Academic literature on the topic 'Orbital Magnetization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Orbital Magnetization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Orbital Magnetization"

1

Cheng, Fang, Wang Zhi-Gang, Li Shu-Shen, and Zhang Ping. "Orbital magnetization in semiconductors." Chinese Physics B 18, no. 12 (December 2009): 5431–36. http://dx.doi.org/10.1088/1674-1056/18/12/050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

THONHAUSER, T. "THEORY OF ORBITAL MAGNETIZATION IN SOLIDS." International Journal of Modern Physics B 25, no. 11 (April 30, 2011): 1429–58. http://dx.doi.org/10.1142/s0217979211058912.

Full text
Abstract:
In this review article, we survey the relatively new theory of orbital magnetization in solids — often referred to as the "modern theory of orbital magnetization" — and its applications. Surprisingly, while the calculation of the orbital magnetization in finite systems such as atoms and molecules is straight forward, in extended systems or solids it has long eluded calculations owing to the fact that the position operator is ill-defined in such a context. Approaches that overcome this problem were first developed in 2005 and in the first part of this review we present the main ideas reaching from a Wannier function approach to semi-classical and finite-temperature formalisms. In the second part, we describe practical aspects of calculating the orbital magnetization, such as taking k-space derivatives, a formalism for pseudopotentials, a single k-point derivation, a Wannier interpolation scheme, and DFT specific aspects. We then show results of recent calculations on Fe, Co, and Ni. In the last part of this review, we focus on direct applications of the orbital magnetization. In particular, we will review how properties such as the nuclear magnetic resonance shielding tensor and the electron paramagnetic resonance g-tensor can be elegantly calculated in terms of a derivative of the orbital magnetization.
APA, Harvard, Vancouver, ISO, and other styles
3

Simon, Steven H., Ady Stern, and Bertrand I. Halperin. "Composite fermions with orbital magnetization." Physical Review B 54, no. 16 (October 15, 1996): R11114—R11117. http://dx.doi.org/10.1103/physrevb.54.r11114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Resta, R., Davide Ceresoli, T. Thonhauser, and David Vanderbilt. "Orbital Magnetization in Extended Systems." ChemPhysChem 6, no. 9 (September 12, 2005): 1815–19. http://dx.doi.org/10.1002/cphc.200400641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LEE, Soogil, Nyun Jong LEE, Min-Gu KANG, and Byong-Guk PARK. "Magnetization Control through the Orbital Current: Orbitronics beyond Spintronics." Physics and High Technology 29, no. 10 (October 31, 2020): 16–21. http://dx.doi.org/10.3938/phit.29.035.

Full text
Abstract:
A recent study on orbital current, as a result of the orbital Hall effect, has received much attention because it is expected to provide energy-efficient electrical magnetization control in emerging spintronic devices. In this article, we introduce the concept of the orbital-current-induced spin torque, which is called the orbital torque, and discuss the advantages of using the orbital current for magnetization switching. We also summarize the recent theoretical and experimental results for the orbital current and the orbital torque in various material systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Trama, Mattia, Vittorio Cataudella, Carmine Antonio Perroni, Francesco Romeo, and Roberta Citro. "Tunable Spin and Orbital Edelstein Effect at (111) LaAlO3/SrTiO3 Interface." Nanomaterials 12, no. 14 (July 20, 2022): 2494. http://dx.doi.org/10.3390/nano12142494.

Full text
Abstract:
Converting charge current into spin current is one of the main mechanisms exploited in spintronics. One prominent example is the Edelstein effect, namely, the generation of a magnetization in response to an external electric field, which can be realized in systems with lack of inversion symmetry. If a system has electrons with an orbital angular momentum character, an orbital magnetization can be generated by the applied electric field, giving rise to the so-called orbital Edelstein effect. Oxide heterostructures are the ideal platform for these effects due to the strong spin–orbit coupling and the lack of inversion symmetries. Beyond a gate-tunable spin Edelstein effect, we predict an orbital Edelstein effect an order of magnitude larger then the spin one at the (111) LaAlO3/SrTiO3 interface for very low and high fillings. We model the material as a bilayer of t2g orbitals using a tight-binding approach, whereas transport properties are obtained in the Boltzmann approach. We give an effective model at low filling, which explains the non-trivial behaviour of the Edelstein response, showing that the hybridization between the electronic bands crucially impacts the Edelstein susceptibility.
APA, Harvard, Vancouver, ISO, and other styles
7

Suzuki, Kenji, and Yoshiyuki Ono. "Orbital Magnetization in Quantum Hall Regime." Journal of the Physical Society of Japan 66, no. 11 (November 15, 1997): 3536–42. http://dx.doi.org/10.1143/jpsj.66.3536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Entin-Wohlman, O., Y. Imry, A. G. Aronov, and Y. Levinson. "Orbital magnetization in the hopping regime." Physical Review B 51, no. 17 (May 1, 1995): 11584–96. http://dx.doi.org/10.1103/physrevb.51.11584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KUSMARTSEV, F. V. "ORBITAL PARAMAGNETISM IN TWO-DIMENSIONAL LATTICES." Modern Physics Letters B 05, no. 08 (April 10, 1991): 571–79. http://dx.doi.org/10.1142/s021798499100068x.

Full text
Abstract:
We calculate the ground state energy and the magnetization of spinless fermions on a two-dimensional lattice in an external magnetic field. We prove that the absolute minimum of the energy corresponds to a flux value equal to the filling, i.e. the “commensurate flux phase” state is preferable. The magnetization of these fermions has a paramagnetic character of special orbital type.
APA, Harvard, Vancouver, ISO, and other styles
10

Tschirhart, C. L., M. Serlin, H. Polshyn, A. Shragai, Z. Xia, J. Zhu, Y. Zhang, et al. "Imaging orbital ferromagnetism in a moiré Chern insulator." Science 372, no. 6548 (May 27, 2021): 1323–27. http://dx.doi.org/10.1126/science.abd3190.

Full text
Abstract:
Electrons in moiré flat band systems can spontaneously break time-reversal symmetry, giving rise to a quantized anomalous Hall effect. In this study, we use a superconducting quantum interference device to image stray magnetic fields in twisted bilayer graphene aligned to hexagonal boron nitride. We find a magnetization of several Bohr magnetons per charge carrier, demonstrating that the magnetism is primarily orbital in nature. Our measurements reveal a large change in the magnetization as the chemical potential is swept across the quantum anomalous Hall gap, consistent with the expected contribution of chiral edge states to the magnetization of an orbital Chern insulator. Mapping the spatial evolution of field-driven magnetic reversal, we find a series of reproducible micrometer-scale domains pinned to structural disorder.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Orbital Magnetization"

1

Bianco, Raffaello. "Chern invariant and orbital magnetization as local quantities." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9959.

Full text
Abstract:
2012/2013
La geometria, e la topologia in particolare, rivestono un profondo ruolo in molti campi della fisica ed in particolare in materia condensata ove è possibile identificare diversi stati quantistici della materia attraverso proprietà topologiche. L'invariante di Chern è un invariante topologico che caratterizza lo stato isolante dei cristalli. Esso è definito attraverso la descrizione in spazio reciproco di un cristallo perfetto, per cui è necessario considerare un sistema infinito oppure finito ma con condizioni periodiche al bordo. In questa tesi il concetto di invariante di Chern viene generalizzato definendo un opportuno marcatore locale di Chern in spazio reale. Infatti se si considera un cristallo perfetto infinito oppure finito e con condizioni periodiche al bordo, la media sulla cella elementare di questo marcatore restituisce il consueto invariante di Chern. Tuttavia, grazie al suo carattere locale, il marcatore di Chern è ben definito e può essere utilizzato per identificare il carattere locale di Chern anche di un sistema microscopicamente disordinato o macroscopicamente disomogeneo (ad esempio etorogiunzioni di diversi cristalli) e con qualsiasi tipo di condizioni al bordo (periodiche o aperte). Nella seconda parte della tesi l'invariante locale di Chern viene utilizzato per fornire una descrizione locale in spazio reale della magentizzazione orbitale. Questa descrizione è utilizzabile sia con condizioni al bordo aperte che periodiche e quindi unifica i due separati approcci utilizzati in questi due casi. La nuova formula permette, inoltre, di ottenere anche una migliore comprensione del ruolo che gli stati di bordo rivestono nella magnetizzazione di un sistema. In entrambi i casi vengono presentati i risultati di simulazioni numeriche che confermano i risultati teorici derivati.
The geometry and the topology play a profound role in many fields of physics and in particular in condensed matter where it is possible to identify different quantum states of matter through their topological properties. The Chern invariant is a topological invariant which characterizes the insulating state of crystals. It is defined through the description in the reciprocal space of a perfect crystal, which then has to be considered as an infinite system or a finite size system with periodic boundary conditions. In this thesis the concept of Chern invariant is generalized by defining a local Chern marker in the real space. For an infinite crystal or a finite crystal with periodic boundary conditions, the average of this marker over an elementary unit cell returns the usual invariant Chern. However, thanks to its local character, the Chern marker is well defined and can be used to identify the local Chern character also of microscopically disordered systems or macroscopically inhomogeneous systems (e.g. heterojunctions of different crystals) and with any kind of boundary conditions adopted (periodic boundary conditions or open bounday conditions as well). In the second part of the thesis the local Chern invariant is used to provide a local description in the real space of the orbital magnetization. This description can be used both with open and periodic boundary conditions, so it unifies the two separate approaches used in these different cases. Moreover, the new formula makes it possible to get a better understanding of the role that the edge states play in the magnetization of a system. In both cases we present the results of numerical simulations that confirm the theoretical results.
XXVI Ciclo
1979
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Shulei. "Spin Transport and Magnetization Dynamics in Various Magnetic Systems." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/333352.

Full text
Abstract:
The general theme of the thesis is the interplay between magnetization dynamics and spin transport. The main presentation is divided into three parts. The first part is devoted to deepening our understanding on magnetic damping of ferromagnetic metals, which is one of the long-standing issues in conventional spintronics that has not been completely understood. For a nonuniformly-magnetized ferromagnetic metal, we find that the damping is nonlocal and is enhanced as compared to that in the uniform case. It is therefore necessary to generalize the conventional Landau-Lifshitz-Gilbert equation to include the additional damping. In a different vein, the decay mechanism of the uniform precession mode has been investigated. We point out the important role of spin-conserving electron-magnon interaction in the relaxation process by quantitatively examining its contribution to the ferromagnetic resonance linewidth. In the second part, a transport theory is developed for magnons which, in addition to conduction electrons, can also carry and propagate spin angular momentum via the magnon current. We demonstrate that the mutual conversion of magnon current and spin current may take place at magnetic interfaces. We also predict a novel magnon-mediated electric drag effect in a metal/magnetic-insulator/metal trilayer structure. This study may pave the way to the new area of insulator-based spintronics. In the third part of thesis, particular attention is paid to the influence the spin orbit coupling on both charge and spin transport. We theoretically investigate magnetotransport anisotropy and the conversion relations of spin and charge currents in various magnetic systems, and apply our results to interpret recent experiments.
APA, Harvard, Vancouver, ISO, and other styles
3

Mondal, Ritwik. "Relativistic theory of laser-induced magnetization dynamics." Doctoral thesis, Uppsala universitet, Materialteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-315247.

Full text
Abstract:
Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization. In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes all relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin-orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit interaction, the existence of a relativistic interaction that linearly couples the angular momentum of the electromagnetic field and the electron spin. We show this spin-photon interaction to provide the previously unknown origin of the angular magneto-electric coupling, to explain coherent ultrafast magnetism, and to lead to a new torque, the optical spin-orbit torque. (iii) We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory of magnetization dynamics that includes spin currents and show that the nonrelativistic spin currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin currents lead to spin-orbit torques. (v) Using the relativistic framework together with ab initio magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not explain the measured large laser-induced demagnetization. Employing the ab initio relativistic framework, we calculate the amount of magnetization that can be imparted in a material by means of circularly polarized light – the so-called inverse Faraday effect. We show the existence of both spin and orbital induced magnetizations, which surprisingly reveal a different behavior. We establish that the laser-induced magnetization is antisymmetric in the light’s helicity for nonmagnets, antiferromagnets and paramagnets; however, it is only asymmetric for ferromagnets.
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, Konstantin [Verfasser], and Charles [Gutachter] Gould. "Current-induced Magnetization Switching by a generated Spin-Orbit Torque in the 3D Topological Insulator Material HgTe / Konstantin Martin ; Gutachter: Charles Gould." Würzburg : Universität Würzburg, 2021. http://d-nb.info/1236548086/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shokeen, Vishal. "Ultrafast magnetization dynamics in ferromagnetic transition metals : a study of spins thermalization induced by femtosecond optical pulses and of coupled oscillators excited by picosecond acoustic pulses." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE035.

Full text
Abstract:
Dans cette thèse, nous avons étudié la dynamique d'aimantation selon deux échelles de temps en utilisant la technique pompe-sonde magnéto-optique résolue en temps. A l'échelle de la picoseconde, la précession de l'aimantation est induite par des impulsions acoustiques dans des structures multicouches composées de deux couches ferromagnétique séparées par une couche métallique (Ni/Au/Py) avec différentes épaisseurs. La synchronisation de la précession des couches ferromagnétiques couplées a été observée. La modification de la précession de l'aimantation d'une couche de Ni est due l'interaction d'échange intercouche avec la couche Py. A l'échelle de 50fs, nous avons étudié la dynamique magnéto-optique cohérente, athermale, thermale et la relaxation des charges et des spins dans (Ni, Co et Fe) par impulsions de 11 fs dans un régime de faible perturbation. L'interaction spin-orbite et l'interaction d'échange jouent un rôle significatif dans la désaimantation ultrarapide
In this thesis, we have investigated the magnetization dynamics at picosecond and femtosecond time scale using time resolved magneto-optical pump probe technique. At picosecond time scale, the magnetization precession is induced by ultrafast acoustic pulses in a three layered structure with two ferromagnetic layers separated by varying thickness of metallic spacer layer (Ni/Au/Py). The magnetization precession dynamics of the Ni layer is modified due to the interlayer exchange interaction with the Py layer and the synchronized precession of the coupied ferromagnetic layers has been observed. At the timescale of 50fs, coherent magneto-optical, non-thermal, thermal and relaxation dynamics of charges and spins in ferromagnetic transition metals (Ni, Co and Fe) is studied by using 11fs optical pulses in a very low perturbation regime. The spin orbit interaction and exchange interaction play a significant role in the demagnetization of the ferromagnetic metals induced by femtosecond pulses
APA, Harvard, Vancouver, ISO, and other styles
6

Sanches, Piaia Monica. "Femtosecond magneto-optical four-wave mixing in Garnet films." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE024/document.

Full text
Abstract:
Un des objectifs du Femtomagnetisme est de contrôler l’aimantation des matériaux avec des impulsions laser femtoseconde. Il a été démontré qu’une réponse magnéto-optique (MO) cohérente a lieu avant la thermalisation des populations de spins dans une configuration pompe-sonde MOKE. Elle résulte du couplage cohérent spin-photon dû à l’interaction spin-orbite. Une description simplifiée de cet effet a été faite en tenant compte d’un système à huit niveaux couplés au champ laser. La cohérence MO est définie par le temps de déphasage dépendent du champ T2MO. Dans ce travail, il est montré que la réponse MO cohérente d’un grenat dopé au bismuth peut être mesurée directement avec différentes configurations de mélange à quatre ondes MO. L’importance de connaître la phase spectrale de l’impulsion pour obtenir T2MO a été étudié. Avec des impulsions de 10fs dans le proche infra-rouge, une mesure de T2MO donne (2.8+/-1)fs, c. à d., du même ordre de grandeur que le temps de déphasage des charges
One of the goals of Femtomagnetism is to manipulate the magnetization of materials using femtosecond optical pulses. It has been shown in ferromagnetic films that a magneto-optical (MO) coherent response takes place before the thermalization of the spins populations in a pump and probe MOKE experiment. It results from the coherent spin-photon coupling mediated by the spin-orbit interaction. A simplified description of this effect has been made by considering an eight-level system coupled with the laser field. The MO coherence can be defined by the magnetic field dependent dephasing time T2MO. In the present work, it is shown that the coherent MO response of a bismuth-doped garnet can be directly measured in different degenerated MO four-wave mixing configurations. The importance of well-knowing the spectral phase of the pulse to measure T2MO was studied. Using 10fs near infra-red pulses, T2MO was shown to be (2.8+/-1)fs that is of the same order of the charges dephasing time
APA, Harvard, Vancouver, ISO, and other styles
7

Locht, Inka L. M. "Theoretical methods for the electronic structure and magnetism of strongly correlated materials." Doctoral thesis, Uppsala universitet, Materialteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-308699.

Full text
Abstract:
In this work we study the interesting physics of the rare earths, and the microscopic state after ultrafast magnetization dynamics in iron. Moreover, this work covers the development, examination and application of several methods used in solid state physics. The first and the last part are related to strongly correlated electrons. The second part is related to the field of ultrafast magnetization dynamics. In the first part we apply density functional theory plus dynamical mean field theory within the Hubbard I approximation to describe the interesting physics of the rare-earth metals. These elements are characterized by the localized nature of the 4f electrons and the itinerant character of the other valence electrons. We calculate a wide range of properties of the rare-earth metals and find a good correspondence with experimental data. We argue that this theory can be the basis of future investigations addressing rare-earth based materials in general. In the second part of this thesis we develop a model, based on statistical arguments, to predict the microscopic state after ultrafast magnetization dynamics in iron. We predict that the microscopic state after ultrafast demagnetization is qualitatively different from the state after ultrafast increase of magnetization. This prediction is supported by previously published spectra obtained in magneto-optical experiments. Our model makes it possible to compare the measured data to results that are calculated from microscopic properties. We also investigate the relation between the magnetic asymmetry and the magnetization. In the last part of this work we examine several methods of analytic continuation that are used in many-body physics to obtain physical quantities on real energies from either imaginary time or Matsubara frequency data. In particular, we improve the Padé approximant method of analytic continuation. We compare the reliability and performance of this and other methods for both one and two-particle Green's functions. We also investigate the advantages of implementing a method of analytic continuation based on stochastic sampling on a graphics processing unit (GPU).
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Tzu-Cheng, and 王子政. "First principle study of anomalous Hall effect and orbital magnetization in non-collinear antiferromagnets Mn3X (X=Rh, Ir, Pt, Ga, Ge, Sn)." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/bnq8tq.

Full text
Abstract:
碩士
國立臺灣大學
物理學研究所
105
The anomalous Hall effect (AHE) can be considered as a kind of Hall effect without external magnetic field. It has been thought to be present only in ferromagnetic conductors, with its size being proportional to the net magnetization. Using the Berry phase concept and first principle calculations, physicists recently demonstrated that large AHE may appear in noncollinear antiferromagnets, which is driven by the non-vanishing Berry curvature because of the symmetry breaking of their magnetic configuration and spin-orbit coupling. While the spintronics are becoming promising, the understanding of the antiferromagnets are of interest for its development. In this thesis, we study the electronic and magnetic structure of the noncollinear antiferromagnets Mn3X (X=Ga, Ge, Sn, Ir, Rh, Pt) by first principles density functional theory calculations. At broken-symmetry direction, the anomalous Hall conductivity is about 100 to 300 (S/cm), which has the same order as the normal ferromagnetic iron. We also study their orbital magnetization by modern theory of orbital magnetization. The magnitude of orbital magnetization in Mn3Rh, Mn3Ir and Mn3Pt is equivalent to spin magnetization. As for Mn3Ga, Mn3Ge and Mn3Sn, their orbital magnetization is even larger than spin magnetization. The results could explain that the weak ferromagnetism observed in experiments, is caused by the orbital contribution, instead of the spin contribution that dominates the magnetization in most of the magnetic system.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Hang. "Spin Orbit Torque in Ferromagnetic Semiconductors." Diss., 2016. http://hdl.handle.net/10754/614071.

Full text
Abstract:
Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read' and `write' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall effect on spin orbit torque in nanoribbons with a hexagonal lattice. We find a dramatic modification of the nature of the torque (field like and damping-like component) when crossing the topological phase transition. The relative agnitude of the two torque components can be significantly modifies by changing the magnetization direction. Finally, motivated by recent experimental results, we conclude by investigating the features of spin-orbit torque in magnetic transition metal dichalcogenides. We find the torque is associated with the valley polarization. By changing the magnetization direction, the torque can be changed from a finite value to zero when the valley polarization decreases from a finite value to zero.
APA, Harvard, Vancouver, ISO, and other styles
10

Hache, Toni. "Frequency control of auto-oscillations of the magnetization in spin Hall nano-oscillators." 2020. https://monarch.qucosa.de/id/qucosa%3A74194.

Full text
Abstract:
This thesis experimentally demonstrates four approaches of frequency control of magnetic auto-oscillations in spin Hall nano-oscillators (SHNOs). The frequency can be changed in the GHZ-range by external magnetic fields as shown in this work. This approach uses large electromagnets, which is inconvenient for future applications. The nonlinear coupling between oscillator power and frequency can be used to control the latter one by changing the applied direct current to the SHNO. The frequency can be controlled over a range of several 100 MHz as demonstrated in this thesis. The first part of the experimental chapter demonstrates the synchronization (injection-locking) between magnetic auto-oscillations and an external microwave excitation. The additionally applied microwave current generates a modulation of the effective magnetic field, which causes the interaction with the auto-oscillation. Both synchronize over a range of several 100 MHz. In this range, the auto-oscillation frequency can be controlled by the external stimulus. An increase of power and a decrease of line width is achieved in the synchronization range. This is explained by the increased coherence of the auto-oscillations. A second approach is the synchronization of auto-oscillations to an alternating magnetic field. This field is generated by a freestanding antenna, which is positioned above the SHNO. The second part of the experimental chapter introduces a bipolar concept of SHNOs and its experimental demonstration. In contrast to conventional SHNOs, bipolar SHNOs generate auto-oscillations for both direct current polarities and both directions of the external magnetic field. This is achieved by combining two ferromagnetic layers in an SHNO. The combination of two different ferromagnetic materials is used to switch between two frequency ranges in dependence of the direct current polarity since it defines the layer showing auto-oscillations. This approach can be used to change the frequency in the GHz-range by switching the direct current polarity.
Diese Arbeit demonstriert experimentell vier verschiedene Methoden der Frequenzkontrolle magnetischer Auto-Oszillationen in Spin Hall Nano-Oszillatoren (SHNOs). Durch externe magnetische Felder kann die Frequenz im GHz-Bereich geändert werden, wie es in dieser Arbeit gezeigt wird. Dies erfordert jedoch große Elektromagneten, deren Nutzung für zukünftige Anwendungen der SHNOs nicht geeignet sind. Aufgrund der nichtlinearen Kopplung zwischen Oszillatorleistung und Oszillatorfrequenz, lässt sich letztere durch den Versorgungsstrom beeinflussen. Dies ist typischerweise in einem Bereich von mehreren 100 MHz möglich, wie es an mehreren Stellen dieser Arbeit gezeigt wird. Im ersten Abschnitt des Ergebnisteils wird die Synchronisation der magnetischen Auto-Oszillationen zu einer externen Mikrowellenanregung demonstriert. Der zusätzlich eingespeiste Mikrowellenstrom erzeugt eine Modulation des effektiven Magnetfelds, was zur Wechselwirkung mit den Auto-Oszillationen führt. Diese synchronisieren über eine Frequenzdifferenz von mehreren 100 MHz. In diesem Bereich lässt sich die Frequenz der Auto-Oszillation mit der äußeren Frequenz steuern. Innerhalb des Synchronisationsbereichs wird außerdem eine Erhöhung der Leistung und eine Verringerung der Linienbreite der Auto-Oszillationen festgestellt. Dies wird mit einer Erhöhung der Kohärenz der Auto-Oszillationen erklärt. Neben der zusätzlichen Einspeisung eines Mikrowellenstroms können die Auto-Oszillationen auch zu einem magnetischen Wechselfeld synchronisieren, welches von einer frei beweglichen Antenne erzeugt wird, die über dem SHNO positioniert wird. Im zweiten Abschnitt des Ergebnisteils wird ein bipolares Konzept eines SHNO vorgestellt und seine Funktionsfähigkeit experimentell nachgewiesen. Im Vergleich zu konventionellen SHNOs erzeugen bipolare SHNOs Auto-Oszillationen für beide Polaritäten des elektrischen Versorgungsstroms und beide Richtungen des externen Magnetfelds. Dies wird durch die Kombination zweier ferromagnetischer Lagen in einem SHNO erreicht. Die Kombination unterschiedlicher ferromagnetischer Materialien kann genutzt werden, um die Mikrowellenfrequenz in Abhängigkeit der Stromrichtung zu ändern, da diese bestimmt in welcher Lage die Auto-Oszillationen erzeugt werden können. Durch eine geeignete Materialkombination kann die Frequenz im GHz-Bereich geändert werden, wenn die Strompolarität umgekehrt wird.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Orbital Magnetization"

1

Lovesey, S. W. The orbital magnetization of a matt insulator V2 O3: Revealed by resonant x-ray Bragg diffraction. Chilton: Rutherford Appleton Laboratory, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vanderbilt, David. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators. Cambridge University Press, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Launay, Jean-Pierre, and Michel Verdaguer. The localized electron: magnetic properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0002.

Full text
Abstract:
After preliminaries about electron properties, and definitions in magnetism, one treats the magnetism of mononuclear complexes, in particular spin cross-over, showing the role of cooperativity and the sensitivity to external perturbations. Orbital interactions and exchange interaction are explained in binuclear model systems, using orbital overlap and orthogonality concepts to explain antiferromagnetic or ferromagnetic coupling. The phenomenologically useful Spin Hamiltonian is defined. The concepts are then applied to extended molecular magnetic systems, leading to molecular magnetic materials of various dimensionalities exhibiting bulk ferro- or ferrimagnetism. An illustration is provided by Prussian Blue analogues. Magnetic anisotropy is introduced. It is shown that in some cases, a slow relaxation of magnetization arises and gives rise to appealing single-ion magnets, single-molecule magnets or single-chain magnets, a route to store information at the molecular level.
APA, Harvard, Vancouver, ISO, and other styles
4

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Applications of Density Functional Theory. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0003.

Full text
Abstract:
In this chapter we give examples of how density functional theory describes some of the most basic magnetic properties of a material. This involves spin and orbital moments, Heisenberg exchange parameters and magnetic form factors. Relativistic effects couple spin and orbital space and make magnetic materials anisotropic, which means that the ground state magnetization is oriented parallel or perpendicular to high symmetry directions of the crystalline structure. We also illustrate how well density functional theory describes cohesive properties and how magnetism influence these properties. These examples serve to give a general picture of how well density functional theory, as described in the previous chapters, can reproduce relevant features of magnetic materials, as well as to illustrate that the onset of spin-polarization can have drastic influence on all properties of a material.
APA, Harvard, Vancouver, ISO, and other styles
5

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.

Full text
Abstract:
The purpose of this book is to provide a theoretical foundation and an understanding of atomistic spin-dynamics, and to give examples of where the atomistic Landau-Lifshitz-Gilbert equation can and should be used. The contents involve a description of density functional theory both from a fundamental viewpoint as well as a practical one, with several examples of how this theory can be used for the evaluation of ground state properties like spin and orbital moments, magnetic form-factors, magnetic anisotropy, Heisenberg exchange parameters, and the Gilbert damping parameter. This book also outlines how interatomic exchange interactions are relevant for the effective field used in the temporal evolution of atomistic spins. The equation of motion for atomistic spin-dynamics is derived starting from the quantum mechanical equation of motion of the spin-operator. It is shown that this lead to the atomistic Landau-Lifshitz-Gilbert equation, provided a Born-Oppenheimer-like approximation is made, where the motion of atomic spins is considered slower than that of the electrons. It is also described how finite temperature effects may enter the theory of atomistic spin-dynamics, via Langevin dynamics. Details of the practical implementation of the resulting stochastic differential equation are provided, and several examples illustrating the accuracy and importance of this method are given. Examples are given of how atomistic spin-dynamics reproduce experimental data of magnon dispersion of bulk and thin-film systems, the damping parameter, the formation of skyrmionic states, all-thermal switching motion, and ultrafast magnetization measurements.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Orbital Magnetization"

1

Resta, Raffaele. "Electrical Polarization and Orbital Magnetization: The Position Operator Tamed." In Handbook of Materials Modeling, 151–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44677-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Resta, Raffaele. "Electrical Polarization and Orbital Magnetization: The Position Operator Tamed." In Handbook of Materials Modeling, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42913-7_12-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wiegers, S., E. Bibow, L. P. Lévy, V. Bayot, M. Simmons, and M. Shayegan. "Magnetization and Orbital Properties of the Two-Dimensional Electron Gas in the Quantum Limit." In Exotic States in Quantum Nanostructures, 99–138. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9974-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van der Laan, Gerrit. "Magnetic X-Ray Dichroism. An Effective way to Study the Spin and Orbital Magnetization in Magnetic Materials." In Polarized Electron/Polarized Photon Physics, 295–309. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1418-7_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Korostil, A. M., and M. M. Krupa. "Magnetization in Nanostructures with Strong Spin–Orbit Interaction." In Springer Proceedings in Physics, 35–102. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18543-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bhowmik, Debanjan, OukJae Lee, Long You, and Sayeef Salahuddin. "Magnetization Switching and Domain Wall Motion Due to Spin Orbit Torque." In Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing, 165–87. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118869239.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Newnham, Robert E. "Magnetic phenomena." In Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0016.

Full text
Abstract:
In this chapter we deal with a number of magnetic properties and their directional dependence: pyromagnetism, magnetic susceptibility, magnetoelectricity, and piezomagnetism. In the course of dealing with these properties, two new ideas are introduced: magnetic symmetry and axial tensors. Moving electric charge generates magnetic fields and magnetization. Macroscopically, an electric current i flowing in a coil of n turns per meter produces a magnetic field H = ni amperes/meter [A/m]. On the atomic scale, magnetization arises from unpaired electron spins and unbalanced electronic orbital motion. The weber [Wb] is the basic unit of magnetic charge m. The force between two magnetic charges m1 and m2 is where r is the separation distance and μ0 (=4π×10−7 H/m) is the permeability of vacuum. In a magnetic field H, magnetic charge experiences a force F = mH [N]. North and south poles (magnetic charges) separated by a distance r create magnetic dipole moments mr [Wb m]. Magnetic dipole moments provide a convenient way of picturing the atomistic origins arising from moving electric charge. Magnetization (I) is the magnetic dipole moment per unit volume and is expressed in units of Wb m/m3 = Wb/m2. The magnetic flux density (B = I + μ0H) is also in Wb/m2 and is analogous to the electric displacement D. All materials respond to magnetic fields, producing a magnetization I = χH, and a magnetic flux density B = μH where χ is the magnetic susceptibility and μ is the magnetic permeability. Both χ and μ are in henries/m (H/m). The permeability μ = χ + μ0 and is analogous to electric permittivity. χ and μ are sometimes expressed as dimensionless quantities (x ̅ and μ ̅ and ) like the dielectric constant, where = x ̅/μ0 and = μ ̅/μ0. Other magnetic properties will be defined later in the chapter. A schematic view of the submicroscopic origins of magnetic phenomena is presented in Fig. 14.1. Most materials are diamagnetic with only a weak magnetic response induced by an applied magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
8

"14. Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids." In Superconductors at the Nanoscale, 441–72. De Gruyter, 2017. http://dx.doi.org/10.1515/9783110456806-015.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Orbital Magnetization"

1

Amano, T., Y. Kawakami, H. Itoh, T. Aoyama, Y. Imai, K. Ohgushi, Y. Nakamura, H. Kishida, K. Yonemitsu, and S. Iwai. "Ultrafast magnetization driven by spiral current in Kitaev spin liquid α-RuCl3." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu2a.2.

Full text
Abstract:
In a honeycomb-lattice Mott insulator α-RuCl3, an ultrafast magnetization is induced by circularly polarized excitation of spin-orbit excitons. An ultrafast 6-fs measurement clarifies that the orbital moment emerges from a coherent inter-orbital charge motion.
APA, Harvard, Vancouver, ISO, and other styles
2

Crawford, David A. "Simulations of Magnetic Fields Produced by Asteroid Impact: Possible Implications for Planetary Paleomagnetism." In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-032.

Full text
Abstract:
Abstract The origin and evolution of the Moon's magnetic field has been a major question in lunar science ever since Luna 1 made the first magnetic measurements in the vicinity of the Moon in 1959. Orbital measurements show that the magnetic field at the surface of the Moon has local scale lengths on the order of 1-100 km. While this could suggest a correlation with impact craters, most lunar magnetic anomalies don’t appear to correlate with known geologic structures, including impacts [1]. However, the magnetic field produced by impact events are spatially and temporally complex. Add in the complexity of remanence acquisition (localized regions of heating/cooling and/or shock that can produce remanence in the presence of a magnetic field) and we have the potential for a complex pattern to emerge. Wieczorek et al. [1] showed just how such complexity may play out. In their simulations, some lunar magnetic anomalies may be caused by regions of concentrated magnetic materials associated with fragments of the South Pole-Aitken impactor, especially if the impactor was differentiated with an iron core. More recently, Oliveira et al. [2] showed that magnetic anomalies associated with five large lunar basins may be caused by impact melt sheets that cooled in the presence of an early lunar dynamo. In this paper we will look at an alternative explanation for many lunar anomalies that doesn’t require the presence of a lunar dynamo. At least some lunar anomalies may be associated with a deeper, thicker yet more varied region of magnetization acquired by rocks that became hot and cooled rapidly enough during crater formation to have acquired the transient magnetic field produced by the impact itself.
APA, Harvard, Vancouver, ISO, and other styles
3

Hoffmann, Axel F., Wei Zhang, Joseph Sklenar, Matthias Benjamin Jungfleisch, Wanjun Jiang, Bo Hsu, Jiao Xiao, et al. "Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)." In Spintronics IX, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2238782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Lijun, D. C. Ralph, and R. A. Buhrman. "Switching Current Density of Perpendicular Magnetization by Spin-Orbit Torque." In 2021 IEEE 32nd Magnetic Recording Conference (TMRC). IEEE, 2021. http://dx.doi.org/10.1109/tmrc53175.2021.9605123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, S. Z., J. Q. Lu, W. X. Li, L. Z. Wang, H. Zhang, X. Li, K. L. Wang, and W. S. Zhao. "Field-Free Switching of Perpendicular Magnetization through Voltage-Gated Spin-Orbit Torque." In 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019. http://dx.doi.org/10.1109/iedm19573.2019.8993513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ohya, Shinobu, Miao Jiang, Hirokatsu Asahara, Shoichi Sato, and Masaaki Tanaka. "Efficient spin-orbit-torque magnetization switching in a spin-orbit ferromagnetic-semiconductor (Ga,Mn)As single layer." In Spintronics XIV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2595843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, S., and W. Lew. "Chiral Magnetization Switching Induced by Spin Orbit Torque in Pt/Co/Ta Structure." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, L., X. Xu, K. Meng, Y. Wu, J. Miao, and Y. Jiang. "Spin-Orbit Torque Induced Magnetization Switching In Co/Pt Multilayer-based Synthetic Antiferromagnets." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Zuwei, Zhaohao Wang, Yang Liu, and Weisheng Zhao. "Micromagnetic Simulation of Spin-Orbit Torque Induced Ultrafast Switching of In-Plane Magnetization." In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Zhaohao, Zuwei Li, Yang Liu, Simin Li, Liang Chang, Wang Kang, Youguang Zhang, and Weisheng Zhao. "Progresses and challenges of spin orbit torque driven magnetization switching and application (Invited)." In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography