhöht dieses Netzwerk an Rissen die verfügbaren Wegsamkeiten für die späten hydrothermalen Fluide und begünstigt somit den Cs-Substitutionsmechanismus in der massiven Pollucitmineralisation. Weiterhin kommt es bei der Abkühlung des Pegmatits zu späten Mineralverdrängungsreaktionen (z.B. Verdrängung von K-Feldspat durch Lepidolit, Cleavelandit und Quarz), sowie zu Subsolidus-Selbstordnungsprozessen in Feldspäten. Diese Prozesse werden weiterhin interpretiert inkompatible Elemente (z.B. Cs, Rb) in die späten hydrothermalen Fluide freizusetzen. Da Feldspäte große Teile der Pegmatite bilden, kann somit eine beträchtliche Menge an Cs freigeben werden und durch die späten hydrothermalen Fluide in die massive Pollucitmineralisation in den oberen Bereichen des Pegmatitkörpers transportiert werden. Infolgedessen ist es möglich, dass genügend Cs frei gesetzt werden kann, um die Zusammensetzung innerhalb der Mischkristallreihe von Cs-Analcim (>2 wt.% Cs2O) zu Na-Pollucit (23–43 wt.% Cs2O) zu verschieben. Die zeitliche Einordnung dieser späten Cs-Anreicherung wird als quasi zeitgleich oder im direkten Anschluss an die vollständige Kristallisation der Pegmatitschmelze interpretiert. Es kann allerdings nicht vernachlässigt werden, dass auch jüngere hydrothermale Ereignisse, die den Pegmatitkörper nachträglich überprägen, ähnliche hydrothermale Prozesse hervorrufen können. Somit konnte gezeigt werden, dass es durch Kombination dieser magmatischen und hydrothermalen Prozessen möglich ist, genügend Cs anzureichern, um die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen zu ermöglichen. Dieses genetische Modell kann nun dazu genutzt werden, um das Potential von Vorkommen von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen in Westaustralien und weltweit besser einzuschätzen.:Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Versicherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction 1 1.1. Motivation and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Fundamentals 7 2.1. The Alkali Metal Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Distribution of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2. Mineralogy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3. Geochemical Behaviour of Cesium . . . . . . . . . . . . . . . . . . . . 13 2.1.4. Economy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. Pollucite – (Cs,Na)2Al2Si4O12×H2O . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1. Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. Analcime–Pollucite–Series . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3. Formation of Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4. Pollucite Occurences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3. Pegmatites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1. General Characteristics of Pegmatites . . . . . . . . . . . . . . . . . . 34 2.3.2. Controls on Pegmatite Formation and Evolution . . . . . . . . . . . . . 40 2.3.3. Pegmatite Age Distribution and Continental Crust Formation . . . . . . 43 3. Geological Settings of Archean Cratons 47 3.1. Zimbabwe Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1. Tectonostratigraphic Subdivision . . . . . . . . . . . . . . . . . . . . . 48 3.1.2. Tectonometamorphic Evolution of the Northern Limpopo Thrust Zone . 49 3.1.3. Pegmatites within the Zimbabwe Craton . . . . . . . . . . . . . . . . . 52 3.1.4. Masvingo Greenstone Belt . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.5. Geological Setting of the Bikita Pegmatite District . . . . . . . . . . . . 58 3.2. Yilgarn Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1. Tectonostratigraphic Framework and Geological Development . . . . . 62 3.2.2. Tectonic Models for the Development . . . . . . . . . . . . . . . . . . . 70 3.2.3. Pegmatites within the Yilgarn Craton . . . . . . . . . . . . . . . . . . . 76 3.2.4. Geological setting of the Londonderry Pegmatite Field . . . . . . . . . . 76 3.2.5. Geological Setting of the Mount Deans Pegmatite Field . . . . . . . . . 85 3.2.6. Geological Setting of the Cattlin Creek Pegmatite Deposit . . . . . . . . 91 3.3. Pilbara Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3.1. Tectonostratigraphic Framework and Geological Development . . . . . 99 3.3.2. Tectonic Model for the Development . . . . . . . . . . . . . . . . . . . 101 3.3.3. Pegmatites within the Pilbara Craton . . . . . . . . . . . . . . . . . . . 105 3.3.4. Geological Setting of the Wodgina Pegmatite District . . . . . . . . . . 106 4. Fieldwork and Sampling of Selected Pegmatites and Pegmatite Fields 115 4.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2.1. Londonderry Feldspar Quarry Pegmatite . . . . . . . . . . . . . . . . . 115 4.2.2. Lepidolite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.2.3. Tantalite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.1. Type I – Flat Lying Pegmatites . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.2. Type II – Steeply Dipping Pegmatites . . . . . . . . . . . . . . . . . . . 120 4.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5. Wodgina LCT-Pegmatite Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.5.1. Mount Tinstone Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.2. Mount Cassiterite Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . 123 5. Petrography and Mineralogy 139 5.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 141 5.2. Mineralogical and Petrographical Characteristics of Individual Mineral Groups . 141 5.2.1. Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.2. Quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.3. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.4. Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.2.5. Petalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.6. Spodumene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.7. Beryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.8. Tourmaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.9. Apatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.2.10. Ta-, Nb- and Sn-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3. Reconstruction of the General Crystallisation Sequence . . . . . . . . . . . . . 162 6. Geochemistry 165 6.1. Major Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.2. Selected Minor and Trace Elements . . . . . . . . . . . . . . . . . . . . . . . . 174 6.3. Fractionation Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4. Rare Earth Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7. Geochronology 193 7.1. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.1.2. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.3. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.2. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.2.1. Monazite Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.3. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 203 7.3.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8. Fluid Inclusion Study 211 8.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.2. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.3. Carbon Isotope Analysis on Fluid Inclusion Gas of Selected Mineral Phases . . 212 9. Stable and Radiogenic Isotopes 217 9.1. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.1.1. New Whole Rock Sm/Nd Data . . . . . . . . . . . . . . . . . . . . . . 217 9.2. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 220 9.2.1. New Lithium Isotope Data . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.Discussion 227 10.1. Regional Geological and Tectonomagmatic Development . . . . . . . . . . . . 227 10.1.1. Constraints from Field Evidence . . . . . . . . . . . . . . . . . . . . . . 227 10.1.2. Petrographical and Mineralogical Constraints . . . . . . . . . . . . . . 229 10.1.3. Geochemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.1.4. Isotopic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 10.1.5. Constraints from Fluid Inclusion Data . . . . . . . . . . . . . . . . . . . 233 10.1.6. Geochronological Constrains . . . . . . . . . . . . . . . . . . . . . . . 233 10.2. Massive Pollucite Mineralisations . . . . . . . . . . . . . . . . . . . . . . . . . . 243 10.2.1. Unique Characteristics of Massive Pollucite Mineralisations . . . . . . . 243 10.2.2. New Concepts for the Formation of Massive Pollucite Mineralisations . . 252 10.3. Genetic Model for the Formation of Massive Pollucite Mineralisations within LCT Pegmatite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 11.Summary and Conclusions 267 References 273 Lists of Abbreviations 309 General Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Mineral Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 List of Figures 311 List of Tables 315 Appendix 317 A. Legend for Topographic Maps 319 B. Sample List 323 C. Methodology 331 C.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 331 C.2. Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 C.3. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.4. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.5. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 336 C.6. Fluid Inclusion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 C.7. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 C.8. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 338 D. Data – Mineral Liberation Analysis 341 E. Data – Geochemistry 345 F. Data – Geochronology 349 G. Data – Stable and Radiogenic Isotopes 353
APA, Harvard, Vancouver, ISO, and other styles
27

Frei, Martina [Verfasser]. "Composition, formation, and leaching behaviour of supergene, polymetallic ores from the Sanyati deposit (Zimbabwe) : a case study / vorgelegt von Martina Frei." 2005. http://d-nb.info/977741095/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Smith, M. K. "A comparative petrological and geochemical study of garnetiferous rocks associated with base metal deposits in the Kanmantoo Trough: meta-exhalites or synmetamorphic alteration zones?" Thesis, 1998. http://hdl.handle.net/2440/111846.

Full text
Abstract:
This item is only available electronically.
Garnetiferous rocks show a spatial association with several base metal deposits in the Early Cambrian Kanmantoo Trough. These rocks include coticules (garnet-quartz rocks) and banded iron formation (BIF) and are hosted by pelitic metasediments of the Tapanappa Formation. Petrological and geochemical investigations have been made of garnetiferous rocks associated with the Scotts Creek Ag-Pb-Zn and Angas Pb-Zn deposits and in the vicinity of the Kanmantoo Cu deposit. Geochemical features indicate variations between coticules from the three localities but general similarities with coticules from Broken Hill, N S. W. BIF from the Kanmantoo area is also comparable to the equivalent lithologies in the Willyama Complex, at Olary and Broken Hill. Geochemical diagrams (Fe-Mn-(Co+Cu+Ni), Al/(Al+Fe+Mn ) vs Fe/Ti, Ti02 vs Al203 and chondrite-normalised rare earth element (REE)) for coticules and iron formations suggest variable contributions of detrital and hydrothermal components. The hydrothermal component, is generally 30 to 50 wt. percent for coticules, and >70 wt percent for BIF. The stratigraphic position, layer parallel banding and unusual geochemistry suggest the coticules associated with Scotts Creek, Kanmantoo and Angas deposits are exhalative in origin, and may be termed "meta-exhalites". The Kanmantoo BIF appears to have formed from high temperature submarine hydrothermal fluids and metalliferous sediments analogous to those of the Red Sea and the East Pacific Rise. Coticules and BIFs are indicators of hydrothermal activity and may be local guides to base­ metal mineralisation. The Mn content of garnet in coticules reflects proximity to Pb-Zn ore, and may be a useful exploration tool.
Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Physical Sciences, 1998
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography