Academic literature on the topic 'Ordered Abelian groups'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ordered Abelian groups.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ordered Abelian groups"
Jakubík, Ján. "Retracts of abelian lattice ordered groups." Czechoslovak Mathematical Journal 39, no. 3 (1989): 477–85. http://dx.doi.org/10.21136/cmj.1989.102319.
Full textGlass, A. M. W. "Weakly abelian lattice-ordered groups." Proceedings of the American Mathematical Society 129, no. 3 (September 20, 2000): 677–84. http://dx.doi.org/10.1090/s0002-9939-00-05706-3.
Full textConrad, Paul, and J. Roger Teller. "Abelian pseudo lattice ordered groups." Publicationes Mathematicae Debrecen 17, no. 1-4 (July 1, 2022): 223–41. http://dx.doi.org/10.5486/pmd.1970.17.1-4.26.
Full textGlass, A. M. W., Angus Macintyre, and Françoise Point. "Free abelian lattice-ordered groups." Annals of Pure and Applied Logic 134, no. 2-3 (July 2005): 265–83. http://dx.doi.org/10.1016/j.apal.2004.10.017.
Full textGlass, A. M. W. "Finitely presented ordered groups." Proceedings of the Edinburgh Mathematical Society 33, no. 2 (June 1990): 299–301. http://dx.doi.org/10.1017/s0013091500018204.
Full textDi Nola, Antonio, Giacomo Lenzi, Gaetano Vitale, and Roberto Giuntini. "Expanding Lattice Ordered Abelian Groups to Riesz Spaces." Mathematica Slovaca 72, no. 1 (February 1, 2022): 1–10. http://dx.doi.org/10.1515/ms-2022-0001.
Full textGÖBEL, RÜDIGER, and SAHARON SHELAH. "CHARACTERIZING AUTOMORPHISM GROUPS OF ORDERED ABELIAN GROUPS." Bulletin of the London Mathematical Society 35, no. 03 (May 2003): 289–92. http://dx.doi.org/10.1112/s0024609302001881.
Full textGoffman. "COMPLETENESS IN TOTALLY ORDERED ABELIAN GROUPS." Real Analysis Exchange 20, no. 1 (1994): 58. http://dx.doi.org/10.2307/44152461.
Full textDolich, Alfred, and John Goodrick. "Strong theories of ordered Abelian groups." Fundamenta Mathematicae 236, no. 3 (2017): 269–96. http://dx.doi.org/10.4064/fm256-5-2016.
Full textCLUCKERS, RAF, and IMMANUEL HALUPCZOK. "QUANTIFIER ELIMINATION IN ORDERED ABELIAN GROUPS." Confluentes Mathematici 03, no. 04 (December 2011): 587–615. http://dx.doi.org/10.1142/s1793744211000473.
Full textDissertations / Theses on the topic "Ordered Abelian groups"
McGuire, Alex Bernard. "Partially ordered Abelian groups and linearly compact domains." Thesis, University of Essex, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359787.
Full textMalekpour, Shirin Minoo. "Fuzzy predicate product logic and embeddings of ordered Abelian groups." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1697.
Full textThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Russo, Anna Carla. "MV-algebras, Grothendieck toposes and applications." Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2308.
Full textThis thesis is a contribution to the research program ‘toposes as bridges’ introduced in [12], which aims at developing the unifying potential of the notion of Grothendieck topos as a means for relating different mathematical theories to each other through topos-theoretic invariants. The general methodology outlined therein is applied here to study already existing categorical equivalences of particular interest arising in the field of many-valued logics and also to produce new ones. The original content of the disseration is contained in [22], [21] and [23]... [edited by Author]
XIV n.s.
Hossain, Akash. "Forking in valued fields and related structures." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM019.
Full textThis thesis is a contribution to the model theory of valued fields. We study forking in valued fields and some of their reducts. We focus particularly on pseudo-local fields, the ultraproducts of residue characteristic zero of the p-adic valued fields. First, we look at the value groups of the valued fields we are interested in, the regular ordered Abelian groups. We establish for these ordered groups a geometric description of forking, as well as a full classification of the global extensions of a given type which are non-forking or invariant. Then, we prove an Ax-Kochen-Ershov principle for forking and dividing in expansions of pure short exact sequences of Abelian structures, as studied by Aschenbrenner-Chernikov-Gehret-Ziegler in their article about distality. This setting applies in particular to the leading-term structure of (expansions of) valued fields. Lastly, we give various sufficient conditions for a parameter set in a Henselian valued field of residue characteristic zero to be an extension base. In particular, we show that forking equals dividing in pseudo-local of residue characteristic zero. Additionally, we discuss results by Ealy-Haskell-Simon on forking in separated extensions of Henselian valued fields of residue characteristic zero. We contribute to the question in the setting of Abhyankar extensions, where we show that, with some additional conditions, if a type in a pseudo-local field does not fork, then there exists some global invariant Keisler measure whose support contains that type. This behavior is well-known in pseudo-finite fields
Eyl, Jennifer S. "Spanning subsets of a finite abelian group of order pq /." Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/eylj/jennifereyl.pdf.
Full textMut, Sagdicoglu Oznur. "On Finite Groups Admitting A Fixed Point Free Abelian Operator Group Whose Order Is A Product Of Three Primes." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610990/index.pdf.
Full textFlygare, Mattias. "Non-abelian braiding in abelian lattice models from lattice dislocations." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-31690.
Full textTopologisk ordning är ett nytt område inom fysik som bland annat verkar lovande som verktyg för förverkligandet av kvantdatorer. En av storheterna som karakteriserar topologiska tillstånd är det totala antalet degenererade grundtillstånd, den topologiska degenerationen. Topologisk ordning har också föreslagits som ett möjligt sätt att lagra kvantdata. Vi undersöker tvådimensionella gittermodeller definierade på en sluten mångfald, specifikt en torus, och finner att dessa system påvisar topologisk degeneration som är proportionerlig mot mångfaldens topologiska genus. När dislokationer introduceras i gittret finner vi att grundtillståndets degeneration ökar, något som kan ses som en artificiell ökning av mångfaldens genus. Vi härleder sammanslagningsregler och flätningsregler för modellen och använder sedan dessa för att räkna ut flätegenskaperna hos själva dislokationerna. Dessa visar sig likna icke-abelska anyoner, en egenskap som är viktiga för möjligheten att kunna utföra universella kvantberäkningar. Det går också att emulera dislokationer i gittret genom att lägga på ett yttre fält. Detta gör dem mer realistiska för eventuella experimentella realisationer.
Powell, Mark Andrew. "Second order algebraic knot concordance group." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5030.
Full textKeil, Stefan. "On non-square order Tate-Shafarevich groups of non-simple abelian surfaces over the rationals." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/16901.
Full textFor elliptic curves E/K over a number field K the Cassels-Tate pairing forces the order of the Tate-Shafarevich group Sha(E/K) to be a perfect square. It is known, that if A/K is a principally polarised abelian variety, then the order of Sha(A/K) is a square or twice a square. William Stein conjectures that for any given square-free positive integer k there is an abelian variety A/Q, such that #Sha(A/Q)=kn². However, it is an open question what to expect if the dimension of A/Q is bounded. Restricting to abelian surfaces B/Q, then results of Poonen, Stoll and Stein imply that there are examples such that #Sha(B/Q)=kn², for k in {1,2,3}. In this thesis we focus in depth on non-simple abelian surfaces B/Q, i.e. there are elliptic curves E_1/Q and E_2/Q and an isogeny phi: E_1 x E_2 -> B. We want to compute the order of Sha(B/Q) with respect to the order of the Tate-Shafarevich group of E_1 x E_2, which has square order. To achieve this goal, we explore the invariance under isogeny of the Birch and Swinnerton-Dyer conjecture. For each k in {1,2,3,5,6,7,10,13,14} we construct a non-simple non-principally polarised abelian surface B/Q, such that #Sha(B/Q)=kn². Furthermore, we compute numerically how often the order of Sha(B/Q) equals five times a square, for cyclic isogenies phi: E_1 x E_2 -> B of degree 5. It turns out that this happens to be the case in approx. 50% of the first 20 million examples we have checked. Finally, we prove that if there is a cyclic isogeny phi: E_1 x E_2 -> B and #Sha(B/Q)=kn², then k is in {1,2,3,5,6,7,10,13}. For general isogenies phi: E_1 x E_2 -> B it remains unclear, whether there are only finitely many possibilities for k. In the appendix, we briefly consider abelian surfaces B/Q being isogenous to Jacobians J of hyperelliptic curves over Q. The techniques developed in this thesis allow to understand certain cyclic isogenies phi: J -> B. For each k in {11,17,23,29}, we provide an example with #Sha(B/Q)=kn².
Ugarte, Guerra Francisco. "Valoraciones y relaciones de dominaci´on en grupos abelianos sin torsión." Pontificia Universidad Católica del Perú, 2016. http://repositorio.pucp.edu.pe/index/handle/123456789/96858.
Full textEn este trabajo definimos valoraciones y relaciones de dominación en grupos abelianos sin torsión y probamos que estos son esencialmente los mismos objetos. Adicionalmente probamos que las valoraciones también se corresponden con filtraciones de subgrupos cerrados por división por enteros y que todo grupo abeliano valorado y sin torsión puede sumergirse en el producto de Hahn de subgrupos definidos por la valoración.
Books on the topic "Ordered Abelian groups"
Arnold, David M. Abelian Groups and Representations of Finite Partially Ordered Sets. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4419-8750-1.
Full textPartially ordered abelian groups with interpolation. Providence, R.I: American Mathematical Society, 1986.
Find full textGoodearl, K. R. Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, 2010.
Find full textLenski, Wolfgang Wilhelm. Ordered Abelian groups in logics with Ramsey quantifiers. 1988.
Find full textArnold, David. Abelian Groups and Representations of Finite Partially Ordered Sets. Springer, 2012.
Find full textArnold, David. Abelian Groups and Representations of Finite Partially Ordered Sets. Springer London, Limited, 2012.
Find full textArnold, David. Abelian Groups and Representations of Finite Partially Ordered Sets (CMS Books in Mathematics). Springer, 2000.
Find full textCaramello, Olivia. Examples of theories of presheaf type. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198758914.003.0011.
Full textBook chapters on the topic "Ordered Abelian groups"
Efrat, Ido. "Ordered Abelian groups." In Mathematical Surveys and Monographs, 15–35. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/124/02.
Full textWeispfenning, Volker. "Model Theory of Abelian l-Groups." In Lattice-Ordered Groups, 41–79. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2283-9_4.
Full textDarnel, Michael R. "Representable and Abelian Ω-groups." In Theory of Lattice-Ordered Groups, 301–58. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003067337-9.
Full textArnold, David M. "Torsion-Free Abelian Groups." In Abelian Groups and Representations of Finite Partially Ordered Sets, 47–75. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4419-8750-1_2.
Full textMundici, Daniele. "Computing on Lattice-Ordered Abelian Groups." In Fields of Logic and Computation III, 210–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48006-6_15.
Full textGlass, A. M. W., and Françoise Point. "Finitely Presented Abelian Lattice-Ordered Groups." In Lecture Notes in Computer Science, 160–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75939-3_11.
Full textMelnikov, Alexander G. "Computable Ordered Abelian Groups and Fields." In Programs, Proofs, Processes, 321–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13962-8_36.
Full textMarra, Vincenzo, and Daniele Mundici. "MV-Algebras and Abelian l-Groups: a Fruitful Interaction." In Ordered Algebraic Structures, 57–88. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_4.
Full textArnold, David M. "Butler Groups." In Abelian Groups and Representations of Finite Partially Ordered Sets, 76–125. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4419-8750-1_3.
Full textLucas, F. "Some Applications of Definable Spine Analysis in Ordered Abelian Groups." In Ordered Algebraic Structures, 123–28. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2472-7_10.
Full textConference papers on the topic "Ordered Abelian groups"
Cavallo, Bice, Livia D'Apuzzo, and Massimo Squillante. "A SURVEY ON PAIRWISE COMPARISON MATRICES OVER ABELIAN LINEARLY ORDERED GROUPS." In The International Symposium on the Analytic Hierarchy Process. Creative Decisions Foundation, 2011. http://dx.doi.org/10.13033/isahp.y2011.093.
Full textPreeti, Agin Kumari, Amit Sehgal, Sarita Sehgal, Yashpal, and Sunil Kumar. "Counting subgroup series of abelian p-group which contains a subgroup of order p." In ADVANCES IN BASIC SCIENCE (ICABS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5122623.
Full text