Academic literature on the topic 'Ordered Nanocomposite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ordered Nanocomposite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ordered Nanocomposite"

1

Chen, Guangming, Zongneng Qi, and Deyan Shen. "Shear-induced ordered structure in polystyrene/clay nanocomposite." Journal of Materials Research 15, no. 2 (2000): 351–56. http://dx.doi.org/10.1557/jmr.2000.0055.

Full text
Abstract:
A shear-induced ordered structure in an exfoliated polystyrene (PS)/clay nanocomposite is reported. X-ray diffraction (XRD), transmission electron microscopy (TEM), and infrared dichroism techniques have been employed to investigate the shear-induced ordered structure in the exfoliated PS/clay nanocomposite. Compared with the broad amorphous peaks before extrusion, a series of sharp diffraction peaks were observed in XRD pattern for the extruded PS/clay nanocomposite pellet sample, showing that an ordered structure occurred under shear flow. TEM images confirmed directly that the origin of the ordered structure was mainly due to the planar orientation of the primary particles of silicate layers as well as local ordered microstructure of the primary particles, induced by shear flow. The infrared dichroism study indicated that the phenyl group of PS apparently oriented parallel to the film surface, whereas no obvious orientation of the aliphatic chain could be observed. Based on these investigations, a possible mechanism was deduced for the formation of the ordered structure induced by shear flow in the exfoliated PS/clay nanocomposite.
APA, Harvard, Vancouver, ISO, and other styles
2

Kausar, Ayesha. "Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications." Journal of Plastic Film & Sheeting 35, no. 1 (2018): 65–98. http://dx.doi.org/10.1177/8756087918794009.

Full text
Abstract:
This article presents a state-of-the-art overview on indispensable aspects of polymer/nanowire nanocomposites. Nanowires created from polymers, silver, zinc, copper, nickel, and aluminum have been used as reinforcing agents in conducting polymers and non-conducting thermoplastic/thermoset matrices such as polypyrrole, polyaniline, polythiophene, polyurethane, acrylic polymers, polystyrene, epoxy and rubbers. This review presents the combined influence of polymer matrix and nanowires on the nanocomposite characteristics. This review shows how the nanowire, the nanofiller content, the matrix type and processing conditions affect the final nanocomposite properties. The ensuing multifunctional polymer/nanowire nanocomposites have high strength, conductivity, thermal stability, and other useful photovoltaic, piezo, and sensing properties. The remarkable nanocomposite characteristics have been ascribed to the ordered nanowire structure and the development of a strong interface between the matrix/nanofiller. This review also refers to cutting edge application areas of polymer/nanowire nanocomposites such as solar cells, light emitting diodes, supercapacitors, sensors, batteries, electromagnetic shielding materials, biomaterials, and other highly technical fields. Modifying nanowires and incorporating them in a suitable polymer matrix can be adopted as a powerful future tool to create useful technical applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Yi He, Qing Song Su, Li Yu, et al. "Preparation of Low-K Fluorinated Polyimide/Phlogopite Nanocomposites." Advanced Materials Research 47-50 (June 2008): 987–90. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.987.

Full text
Abstract:
Phlogopite with layered silicate structure had been firstly chemically modified via an in situ intercalation method, and phlogopite-polymer nanocomposite films were prepared from 2,2'-bis (3,4-dicarboxyphenyl) hexafluropropane dianhydride (6FDA) and oxydimethyl aniline (ODA) in N,N-dimethylacetamide as a solvent by using in-situ polymerization process combined with ultrasonic dispersion and multi-step curing. The structure of phlogopite minerals and its polymer nanocomposites were characterized by X-ray diffraction (XRD) and infrared spectra (FTIR) respectively. The experimental results indicated that the phlogopites with layered nanostructure had lost their ordered structure and had been exfoliated or intercalated. Thereafter, they were dispersed randomly in the polyimide matrix. The dependence of dielectric properties and thermal stabilities of the nanocomposite films on the phlogopite content and frequency were studied.
APA, Harvard, Vancouver, ISO, and other styles
4

Masuda, Hideki, Kenji Yasui, Mitsuo Watanabe, Kazuyuki Nishio, Tata N. Rao, and Akira Fujishima. "Fabrication of Ordered Diamond/metal Nanocomposite Structures." Chemistry Letters 29, no. 10 (2000): 1112–13. http://dx.doi.org/10.1246/cl.2000.1112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lunn, Jonathan D., and Daniel F. Shantz. "Peptide Brush—Ordered Mesoporous Silica Nanocomposite Materials." Chemistry of Materials 21, no. 15 (2009): 3638–48. http://dx.doi.org/10.1021/cm901025n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andrieux, Sébastien, Lilian Medina, Michael Herbst, Lars A. Berglund, and Cosima Stubenrauch. "Monodisperse highly ordered chitosan/cellulose nanocomposite foams." Composites Part A: Applied Science and Manufacturing 125 (October 2019): 105516. http://dx.doi.org/10.1016/j.compositesa.2019.105516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Ziguang, Ruochen Fang, Qinfeng Rong, and Mingjie Liu. "Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures." Advanced Materials 29, no. 45 (2017): 1703045. http://dx.doi.org/10.1002/adma.201703045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matsumoto, Taki, Nobuo Iyi, Yoshiro Kaneko, et al. "Preparation of a transparent and flexible self-standing film of layered titania/isostearate nanocomposite." Journal of Materials Research 20, no. 5 (2005): 1308–15. http://dx.doi.org/10.1557/jmr.2005.0165.

Full text
Abstract:
A titania-based self-standing film with high transparency and flexibility was successfully prepared via a sol-gel process, in which a titanium tetraisopropoxide/isostearate complex (precursor), n-hexylammonium isostearate (catalyst), and o-xylene (solvent) were used. The sol obtained by the sol-gel reaction was floated on a water surface to form an unsupported film. This film was composed of a titania/isostearate nanocomposite with ordered layer structure. The basal spacings of the nanocomposites depended on the chain length of the carboxylate modifier.
APA, Harvard, Vancouver, ISO, and other styles
9

Tao, Bai Rui, Feng Juan Miao, and Yong Jie Zheng. "Preparation and Characterization of Electrochemical Glucose Sensor Based on Nickel Electrodes Supported by Silicon Microchannel Plates." Applied Mechanics and Materials 138-139 (November 2011): 1126–31. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.1126.

Full text
Abstract:
A novel nickel nanocomposite electrode supported by 3D ordered silicon microchannel plates (MCP) had been reported and its electrocatalytic toward the oxidation of glucose for sensor had been studied. The 3D ordered Si MCP electrodes were first fabricated by electrochemical etching and then Nickel nanoparticles were deposited onto the sidewall of the MCP via electroless deposition followed by annealing at 300°C for 300 s under argon to stabilize the structure. The morphology of the Ni/Si-MCP electrode was characterized by Scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrochemical methods were employed to investigate the Ni/Si-MCP materials. The Ni/Si-MCP nanocomposites exhibit superior electrocatalytic properties towards glucose electro-oxidation in alkaline solutions, in addition to showing excellent long-term stability and good reproducibility.
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Yuyang, Qingyu Peng, Yue Zhu, et al. "Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure." Nanoscale Advances 1, no. 12 (2019): 4895–903. http://dx.doi.org/10.1039/c9na00444k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography