Academic literature on the topic 'Orbitofrontal cortex'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Orbitofrontal cortex.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Orbitofrontal cortex"

1

Rudebeck, Peter H., and Erin L. Rich. "Orbitofrontal cortex." Current Biology 28, no. 18 (September 2018): R1083—R1088. http://dx.doi.org/10.1016/j.cub.2018.07.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jellinger, K. A. "The Orbitofrontal Cortex." European Journal of Neurology 15, no. 1 (December 13, 2007): e7-e7. http://dx.doi.org/10.1111/j.1468-1331.2007.01897.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wade, Natasha E., Kara S. Bagot, Claudia I. Cota, Aryandokht Fotros, Lindsay M. Squeglia, Lindsay R. Meredith, and Joanna Jacobus. "Orbitofrontal cortex volume prospectively predicts cannabis and other substance use onset in adolescents." Journal of Psychopharmacology 33, no. 9 (June 19, 2019): 1124–31. http://dx.doi.org/10.1177/0269881119855971.

Full text
Abstract:
Background: Identifying neural characteristics that predict cannabis initiation is important for prevention efforts. The orbitofrontal cortex is critical for reward response and may be vulnerable to substance-induced alterations. Aims: We measured orbitofrontal cortex thickness, surface area, and volume prior to the onset of use to predict cannabis involvement during an average nine-year follow-up. Methods: Adolescents ( n=118) aged 12–15 years completed baseline behavioral assessment and magnetic resonance imaging scans, then were followed up to 13 years with annual substance use interviews. Logistic regression examined baseline (pre-substance use) bilateral medial and lateral orbitofrontal cortex characteristics (volume, surface area, or cortex thickness) as predictors of regular cannabis use by follow-up. Post-hoc multinomial logistic regression assessed whether orbitofrontal cortex characteristics significantly predicted either alcohol use alone or cannabis+alcohol co-use. Brain-behavior relationships were assessed through follow-up correlations of baseline relationships between orbitofrontal cortex and executive functioning, reward responsiveness, and behavioral approach traits. Results: Larger left lateral orbitofrontal cortex volume predicted classification as cannabis user by follow-up ( p=0.025, odds ratio=1.808). Lateral orbitofrontal cortex volume also predicted cannabis+alcohol co-user status ( p=0.008, odds ratio=2.588), but not alcohol only status. Larger lateral orbitofrontal cortex volume positively correlated with greater baseline reward responsiveness ( p=0.030, r=0.348). There were no significant results by surface area or cortex thickness ( ps>0.05). Conclusions: Larger left lateral orbitofrontal cortex measured from ages 12–15 years and prior to initiation of substance use was related to greater reward responsiveness at baseline and predicted classification as a cannabis user and cannabis+alcohol co-user by final follow-up. Larger lateral orbitofrontal cortex volume may represent aberrant orbitofrontal cortex maturation and increasing vulnerability for later substance use.
APA, Harvard, Vancouver, ISO, and other styles
4

Sequeira, Michelle K., and Shannon L. Gourley. "The stressed orbitofrontal cortex." Behavioral Neuroscience 135, no. 2 (April 2021): 202–9. http://dx.doi.org/10.1037/bne0000456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schoenbaum, Geoffrey, Mehdi Khamassi, Mathias Pessiglione, Jay A. Gottfried, and Elisabeth A. Murray. "The magical orbitofrontal cortex." Behavioral Neuroscience 135, no. 2 (April 2021): 108. http://dx.doi.org/10.1037/bne0000470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rolls, Edmund T., Wei Cheng, Jingnan Du, Dongtao Wei, Jiang Qiu, Dan Dai, Qunjie Zhou, Peng Xie, and Jianfeng Feng. "Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression." Social Cognitive and Affective Neuroscience 15, no. 1 (January 2020): 75–86. http://dx.doi.org/10.1093/scan/nsaa014.

Full text
Abstract:
Abstract The orbitofrontal cortex extends into the laterally adjacent inferior frontal gyrus. We analyzed how voxel-level functional connectivity of the inferior frontal gyrus and orbitofrontal cortex is related to depression in 282 people with major depressive disorder (125 were unmedicated) and 254 controls, using FDR correction P < 0.05 for pairs of voxels. In the unmedicated group, higher functional connectivity was found of the right inferior frontal gyrus with voxels in the lateral and medial orbitofrontal cortex, cingulate cortex, temporal lobe, angular gyrus, precuneus, hippocampus and frontal gyri. In medicated patients, these functional connectivities were lower and toward those in controls. Functional connectivities between the lateral orbitofrontal cortex and the precuneus, posterior cingulate cortex, inferior frontal gyrus, ventromedial prefrontal cortex and the angular and middle frontal gyri were higher in unmedicated patients, and closer to controls in medicated patients. Medial orbitofrontal cortex voxels had lower functional connectivity with temporal cortex areas, the parahippocampal gyrus and fusiform gyrus, and medication did not result in these being closer to controls. These findings are consistent with the hypothesis that the orbitofrontal cortex is involved in depression, and can influence mood and behavior via the right inferior frontal gyrus, which projects to premotor cortical areas.
APA, Harvard, Vancouver, ISO, and other styles
7

Rolls, Edmund T., Wei Cheng, Weikang Gong, Jiang Qiu, Chanjuan Zhou, Jie Zhang, Wujun Lv, et al. "Functional Connectivity of the Anterior Cingulate Cortex in Depression and in Health." Cerebral Cortex 29, no. 8 (November 12, 2018): 3617–30. http://dx.doi.org/10.1093/cercor/bhy236.

Full text
Abstract:
Abstract The first voxel-level resting-state functional connectivity (FC) neuroimaging analysis of depression of the anterior cingulate cortex (ACC) showed in 282 patients with major depressive disorder compared with 254 controls, some higher, and some lower FCs. However, in 125 unmedicated patients, primarily increases of FC were found: of the subcallosal anterior cingulate with the lateral orbitofrontal cortex, of the pregenual/supracallosal anterior cingulate with the medial orbitofrontal cortex, and of parts of the anterior cingulate with the inferior frontal gyrus, superior parietal lobule, and with early cortical visual areas. In the 157 medicated patients, these and other FCs were lower than in the unmedicated group. Parcellation was performed based on the FC of individual ACC voxels in healthy controls. A pregenual subdivision had high FC with medial orbitofrontal cortex areas, and a supracallosal subdivision had high FC with lateral orbitofrontal cortex and inferior frontal gyrus. The high FC in depression between the lateral orbitofrontal cortex and the subcallosal parts of the ACC provides a mechanism for more non-reward information transmission to the ACC, contributing to depression. The high FC between the medial orbitofrontal cortex and supracallosal ACC in depression may also contribute to depressive symptoms.
APA, Harvard, Vancouver, ISO, and other styles
8

Miguel-Hidalgo, José Javier, Mohadetheh Moulana, Preston Hardin Deloach, and Grazyna Rajkowska. "Chronic Unpredictable Stress Reduces Immunostaining for Connexins 43 and 30 and Myelin Basic Protein in the Rat Prelimbic and Orbitofrontal Cortices." Chronic Stress 2 (January 2018): 247054701881418. http://dx.doi.org/10.1177/2470547018814186.

Full text
Abstract:
Background Astrocytes and oligodendrocytes are pathologically altered in dorsolateral prefrontal and orbitofrontal cortices in major depressive disorder. In rat models of stress (major depressive disorder risk factor) astrocyte gap junction protein connexin 43 (Cx43) is reduced in the prelimbic cortex. Astrocyte connexins are recognized to strongly influence myelin maintenance in the central nervous system. However, it is unknown whether stress-related changes in Cx43 and the other major astrocyte connexin, Cx30, occur in the orbitofrontal cortex, or whether connexin changes are concurrent with disturbances in myelination. Methods Frozen sections containing prelimbic cortex and orbitofrontal cortex of rats subjected to 35 days of chronic unpredictable stress and controls (n = 6/group) were immunolabeled for Cx43, Cx30, and myelin basic protein. Density of Cx43 or Cx30 immunoreactive puncta and area fraction of myelin basic protein immunoreactivity were measured in prelimbic cortex and orbitofrontal cortex and results analyzed with t test or Pearson correlations. Results Density of Cx43- and Cx30-positive puncta in both prelimbic cortex and orbitofrontal cortex was lower in chronic unpredictable stress-treated than in control rats. In both regions, the area fraction of myelin basic protein immunoreactivity was also lower in chronic unpredictable stress animals. Myelin basic protein area fraction was positively correlated with the density of Cx43-positive puncta in orbitofrontal cortex, and with Cx30 puncta in prelimbic cortex. Conclusion Low Cx43 and Cx30 after chronic unpredictable stress in rat prelimbic cortex and orbitofrontal cortex suggests that reduced astrocytic gap junction density may generalize to the entire prefrontal cortex. Concurrent reduction of Cx43-, Cx30-, and myelin basic protein-immunolabeled structures is consistent with a mechanism linking changes in astrocyte gap junction proteins and disturbed myelin morphology in depression.
APA, Harvard, Vancouver, ISO, and other styles
9

Khundakar, Ahmad, Christopher Morris, Arthur Oakley, and Alan J. Thomas. "A morphometric examination of neuronal and glial cell pathology in the orbitofrontal cortex in late-life depression." International Psychogeriatrics 23, no. 1 (June 18, 2010): 132–40. http://dx.doi.org/10.1017/s1041610210000700.

Full text
Abstract:
ABSTRACTBackground: The orbitofrontal cortex has been implicated as a key component in depression by several imaging studies. This study aims to examine morphometrically glial cell and neuronal density and neuronal volume in the orbitofrontal cortex of late-life major depression patients.Methods: Post mortem tissue from 13 patients with major depression and 11 matched controls was obtained and analyzed using the optical disector and nucleator methods.Results: No changes were found in glial cell, pyramidal or non-pyramidal neuron density, or in non-pyramidal and pyramidal neuron volume in the orbitofrontal cortex.Conclusions: Based on previous findings, this study suggests variability in morphological changes within the orbitofrontal cortex, as well as the prefrontal cortex as a whole.
APA, Harvard, Vancouver, ISO, and other styles
10

Kringelbach, Morten L., and Kristina M. Rapuano. "Time in the orbitofrontal cortex." Brain 139, no. 4 (March 24, 2016): 1010–13. http://dx.doi.org/10.1093/brain/aww049.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Orbitofrontal cortex"

1

Frey, Stephen. "On the orbitofrontal cortex and encoding." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19464.

Full text
Abstract:
Little is known about the human orbitofrontal cortex and its role in encoding information, although studies in the monkey suggest that it plays an important role in memory. This thesis describes a series of functional neuroimaging studies that investigated the contribution of the orbitofrontal cortex when normal human subjects were engaged in encoding information.
APA, Harvard, Vancouver, ISO, and other styles
2

Critchley, H. D. "Sensory processing in the primate orbitofrontal cortex." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chiavaras, Mary M. "The orbitofrontal cortex : sulcal anatomy and cytoarchitectonic correlations." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37646.

Full text
Abstract:
The sulcal patterns of the human orbitofrontal cortex have not been adequately characterized. Classical authors, as well as more recent investigators, have attempted to identify and label the sulci of this part of the brain. Nevertheless, there is considerable confusion regarding the orbital sulcal patterns with inconsistencies in the naming of orbitofrontal sulci in many modern texts. Moreover, a correlation between specific landmarks and architectonic areas has not been demonstrated.
A clarification of the patterns of the orbitofrontal sulci and their relationship to architectonic subregions is necessary if the results of functional neuroimaging and other physiological and anatomical findings are to be properly interpreted. Although studies have reported altered activity in the orbitofrontal cortex in relation to various sensory processes and pathological states it has been difficult to relate these changes to specific orbitofrontal regions because of a limited understanding of the anatomical landmarks. The absence of reliable reference markers forces the use of vague terminology (e.g., "orbital frontal activation") in describing the location of functional changes in the orbital frontal cortex.
The aim of this doctoral thesis was to gain a better understanding of the sulcal pattern of the human orbitofrontal cortex and its relation to the underlying cytoarchitecture. The first study resolved the confusion associated with the orbitofrontal sulci by identifying, quantifying, and precisely localizing the various orbital sulci from fifty human magnetic resonance scans that were transformed into the standardized stereotaxic space of Talairach and Tournoux (1988). The second study compared the individual sulci and sulcal patterns of these fifty human brains with the brains of fifty adult rhesus monkeys. Having examined the orbitofrontal sulci in these two species, a nomenclature for the human orbitofrontal sulci was established which was based on comparable sulci in the less convoluted macaque monkey brain while trying to preserve many of the familiar labels associated with this region in the human brain. The final part of this thesis examined the orbitofrontal cytoarchitecture of 10 human adult cerebral hemispheres to determine if a correlation exists between the different orbital sulci and the borders of the architectonic subregions.
APA, Harvard, Vancouver, ISO, and other styles
4

Berlin, Heather. "Impulsivity, the orbitofrontal cortex and borderline personality disorder." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:df454308-aea1-448a-9237-83735452947f.

Full text
Abstract:
Damage to the orbitofrontal cortex (OFC) has been associated with disinhibited or socially inappropriate behaviour and emotional irregularities in both humans and monkeys. Prominent characteristics of several personality disorder syndromes, in particular Borderline Personality Disorder (BPD), are impulsivity and affective instability. This investigation aimed to determine if certain aspects of the Borderline Personality syndrome, in particular impulsivity, are associated with OFC dysfunction. Basic questionnaires of personality, emotion, and impulsivity together with tasks sensitive to frontal lobe dysfunction that assess possible factors related to impulsivity, including time perception, sensitivity to reinforcers, and spatial working memory (SWM), were administered to OFC lesion, BPD, non-OFC prefrontal cortex lesion control, and normal control participants. OFC and BPD patients performed similarly, in that they were more impulsive, reported more inappropriate behaviours, BPD traits, anger, and less happiness than both control groups. They were also less open to experience and had a faster perception of time (in terms of time production) than normal controls. They performed differently on other tasks: BPD patients were less extraverted and conscientious and more neurotic and emotional than all other groups. OFC patients had more severe deficits in reversing stimulus-reinforcer associations compared to all other groups and had a faster perception of time (in terms of time estimation) than normal controls. Both OFC and non-OFC lesion patients had mixed lesions that included dorsolateral prefrontal cortex (DLFC) damage. Accordingly, they both had SWM deficits, a task used to control for DLFC damage, compared to normal and BPD participants. Since BPD participants were not impaired on this task and non-OFC patients did not perform poorly on the same tests that OFC patients did, the neuropsychological deficits of BPD and OFC patients could not be attributed to SWM deficits or DLFC dysfunction. The findings suggest that some of the cognitive/behavioural deficits commonly found in BPD patients are related to OFC dysfunction while others are unrelated and are perhaps related to other brain systems. The possibility of amygdala dysfunction is discussed. The similarities and dissociations found between BPD and OFC patients on certain tasks may lead to a better understanding of the aetiology of BPD and the functions of the OFC. Theoretical and therapeutic implications of the findings are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Gregory, Amanda Louise. "Orbitofrontal cortex dysfunction in adolescent psychopathy neuropsychological function, violent behavior, and MRI volumetrics /." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3032405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bennett, Sophie Heloise. "Investigating the role of excitatory circuitry in the orbitofrontal cortex in social cognition." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/investigating-the-role-of-excitatory-circuitry-in-the-orbitofrontal-cortex-in-social-cognition(26bc1cc8-1acd-4b53-b018-21aed5984d8b).html.

Full text
Abstract:
Impaired social cognition is a common component of many neurodevelopmental conditions. These impairments impair quality of life. However, the factors shaping social development and accompanying neural circuitry are not well understood. The brain regions that contribute to social cognition are called the “social brain”. The orbitofrontal cortex is one of the brain regions that constitute the “social brain”. Damage to the orbitofrontal cortex causes profound deficits in social cognition, including disinhibition and aggression. Dysfunctional circuitry in the orbitofrontal cortex may contribute to impaired social cognition in neurodevelopmental disorders. However, the role played by neuronal circuitry in the orbitofrontal cortex to social cognition is unclear. I sought to examine the role of excitatory circuitry within the orbitofrontal cortex in social cognition. I first explored the contribution of excitatory circuitry in the orbitofrontal cortex to impaired social behaviour in Nrxn1α KO mice. These mice carry a genetic microdeletion that is a risk factor for multiple neurodevelopmental disorders, including autism and schizophrenia. Previous experiments have demonstrated that these mice display impaired social behaviour. I found that impaired social behaviour in Nrxn1α KO mice was accompanied by a reduction in short-term facilitation of pyramidal synapses. The second aim of my thesis was to investigate the role of sensory experience in shaping the development of social cognition and accompanying “social brain” circuitry. This was achieved by depriving rodents of whisker input during a sensitive period of social development. I found that a short period of whisker deprivation led to long-lasting changes in rodent play behaviour. However, this was not accompanied by changes in excitatory circuitry in the orbitofrontal cortex.
APA, Harvard, Vancouver, ISO, and other styles
7

Chakirova, Goultchira. "Orbitofrontal sulcogyral morphology : its distribution, structural and functional associations, and predictive value in different diagnostic groups." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8098.

Full text
Abstract:
Bipolar affective disorder and schizophrenia are highly heritable psychiatric illnesses and the leading causes of worldwide disability. The orbitofrontal cortex (OFC) is a region of the frontal lobe with wide spread connectivity with other brain areas involved in reward, motivation and emotion. Evidence from various neuroimaging, genetic, post-mortem and brain lesion studies suggest that orbitofrontal cortex may play a role in pathophysiology of mental illnesses. This thesis sought to investigate the pathogenesis of major psychiatric illnesses through the investigation of orbitofrontal morphology in schizophrenia and bipolar disorder and through its associations with brain structure and function. Orbitofrontal morphology and its structural and functional associations were examined in healthy controls, patients with schizophrenia or bipolar affective disorder, and those at high genetic risk using functional and structural MRI. In the first study we found that the orbitofrontal type III is more frequent and the orbitofrontal type I is less common in the right hemisphere in patients with schizophrenia while in patients with bipolar disorder type III appears more often in both left and right hemispheres. We then sought to examine the relationship of orbitofrontal morphology to disease risk in a study of 146 people at high risk of developing schizophrenia and 110 people at high risk of developing bipolar disorder. We discovered that in the unaffected high risk groups the orbitofrontal type III predicted the development of later psychiatric illnesses, when combined with anterior cingulate morphology. Finally we showed, in a further study, that OFC morphology was associated with measures of schizotypy, brain structure, brain function and cognition. In conclusion, orbitofrontal morphology is linked to major psychiatric disorder and has significant structural and functional associations. As orbitofrontal sulcogyral patterns are formed in early life a fuller awareness of their relevance to brain function holds out the prospect that we could use such measures as an indicator of vulnerability to the development of illness later in life. This work points to the potential for the foundation of a theory of predictive associations between morphological patterns and the development of psychosis.
APA, Harvard, Vancouver, ISO, and other styles
8

Jenni, Nicole Lynn. "Modulation of probabilistic discounting and probabilistic reversal learning by dopamine within the medial orbitofrontal cortex." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62568.

Full text
Abstract:
Weighing the value of a reward against its likelihood of delivery is a necessary component of adaptive decision-making. The medial subregion of the orbitofrontal cortex (OFC) plays a key role in this form of cognition, as inactivation of this subregion in rats alters behaviour during risk/reward decision-making and a probabilistic assay of cognitive flexibility. The medial OFC receives dopaminergic input from midbrain neurons, yet whether dopamine (DA) modulates medial OFC function has been virtually unexplored. Here, we assessed how D₁ and D₂ receptors in the medial OFC may modulate adaptive decision-making in the face of probabilistic outcomes. One series of experiments assessed probabilistic reversal learning, while another set of studies assessed risk/reward decision-making using a probabilistic discounting task. Separate groups of well-trained rats, received intra-medial OFC microinfusions of selective D₁ or D₂ antagonists prior to task performance. Our results indicate that blocking D₁ receptors in the medial OFC impaired while blockade of D₂ receptors facilitated the number of reversals completed. This may be due to an impairment in probabilistic reinforcement learning, as effects were mediated by changes in errors during the initial discrimination of the task. One function for DA within the medial OFC might therefore be to inform about responses that yield a higher probability of reward over less profitable options to maintain adaptive choice. During risk/reward decision-making, blocking D₁ receptors reduced risky choice driven by an increase in negative feedback sensitivity. Blockade of D₂ receptors increased risky choice, mediated instead by an increase in reward sensitivity. This implicates medial OFC DA in dampening the win-stay/lose-shift strategy to limit the use of immediate reward feedback in situations where rats have prior knowledge about reward profitability. These findings highlight a novel role for medial OFC DA in guiding behavior in situations of reward uncertainty. Medial OFC D₁ and D₂ receptors play dissociable and opposing roles in different forms of reward-related action selection. Elucidating how DA within different nodes of mesocorticolimbic circuitry biases behavior in these situations will expand our understanding of the mechanisms regulating optimal and aberrant decision-making.
Arts, Faculty of
Psychology, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Hosokawa, Takayuki. "Neuronal responses of the macaque orbitofrontal cortex related to the prediction of rewarding and aversive outcomes." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cerpa, Gilvonio Juan Carlos. "Cortex préfrontal et flexibilité comportementale : implication de la noradrénaline." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0367.

Full text
Abstract:
La survie d’un organisme nécessite qu’il soit capable de prendre des décisions adaptées dans un environnement changeant. Ces décisions dépendent de multiples processus cognitifs qui ont pu être étudiés par l’intermédiaire des apprentissages associatifs. Ainsi, le contrôle de l’action repose sur des processus distribués au sein de larges circuits cérébraux impliquant notamment les régions préfrontales. Ces fonctions du cortex préfrontal sont largement influencées par l’action de neuromodulateurs, parmi lesquels la noradrénaline, qui pourrait jouer un rôle essentiel dans la flexibilité comportementale. Mon travail de thèse a donc cherché à déterminer l’implication de l’innervation noradrénergique du cortex préfrontal dans l’adaptation à des changements des conséquences de l’action. Une première partie a consisté à étudier l’organisation de l’innervation noradrénergique au sein de différentes aires préfrontales par des méthodes de quantification automatisée. Dans une deuxième partie, nous avons utilisé un protocole instrumental nécessitant un apprentissage flexible des relations causales entre actions et conséquences. A l’aide de ce protocole et de toxines induisant une déplétion noradrénergique, nous avons démontré l’implication de la noradrénaline au sein d’une région du cortex préfrontal, le cortex orbitofrontal, pour la flexibilité comportementale nécessaire au contrôle de l’action, en particulier pour prendre en compte des changements dans l’identité et la valeur des récompenses associées à cette action. Une comparaison avec le cortex préfrontal médian d’une part, et avec le rôle de l’innervation dopaminergique d’autre part, suggère que le rôle de la noradrénaline est spécifique de la région et de l’espèce neurochimique. Dans une troisième partie, nous avons développé plusieurs approches pharmacogénétiques visant à préciser les phases de l’apprentissage impliquant la modulation noradrénergique, et observé certaines limites de ces approches. Ces travaux confirment l’importance de l’action neuromodulatrice sur les fonctions préfrontales et surtout étendent nos connaissances des circuits cérébraux impliqués dans le contrôle de l’action permettant l’adaptation à un environnement changeant
An organism depends for its survival on the ability to take adaptive decisions in an ever-changing environment. These decisions involve several cognitive processes that can be revealed by the study of associative learning processes. Thus, action control has been found to rely on processes that distribute across a network of cerebral structures including prefrontal regions. Prefrontal functions are largely influenced by neuromodulators such as noradrenaline, which is thought to be involved in behavioural flexibility. My Ph.D. project therefore aimed at clarifying the role of noradrenergic modulation of prefrontal cortex regions in adapting a subject’s behaviour to changes in action consequences. In the first chapter, we studied the organization of noradrenergic innervation in the various prefrontal areas, by means of an automated quantification method. In the second chapter, we applied a behavioural protocol requiring flexible learning of the causal relationships between actions and their outcomes. Using this protocol and neurotoxins to deplete prefrontal regions from noradrenergic innervation, we showed that noradrenaline in a specific area, the orbitofrontal cortex, was necessary to action control, in particular to mediate changes in the identity and value of expected outcomes. Comparing this contribution to the role of medial prefrontal cortex on one hand, and of dopaminergic modulation on the other hand, suggests that the role of noradrenergic neuromodulation is both region- and mediator-specific. In the third chapter, we developed a series of chemogenetic approaches to identify the temporal involvement of noradrenaline in the various phases of the task, and we identified some of the limits of these approaches. This work confirms the importance of neuromodulation in prefrontal cortical function and furthers our understanding of cerebral circuits involved in action control and adaptation to a changing environment
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Orbitofrontal cortex"

1

H, Zald David, and Rauch Scott L, eds. The orbitofrontal cortex. Oxford: Oxford University Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

H, Zald David, and Rauch Scott L, eds. The orbitofrontal cortex. Oxford: Oxford University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schoenbaum, Geoffrey. Critical contributions of the orbitofrontal cortex to behavior. Edited by New York Academy of Sciences. Boston, Mass: Published by Blackwell Pub. on behalf of the New York Academy of Sciences, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geoffrey, Schoenbaum, and New York Academy of Sciences, eds. Linking affect to action: Critical contributions of the orbitofrontal cortex. Malden, MA: Blackwell Pub. on behalf of the New York Academy of Sciences, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saez, Rebecca. Representations of Relative Value Coding in the Orbitofrontal Cortex and Amygdala. [New York, N.Y.?]: [publisher not identified], 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Orbitofrontal Cortex. Oxford University Press, Incorporated, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zald, David, and Scott Rauch. Orbitofrontal Cortex. Oxford University Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rolls, Edmund T. Orbitofrontal Cortex. Oxford University Press, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zald, David, and Scott Rauch, eds. The Orbitofrontal Cortex. Oxford University Press, 2006. http://dx.doi.org/10.1093/acprof:oso/9780198565741.001.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rolls, Edmund T. The Orbitofrontal Cortex. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198845997.001.0001.

Full text
Abstract:
The book will be valuable for those in the fields of neuroscience, neurology, psychology, psychiatry, biology, animal behaviour, economics, and philosophy, from the undergraduate level upwards. The book is unique in providing a coherent multidisciplinary approach to understanding the functions of one of the most interesting regions of the human brain, in both health and in disease, including depression, bipolar disorder, autism, and obsessive-compulsive disorder. There is no competing book published in the last 10 years.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Orbitofrontal cortex"

1

Jeyaraj-Powell, Tephillah. "Orbitofrontal Cortex." In Encyclopedia of Personality and Individual Differences, 3360–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jeyaraj-Powell, Tephillah. "Orbitofrontal Cortex." In Encyclopedia of Personality and Individual Differences, 1–3. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-28099-8_451-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Inoue, Takao, Balázs Lukáts, Tomohiko Fujimoto, Kotaro Moritake, Takeshi Hasegawa, Zoltán Karádi, and Shuji Aou. "Category Recognition in the Monkey Orbitofrontal Cortex." In Brain-Inspired Information Technology, 85–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04025-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Zhenbo, and Tianming Yang. "Modeling Task State Representation by the Orbitofrontal Cortex with a Reservoir Network." In Advances in Cognitive Neurodynamics (V), 625–31. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0207-6_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Weidong, and Richard Coggins. "Computational Models of the Amygdala and the Orbitofrontal Cortex: A Hierarchical Reinforcement Learning System for Robotic Control." In Lecture Notes in Computer Science, 419–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36187-1_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rolls, Edmund T. "The orbitofrontal cortex, depression, and other mental disorders." In The Orbitofrontal Cortex, 191–227. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198845997.003.0007.

Full text
Abstract:
An approach to depression is described, in which there is over-sensitivity of the lateral orbitofrontal cortex non-reward attractor system, and under-sensitivity of the medial orbitofrontal cortex reward system. Many functional connectivities involving the lateral orbitofrontal cortex are increased in depression, and many functional connectivities involving the medial orbitofrontal cortex are decreased in depression. Involvement of the orbitofrontal cortex in bipolar disorder, autism, attention-deficit hyperactivity disorder, and compulsivity including obsessive-compulsive disorder, is also described.
APA, Harvard, Vancouver, ISO, and other styles
7

Rolls, Edmund T. "Orbitofrontal cortex output pathways: cingulate cortex, basal ganglia, and dopamine." In The Orbitofrontal Cortex, 145–64. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198845997.003.0005.

Full text
Abstract:
The medial orbitofrontal cortex projects reward-related information to the pregenual cingulate cortex, and the lateral orbitofrontal cortex projects punishment and non-reward information to the supracallosal anterior cingulate cortex. These projections provide the reward outcome information needed for action-outcome goal value dependent instrumental learning by the cingulate cortex. The orbitofrontal cortex also projects reward-related information to the striatum for stimulus-response habit learning. Via the striatal route, and further in part via the habenula, the orbitofrontal cortex provides information about rewards and non-rewards that reached the brainstem dopamine neurons, some of which respond to positive reward prediction error, and the serotonin (5HT) neurons. The orbitofrontal cortex is therefore perhaps the key brain region involved in reward processing in the brain. The orbitofrontal cortex also has projections that can influence autonomic function, in part via the insula.
APA, Harvard, Vancouver, ISO, and other styles
8

Rolls, Edmund T. "The orbitofrontal cortex." In The Prefrontal CortexExecutive and Cognitive Functions, 67–86. Oxford University Press, 1998. http://dx.doi.org/10.1093/acprof:oso/9780198524410.003.0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Lateral Orbitofrontal Cortex." In Encyclopedia of Personality and Individual Differences, 2581. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_301446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Medial Orbitofrontal Cortex." In Encyclopedia of Personality and Individual Differences, 2827. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_301545.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Orbitofrontal cortex"

1

Gubarevich, Elena, Tatiana Kokurina, Anastasia Markova, Galina Rybakova, Tatiana Tumanova, and Viacheslav Alexandrov. "AUTONOMOUS FUNCTIONS OF THE ORBITOFRONTAL CORTEX." In XVII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2099.sudak.ns2021-17/122-123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kahn, Kevin, Matthew S. D. Kerr, Hyun-Joo Park, Susan Thompson, Juan Bulacio, Jorge Gonzalez-Martinez, Sridevi V. Sarma, and John Gale. "Oscillations in human orbitofrontal cortex during even chance gambling." In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takagi, Yu, Wako Yoshida, and Saori Tanaka. "Model abstraction for model-based reinforcement learning in the human orbitofrontal cortex." In 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1271-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zarr, Noah, and Joshua Brown. "The orbitofrontal cortex as a negative feedback control system: computational modeling and fMRI." In 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1070-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sultanli, Maya. "MITOCHONDRIA IN SYNAPSES IN THE ORBITOFRONTAL CORTEX OF WHITE LABORATORY RATS: DYNAMIC ELECTRON MICROSCOPIC ANALYSIS AFTER ACUTE SOUND EXPOSURE AGAINST A LOW-PROTEIN DIET." In XVIII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m2945.sudak.ns2022-18/330-331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"PS-042 - MARCO TEÓRICO DE APROXIMACIÓN DE TRASTORNOS ADICTIVOS Y TRASTORNOS DE LA CONDUCTA ALIMENTARIA." In 24 CONGRESO DE LA SOCIEDAD ESPAÑOLA DE PATOLOGÍA DUAL. SEPD, 2022. http://dx.doi.org/10.17579/abstractbooksepd2022.ps042.

Full text
Abstract:
Objetivos La relación clínica entre trastornos adictivos (TA) y trastornos de la conducta alimentaria (TCA) tuvo un fundamental apoyo con los criterios diagnósticos de Goodman, que permitieron clasificar conductas de estirpe impulsiva como son el juego, la compra compulsiva y, posteriormente (finales de los noventa) bulimia nerviosa y anorexia nerviosa. Si bien las semejanzas sintomatológicas son destacadas por los clínicos que trabajan en ambos grupos, es preciso realizar una comparativa entre características fisiopatológicas, anatomoestructurales, bioquímicas y genéticas para alcanzar el objetivo del presente trabajo, desarrollar un marco teórico de similitud entre TA y TCA, que pudiese acercar maniobras terapéuticas en ambos grupos de patologías. Métodos Se realiza una revisión narrativa con los últimos hallazgos característicos de patologías TA y TCA, a nivel fisiopatológico, estructural (neuroimagen) y molecular (bioquímico y genético), expuestos a modo de espejo, para una mayor clarificación. Resultados y conclusiones En los estudios de neuroimagen en las adicciones, así como en las investigaciones neuropsicológicas, además del sistema dopaminérgico, se presta especial atención a algunas regiones del cerebro que han surgido repetidamente en dichos estudios. Las regiones más consistentemente implicadas son partes de la corteza frontal (corteza orbitofrontal y corteza prefrontal dorsolateral), el cíngulo rostral, la amígdala y la ínsula. Los estudios de análisis GWAS ha conseguido relacionar TCA y TA de manera específica, no en su conjunto, lo que ha permitido inferir la diferencia incluso entre los propios TCA, desde un punto de vista genético. Desde un punto de vista bioquímico, los niveles anómalos de receptores dopaminérgicos D2 en circuitos de recompensa entre trastornos por atracón y adicción por sustancias, acerca los grupos de TCA y TA, pero diferencia también de manera intragrupal las enfermedades. La dificultad para tratar de manera farmacológica los TCA, podría verse mitigada si se consiguiese establecer una correlación entre ambos grupos de enfermedades.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramírez Campos, Michael Stiven, Juan Pablo Hernández Corvacho, Laura Daniela Serrano Andrade, and Juan Manuel López López. "ANÁLISIS DE LAS CARACTERÍSTICAS DE EEG EN UN CONTEXTO DE EMOCIONES INDUCIDAS." In Mujeres en ingeniería: empoderamiento, liderazgo y compromiso. Asociacion Colombiana de Facultades de Ingeniería - ACOFI, 2021. http://dx.doi.org/10.26507/ponencia.1765.

Full text
Abstract:
Aunque no hay un consenso científico sobre la definición de las emociones, estas se pueden entender como las respuestas psicofisiológicas a un estímulo interno o externo, donde se dan un grupo de interacciones entre factores objetivos y subjetivos que son manejados por sistemas hormonales y neuronales. Esto puede conducir a comportamientos que en algunos casos son expresivos. Ahora, como el sistema neuronal se ve inmerso en la regulación de estas, algunas de las regiones directamente relacionadas son; la corteza cingulada anterior subgenual con depresión y rumia, las cortezas orbitofrontal y cingulada con procesamiento de recompensa. Incluso, otras zonas como las cortezas sensoriales primarias se pueden ver afectadas indirectamente. Teniendo en cuenta estas zonas de actividad cerebral, es posible hacer uso del EEG para un estudio profundo del comportamiento de estas bajo situaciones emocionales. En este contexto, el presente artículo propone integrar una serie de técnicas de procesamiento digital de señales, aplicadas a EEG. Para esto se hace uso de la base de datos DEAP, la cual consta de 32 registros, donde cada uno de estos cuenta con 48 canales. Dichos registros contienen la grabación del antes, durante y después de la inducción de un estado emocional. El procesamiento y extracción de características de dichas señales se planteó a partir de un análisis por ventanas de tiempo de 5 segundos. Posteriormente se calcularon parámetros no lineales como la entropía, la complejidad y la movilidad (parámetros de Hjörth), que permiten caracterizar la señal. Ahora bien, la integración de los parámetros planteados permitió definir cuantitativamente cuándo ocurre la inducción de una emoción y cómo evoluciona su respuesta en EEG, teniendo en cuenta una línea base (estado neutral), un instante de presentación de estímulo y finalmente la manifestación fisiológica de la emoción. Se considera que la metodología planteada en el presente artículo es novedosa, en tanto a que propone un análisis de la evolución de las características del EEG en el contexto de la inducción de emociones. Así mismo, se pudo determinar que los métodos aquí descritos pueden constituir una herramienta viable para ser usada en el desarrollo de estudios que involucren procesos emocionales. Se pretende a futuro llevar a cabo un protocolo experimental que permita determinar las transiciones fisiológicas, cuando hay inducción de emociones, en una muestra más amplia.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography