To see the other types of publications on this topic, follow the link: Orbit motion limited.

Journal articles on the topic 'Orbit motion limited'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Orbit motion limited.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yao, Peter, and Timothy Sands. "Micro Satellite Orbital Boost by Electrodynamic Tethers." Micromachines 12, no. 8 (July 31, 2021): 916. http://dx.doi.org/10.3390/mi12080916.

Full text
Abstract:
In this manuscript, a method for maneuvering a spacecraft using electrically charged tethers is explored. The spacecraft’s velocity vector can be modified by interacting with Earth’s magnetic field. Through this method, a spacecraft can maintain an orbit indefinitely by reboosting without the constraint of limited propellant. The spacecraft-tether system dynamics in low Earth orbit are simulated to evaluate the effects of Lorentz force and torques on translational motion. With 500-meter tethers charged with a 1-amp current, a 100-kg spacecraft can gain 250 m of altitude in one orbit. By evaluating the combined effects of Lorenz force and the coupled effects of Lorentz torque propagation through Euler’s moment equation and Newton’s translational motion equations, the simulated spacecraft-tether system can orbit indefinitely at altitudes as low as 275 km. Through a rare evaluation of the nonlinear coupling of the six differential equations of motion, the one finding is that an electrodynamic tether can be used to maintain a spacecraft’s orbit height indefinitely for very low Earth orbits. However, the reboost maneuver is inefficient for high inclination orbits and has high electrical power requirement. To overcome greater aerodynamic drag at lower altitudes, longer tethers with higher power draw are required.
APA, Harvard, Vancouver, ISO, and other styles
2

Muzzio, J. C., F. C. Wachlin, and D. D. Carpintero. "Regular and Chaotic Motion in a Restricted Three–Body Problem of Astrophysical Interest." International Astronomical Union Colloquium 174 (2000): 281–85. http://dx.doi.org/10.1017/s0252921100055123.

Full text
Abstract:
AbstractWe have studied the motion of massless particles (stars) bound to a stellar system (a galactic satellite) that moves on a circular orbit in an external field (a galaxy). A large percentage of the stellar orbits turned out to be chaotic, contrary to what happens in the usual restricted three–body problem of celestial mechanics where most of the orbits are regular. The discrepancy is probably due to three facts: 1) Our study is not limited to orbits on the main planes of symmetry, but considers three–dimensional motion; 2) The force exerted by the satellite goes to zero (rather than to infinity) at the center of the satellite; 3) The potential of the satellite is triaxial, rather than spherical.
APA, Harvard, Vancouver, ISO, and other styles
3

DVORAK, RUDOLF. "THE ROLE OF RESONANCES IN PLANETARY SYSTEMS." International Journal of Bifurcation and Chaos 16, no. 06 (June 2006): 1633–44. http://dx.doi.org/10.1142/s021812740601557x.

Full text
Abstract:
This paper reviews the important role of resonances in the structure of planetary systems. After a short introduction to the basics of orbital dynamics of motion in resonances we describe the dynamics of our planetary systems and also of extrasolar planetary systems, where up to now more than 100 are known. In our planetary system the planets move in quite regular orbits with small eccentricities although it was found that the motion of the inner planets is "slightly" chaotic on time scales of tenths of millions of years. The quasi regularity (close to so-called quasi-periodic motion on a torus) is not true for the small bodies: the main belt of asteroids between Mars and Jupiter with gaps for special values of semimajor axes on one hand and with families of many small bodies on the other, is sculpted due to the presence of first mean motion resonances with Jupiter and second secular resonances with long-periodic motions of the nodes and perihelia of Jupiter and Saturn. In extrasolar systems the planets — rather surprisingly — are found to move sometimes in very high eccentric orbits when they are at distances comparable to the size of our planets. Because of our still limited observational techniques using indirect methods we have only discovered massive planets comparable to the size of Jupiter. When these planets orbit alone around their host star our research aims at the possibility of additional terrestrial planets moving in such a system. Because of mostly large eccentricities here the resonances are, in contrary to our planets, essential for the stability of orbits, and may protect or destroy an orbit. On the other hand, in multiple planetary systems we concentrate on the stability of their orbits as they are observed: a very interesting new result is that most of these multiple planetary systems with high eccentric orbits move in resonances with a special configuration which protects them from close encounters although these orbits are crossing.
APA, Harvard, Vancouver, ISO, and other styles
4

Wan, Neng, Ming Liu, and Hamid Reza Karimi. "Observer-Based Robust Control for Spacecraft Rendezvous with Thrust Saturation." Abstract and Applied Analysis 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/710850.

Full text
Abstract:
This paper proposes an observer-based robust guaranteed cost control method for thrust-limited rendezvous in near-circular orbits. Treating the noncircularity of the target orbit as a parametric uncertainty, a linearized motion model derived from the two-body problem is adopted as the controlled plant. Based on this model, a robust guaranteed cost observer-controller is synthesized with a less conservative saturation control law, and sufficient condition for the existence of this observer-based rendezvous controller is derived. Finally, an illustrative example with immeasurable velocity states is presented to demonstrate the advantages and effectiveness of the control scheme.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Guo Wei, Bin Tang, Liang Sun, and Xing Min Zhang. "Effect and Control of Pendular Motion of Abandoned Satellite on Tether Drag System." Applied Mechanics and Materials 513-517 (February 2014): 3900–3906. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3900.

Full text
Abstract:
As a kind of typical on-orbit capture and aberrance technology, space tether de-orbit system has broad application prospect in terms of cleaning space debris and abandoned satellites. In the paper, the attitude dynamics equations of the tether de-orbit system is established based on law of moment of momentum; Against the background of de-orbiting under a constant thrust in the tangential direction, the optimized PD control law with limited attitude feedback on jet control and momentum wheel control is designed for the mission satellite; The oscillation characteristics of the attitude of abandoned satellite are studied, and the effect of the oscillation on the tethered system and based satellite are analyzed; According to the demand for maintaining the position and suppressing the oscillation of the abandoned satellite, a kind of tension control method is put forward. Numerical simulation results indicate that the abandoned satellite oscillates at a specific angular frequency, and the large amplitude threatens the stabilization of tethered system; the designed tension control method effectively eliminate the oscillation of the abandoned satellite and ensure the flight safety of the tether de-orbit system, with economic energy consumption for the control of the based satellite.
APA, Harvard, Vancouver, ISO, and other styles
6

Pilch, I., D. Söderström, M. I. Hasan, U. Helmersson, and N. Brenning. "Fast growth of nanoparticles in a hollow cathode plasma through orbit motion limited ion collection." Applied Physics Letters 103, no. 19 (November 4, 2013): 193108. http://dx.doi.org/10.1063/1.4828883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Ruihong, Zhongguo Song, Jinsheng Zhang, and Xiaoli Xi. "A fast cold-start method of GPS receiver based on satellite orbit prediction." MATEC Web of Conferences 198 (2018): 06005. http://dx.doi.org/10.1051/matecconf/201819806005.

Full text
Abstract:
Time to first fix (TTFF) is one of the crucial indicators to evaluate the performance of a GPS receiver. In this paper, an orbit prediction algorithm to reduce the TTFF of GPS receivers without a network connection is presented. Satellite orbit is predicted by numerically integrating the satellite’s equation of motion. Satellite’s initial position and velocity value, as well as the Earth’s polar motion parameters, used in prediction correspond to the locally collected previous broadcast ephemeris. As the solar radiation pressure (SRP) is one of the most critical factors causing orbit prediction error, an empirical SRP model with two parameters that change with the movement of satellite and Earth is also described. The presented algorithm is verified by GPS satellites using the initial conditions divided from three groups of broadcast ephemeris data. Simulation results show that, with the SRP model described in this paper the satellite’s position error limited to 30 meters within 7 days prediction.
APA, Harvard, Vancouver, ISO, and other styles
8

Sukhanov, A. A., and A. F. B. A. Prado. "Low-Thrust Orbital Transfers in the Two-Body Problem." Mathematical Problems in Engineering 2012 (2012): 1–20. http://dx.doi.org/10.1155/2012/905209.

Full text
Abstract:
Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case of a large number of the orbits around the attracting center; no averaging is necessary in this case. The suggested method also is applicable to the cases of partly given final orbit and if there are constraints on the thrust direction. The method gives an optimal solution to the linearized problem which is not optimal for the original nonlinear problem; the difference between the optimal solutions to the original and linearized problems is estimated using a numerical example. Also examples illustrating the method capacities are given.
APA, Harvard, Vancouver, ISO, and other styles
9

Wan, Neng, Ming Liu, and Hamid Reza Karimi. "Robust Tracking Control for Rendezvous in Near-Circular Orbits." Mathematical Problems in Engineering 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/726945.

Full text
Abstract:
This paper investigates a robust guaranteed cost tracking control problem for thrust-limited spacecraft rendezvous in near-circular orbits. Relative motion model is established based on the two-body problem with noncircularity of the target orbit described as a parameter uncertainty. A guaranteed cost tracking controller with input saturation is designed via a linear matrix inequality (LMI) method, and sufficient conditions for the existence of the robust tracking controller are derived, which is more concise and less conservative compared with the previous works. Numerical examples are provided for both time-invariant and time-variant reference signals to illustrate the effectiveness of the proposed control scheme when applied to the terminal rendezvous and other astronautic missions with scheduled states signal.
APA, Harvard, Vancouver, ISO, and other styles
10

BERBRI, ABDERREZAK, and MOULOUD TRIBECHE. "A note on the trapped electron dust grain current." Journal of Plasma Physics 75, no. 5 (October 2009): 587–91. http://dx.doi.org/10.1017/s0022377809990110.

Full text
Abstract:
AbstractIt is shown that when the non-isothermal trapped electron current is rederived based on the orbit-limited motion theory, the variable dust charge can be expressed in terms of the Lambert function. One can then take advantage of this new transcendental function to illustrate how variable-charge nonlinear trapped dust modes can be investigated semi-analytically.
APA, Harvard, Vancouver, ISO, and other styles
11

Pankratov, I. A., Ya G. Sapunkov, and Yu N. Chelnokov. "Quaternion Models and Algorithms of Solving the General Problem of Energetically Optimal Spacecraft Orbit Reorientation." Mekhatronika, Avtomatizatsiya, Upravlenie 20, no. 8 (August 8, 2019): 498–503. http://dx.doi.org/10.17587/mau.20.498-503.

Full text
Abstract:
The problem of optimal reorientation of the spacecraft orbit is considered in quaternion formulation. Control (vector of the acceleration of the jet thrust) is limited in magnitude. It is required to determine the optimal orientation of the vector of the acceleration in space to solve the problem. It is necessary to minimize the energy consumption of the process of reorientation of the spacecraft orbit. We used quaternion differential equation of the orientation of the spacecraft orbit to describe the motion of the center of mass of the spacecraft. The problem was solved using the maximum principle of L. S. Pontryagin. We simplified the differential equations of the problem using known partial solution of the equation for the variable conjugated to true anomaly. The problem of optimal reorientation of the spacecraft orbit was reduced to a boundary value problem with a moving right end of the trajectory described by a system of nonlinear differential equations of fifteenth order. For the numerical solution of the obtained boundary value problem the transition to dimensionless variables was carried out. At the same time a characteristic dimensionless parameter of the problem appeared in the phase and conjugate equations. We constructed an original numerical algorithm for finding unknown initial values of conjugate variables. The algorithm is a combination of Runge-Kutta 4th order method and two methods for solving boundary value problems: modified Newton method and gradient descent method. The using of these two methods for solving boundary value problems has improved the accuracy of the solution of the investigated boundary value problem of optimal control. Examples of numerical solution of the problem are given for the cases when the difference (in angular measure) between initial and final orientations of the spacecraft orbit is equals to a few (or tens of) degrees. Graphs of changes component of the quaternion of the spacecraft orbit orientation; variables characterizing the shape and dimensions of the spacecraft orbit; optimal control are plotted. The analysis of the obtained solutions is given. The features and regularities of the process of optimal reorientation of the spacecraft orbit are established. We found that when the difference between initial and final spacecraft orbits is small there is a one point of extremum for the eccentricity of the spacecraft orbit and for modulo of the vector of orbital velocity moment of the spacecraft. And there are a few points of local extremum for these functions when the difference between initial and final spacecraft orbits is large.
APA, Harvard, Vancouver, ISO, and other styles
12

TRIBECHE, MOULOUD. "Large-amplitude electrostatic solitary structures in dusty plasmas with vortex-like variable charge dust distribution and non-isothermal trapped electrons." Journal of Plasma Physics 75, no. 2 (April 2009): 259–72. http://dx.doi.org/10.1017/s0022377808007654.

Full text
Abstract:
AbstractThe recent analysis of large-amplitude solitary potentials in a charge varying dusty plasma with trapped dust particles (Tribeche, M. 2005 Phys. Plasmas12, 072304) is extended to include the electron trapping self-consistently. The non-isothermal trapped electron charging is investigated based on the orbit motion limited approach. It is found that the nonlinear localized potential structure enlarges when the electrons deviate from isothermality. The effect of this deviation is more significant under certain conditions. The dust particles are locally expelled and pushed out of the region of soliton localization as the electrons evolve far away from their thermodynamic equilibrium.
APA, Harvard, Vancouver, ISO, and other styles
13

Solórzano, Carlos Renato Huaura, Antonio Fernando Bertachini de Almeida Prado, and Alexander Alexandrovich Sukhanov. "Analysis of Electric Propulsion System for Exploration of Saturn." Mathematical Problems in Engineering 2009 (2009): 1–14. http://dx.doi.org/10.1155/2009/756037.

Full text
Abstract:
Exploration of the outer planets has experienced new interest with the launch of the Cassini and the New Horizons Missions. At the present time, new technologies are under study for the better use of electric propulsion system in deep space missions. In the present paper, the method of the transporting trajectory is used to study this problem. This approximated method for the flight optimization with power-limited low thrust is based on the linearization of the motion of a spacecraft near a keplerian orbit that is close to the transfer trajectory. With the goal of maximizing the mass to be delivered in Saturn, several transfers were studied using nuclear, radioisotopic and solar electric propulsion systems.
APA, Harvard, Vancouver, ISO, and other styles
14

Schmit, Timothy J., Jun Li, Steven A. Ackerman, and James J. Gurka. "High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit." Journal of Atmospheric and Oceanic Technology 26, no. 11 (November 1, 2009): 2273–92. http://dx.doi.org/10.1175/2009jtecha1248.1.

Full text
Abstract:
Abstract The first of the next-generation series of the Geostationary Operational Environmental Satellite (GOES-R) is scheduled for launch in 2015. The new series of GOES will not have an infrared (IR) sounder dedicated to acquiring high-vertical-resolution atmospheric temperature and humidity profiles. High-spectral-resolution sensors have a much greater vertical-resolving power of temperature, moisture, and trace gases than low-spectral-resolution sensors. Because of coarse vertical resolution and limited accuracy in the legacy sounding products from the current GOES sounders, placing a high-spectral-resolution IR sounder with high temporal resolution in the geostationary orbit can provide nearly time-continuous three-dimensional moisture and wind profiles. This would allow substantial improvements in monitoring the mesoscale environment for severe weather forecasting and other applications. Application areas include nowcasting (and short-term forecasts) and numerical weather prediction, which require products such as atmospheric moisture and temperature profiles as well as derived parameters, clear-sky radiances, vertical profiles of atmospheric motion vectors, sea surface temperature, cloud-top properties, and surface properties. Other application areas include trace gases/air quality, dust detection and characterization, climate, and calibration. This paper provides new analysis that further documents the available information regarding the anticipated improvements and their benefits.
APA, Harvard, Vancouver, ISO, and other styles
15

Aminov, Rufat, Alexander Shmyrov, and Vasily Shmyrov. "Impulse control flight to the invariant manifold near collinear libration point." Cybernetics and Physics, Volume 8, 2019, Number 2 (September 30, 2019): 51–57. http://dx.doi.org/10.35470/2226-4116-2019-8-2-51-57.

Full text
Abstract:
We consider the special problem of flight from near-Earth orbit to a neighborhood of first collinear libration point of the Sun-Earth system. For such flight the numerical experiments substantiate the adequacy of the model of Hill’s equations, which is the nonlinear approximation of equations of circular limited three-body problem. Otherwise, we would be obliged to use the model of limited three-body problem (or its approximation) in conjunction with the model of two-body problem for modeling of motion. During of approach to the neighborhood of libration point (in space of positions), the series of impulse controls are implemented. Controls are built on the basis of equations in variations. The purpose of implementing presented controls is hitting the manifold, where a spacecraft will be as long as possible in the linear case. This manifold is achieved when the special functions of phase variables is equal to zero. All the presented studies are illustrated in detail.
APA, Harvard, Vancouver, ISO, and other styles
16

Kwok, R. "Satellite remote sensing of sea-ice thickness and kinematics: a review." Journal of Glaciology 56, no. 200 (2010): 1129–40. http://dx.doi.org/10.3189/002214311796406167.

Full text
Abstract:
AbstractObservations of sea-ice thickness and kinematics are essential for understanding changes in sea-ice mass balance, interactions between the ice cover and the ocean and atmosphere and for improving projections of sea-ice response in a warming climate. These parameters are not directly observable with current sensor technology, but are derived from satellite altimetry and imagery. While there is progress in the retrievals of Arctic sea-ice thickness from satellite altimetry, approaches to address Southern Ocean ice thickness require additional attention. On the other hand, procedures to derive sea-ice motion from satellite imagery are more mature and better understood and have been employed to produce useful results for more than a decade. Adequate sampling of sub-daily ice motion, however, remains a challenge. Generally, satellite instruments provide large-scale coverage but the frequency of temporal sampling is limited by orbit characteristics. In this review, I focus on the approaches, uncertainties, sampling limitations and validation issues associated with the estimation of sea-ice thickness and motion. I provide a summary of current and anticipated capabilities for monitoring sea-ice thickness and kinematics from space. The prospects for continuing these measurements into the next decade, from a satellite remote-sensing perspective, are discussed.
APA, Harvard, Vancouver, ISO, and other styles
17

Marsden, Brian G. "Astrometry and Orbits of Asteroids and Comets." Highlights of Astronomy 9 (1992): 721–24. http://dx.doi.org/10.1017/s1539299600010170.

Full text
Abstract:
Astronomers have been consciously making positional observations of comets since the sixteenth century, and rough information on bright comets is available from social records collected in the Far East, the Middle East and Europe over the previous two millennia. Attempts at representing the observations with orbits also date back to the sixteenth century, well before the earliest computations were made on the basis of gravitational theory. Improvement in the accuracy of cometary astrometric data was slow to develop following the invention of the telescope and, a few decades later, the micrometer, for this had to await the availability of Flamsteed’s star catalogue and the understanding brought about by Bradley’s discovery of aberration and nutation. In spite of important contributions by some of the most celebrated scientists of the eighteenth century, orbit computation remained largely a process of trial and error until the discovery of the first asteroids and the rise of Gauss and his followers. By the 1880s the availability of a dense star catalogue like the AGK1 was allowing micrometric observations of comets and asteroids often to achieve an accuracy of 2 to 3 arcsec, and the subsequent introduction of photographic astrometry brought convenience but relatively little additional improvement in accuracy. The use nowadays of charge-coupled devices clearly has the potential for a further increase in accuracy, even for diffuse objects like comets, but for the moment the accuracy tends generally to be limited by the inadequacy of the available star catalogues. Modern orbit determination routinely includes the use of sophisticated techniques to identify isolated observations of the same asteroid at different oppositions and in the case of a comet the examination of the nongravitational effects that can strongly influence the object’s motion.
APA, Harvard, Vancouver, ISO, and other styles
18

Diego, Piero, Jianping Huang, Mirko Piersanti, Davide Badoni, Zhima Zeren, Rui Yan, Gianmaria Rebustini, et al. "The Electric Field Detector on Board the China Seismo Electromagnetic Satellite—In-Orbit Results and Validation." Instruments 5, no. 1 (December 24, 2020): 1. http://dx.doi.org/10.3390/instruments5010001.

Full text
Abstract:
The aim of this work is to validate the China Seismo-Electromagnetic Satellite 01 (CSES-01) Electric Field Detector (EFD) measurements through the analysis of the instrument response to various inputs: (a) geomagnetic field variations, (b) plasma density depletions, and (c) electromagnetic signals from natural and artificial sources such as Schumann resonance and VLF (Very Low Frequency) antennas. The knowledge of the geomagnetic induced electric field vs×B (where vs is the satellite speed and B and the local magnetic field), and the plasma variations effect, described by the Orbit Motion Limited (OML) theory, are key parameters to determine the expected theoretical values of the EFD sensors potentials data. Based on the CSES on-board measurements of plasma parameters and geomagnetic field, a direct quantitative validation is presented. In addition, the electromagnetic signals detection capability is checked but only qualitatively confirmed, since the ionospheric complexity does not allow an accurate theoretical computation of waves modulation. The quantitative comparison highlights the very good agreement between observed and theoretical potentials values during average condition. Conversely, in case of strong electric fields, the OML theory shows partial inability in reproducing the actual space plasma conditions resulting in a reduced theoretical values reliability. Finally, both natural and artificial electromagnetic signals are satisfactorily identified showing a reliable sensitivity in different frequency bands.
APA, Harvard, Vancouver, ISO, and other styles
19

Ahmed, Zayneb, Abir Jaafar Hussain, Wasiq Khan, Thar Baker, Haya Al-Askar, Janet Lunn, Raghad Al-Shabandar, Dhiya Al-Jumeily, and Panos Liatsis. "Lossy and Lossless Video Frame Compression: A Novel Approach for High-Temporal Video Data Analytics." Remote Sensing 12, no. 6 (March 20, 2020): 1004. http://dx.doi.org/10.3390/rs12061004.

Full text
Abstract:
The smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, recognition and understanding and efficient processing of large amounts of video data. This research proposes a novel unified approach to lossy and lossless video frame compression, which is beneficial for the autonomous processing and enhanced representation of high-resolution video data in various domains. The proposed fast block matching motion estimation technique, namely mean predictive block matching, is based on the principle that general motion in any video frame is usually coherent. This coherent nature of the video frames dictates a high probability of a macroblock having the same direction of motion as the macroblocks surrounding it. The technique employs the partial distortion elimination algorithm to condense the exploration time, where partial summation of the matching distortion between the current macroblock and its contender ones will be used, when the matching distortion surpasses the current lowest error. Experimental results demonstrate the superiority of the proposed approach over state-of-the-art techniques, including the four step search, three step search, diamond search, and new three step search.
APA, Harvard, Vancouver, ISO, and other styles
20

Cionco, Rodolfo G., and Dmitry A. Pavlov. "Solar barycentric dynamics from a new solar-planetary ephemeris." Astronomy & Astrophysics 615 (July 2018): A153. http://dx.doi.org/10.1051/0004-6361/201732349.

Full text
Abstract:
Aims. The barycentric dynamics of the Sun has increasingly been attracting the attention of researchers from several fields, due to the idea that interactions between the Sun’s orbital motion and solar internal functioning could be possible. Existing high-precision ephemerides that have been used for that purpose do not include the effects of trans-Neptunian bodies, which cause a significant offset in the definition of the solar system’s barycentre. In addition, the majority of the dynamical parameters of the solar barycentric orbit are not routinely calculated according to these ephemerides or are not publicly available. Methods. We developed a special version of the IAA RAS lunar–solar–planetary ephemerides, EPM2017H, to cover the whole Holocene and 1 kyr into the future. We studied the basic and derived (e.g., orbital torque) barycentric dynamical quantities of the Sun for that time span. A harmonic analysis (which involves an application of VSOP2013 and TOP2013 planetary theories) was performed on these parameters to obtain a physics-based interpretation of the main periodicities present in the solar barycentric movement. Results. We present a high-precision solar barycentric orbit and derived dynamical parameters (using the solar system’s invariable plane as the reference plane), widely accessible for the whole Holocene and 1 kyr in the future. Several particularities and barycentric phenomena are presented and explained on dynamical bases. A comparison with the Jet Propulsion Laboratory DE431 ephemeris, whose main differences arise from the modelling of trans-Neptunian bodies, shows significant discrepancies in several parameters (i.e., not only limited to angular elements) related to the solar barycentric dynamics. In addition, we identify the main periodicities of the Sun’s barycentric movement and the main giant planets perturbations related to them.
APA, Harvard, Vancouver, ISO, and other styles
21

Stytz, Martin R., Bruce Hobbs, Andrea Kunz, Brian Soltz, and Kirk Wilson. "Portraying and Understanding Large-Scale Distributed Virtual Environments: Experience and Tentative Conclusions." Presence: Teleoperators and Virtual Environments 4, no. 2 (January 1995): 146–68. http://dx.doi.org/10.1162/pres.1995.4.2.146.

Full text
Abstract:
The Distributed Simulation Internet (DSI) provides users access to large-scale, complex, active, unpredictable virtual environments. If users are to effectively use these environments, they will require support for understanding and acting in these environments. Support is necessary because humans have a time and space limited span of attention. The Satellite Modeler, Omniview true 3D, and Synthetic BattleBridge projects were undertaken to develop and investigate the interfaces and autonomous agents required to effectively support users of the Distributed Simulation Internet. The Satellite Modeler emulates the near-Earth space environment and portrays models of satellites moving in their correct orbits around the Earth. The motion of the satellites is broadcast to users of the DSI. The Satellite Modeler is intended to function as a training and operational aid for orbital analysts and to help them understand key spatial relationships for satellites in near-Earth orbit. The Omniview project was undertaken to provide interactive control and manipulation of a true 3D image and to thereby assist the user in understanding the activity within the DSI-hosted virtual environment. That project developed an interface that provides the Omniview user with the ease of use that a window, icon, mouse, and pointer GUI interface provides to users of 2D displays. The Synthetic BattleBridge is a system that, like the Omniview, portrays a DSI-hosted virtual environment but does not act in it. The Synthetic BattleBridge is designed to support users in making accurate and timely decisions by providing several different types of cognitive support for understanding and analyzing the activity in a battlespace. In this paper, we briefly describe each project and present some observations and conclusions we have drawn based on our experience with them.
APA, Harvard, Vancouver, ISO, and other styles
22

Sulis, S., D. Dragomir, M. Lendl, V. Bourrier, B. O. Demory, L. Fossati, P. E. Cubillos, et al. "Multi-season optical modulation phased with the orbit of the super-Earth 55 Cancri e." Astronomy & Astrophysics 631 (November 2019): A129. http://dx.doi.org/10.1051/0004-6361/201936066.

Full text
Abstract:
Context. 55 Cnc e is a transiting super-Earth orbiting a solar-like star with an orbital period of ~17.7 h. In 2011, using the Microvariability and Oscillations in Stars (MOST) space telescope, a quasi-sinusoidal modulation in flux was detected with the same period as the planetary orbit. The amplitude of this modulation was too large to be explained as the change in light reflected or emitted by the planet. Aims. The MOST telescope continued to observe 55 Cnc e for a few weeks per year over five years (from 2011 to 2015), covering 143 individual transits. This paper presents the analysis of the observed phase modulation throughout these observations and a search for the secondary eclipse of the planet. Methods. The most important source of systematic noise in MOST data is due to stray-light reflected from the Earth, which is modulated with both the orbital period of the satellite (101.4 min) and the Earth’s rotation period. We present a new technique to deal with this source of noise, which we combined with standard detrending procedures for MOST data. We then performed Markov chain Monte Carlo analyses of the detrended light curves, modeling the planetary transit and phase modulation. Results. We find phase modulations similar to those seen in 2011 in most of the subsequent years; however, the amplitude and phase of maximum light are seen to vary, from year to year, from 113 to 28 ppm and from 0.1 to 3.8 rad. The secondary eclipse is not detected, but we constrain the geometric albedo of the planet to less than 0.47 (2σ). Conclusions. While we cannot identify a single origin of the observed optical modulation, we propose a few possible scenarios. Those include star-planet interaction, such as coronal rains and spots rotating with the motion of the planet along its orbit, or the presence of a transiting circumstellar torus of dust. However, a detailed interpretation of these observations is limited by their photometric precision. Additional observations at optical wavelengths could measure the variations at higher precision, contribute to uncovering the underlying physical processes, and measure or improve the upper limit on the albedo of the planet.
APA, Harvard, Vancouver, ISO, and other styles
23

Voldman, Alexander, Breanna Durbin, John Nguyen, Brian Ellis, and Monique Leys. "Fulminant Idiopathic Intracranial Hypertension and Venous Stasis Retinopathy Resulting in Severe Bilateral Visual Impairment." European Journal of Ophthalmology 27, no. 2 (March 2017): e25-e27. http://dx.doi.org/10.5301/ejo.5000918.

Full text
Abstract:
Purpose To report a complicated case of fulminant idiopathic intracranial hypertension and concomitant venous stasis retinopathy leading to postpapilledema optic atrophy. Methods Case report. Results A 34-year-old morbidly obese woman with a history of idiopathic intracranial hypertension (IIH) presented with a 1-month history of bilateral vision loss, diplopia, and left eye pain after being lost to follow-up for 6 years. Fundus examination revealed florid papilledema with venous tortuosity bilaterally. Brain and orbit magnetic resonance imaging showed bilateral globe flattening, intraocular optic nerve swelling in both eyes, and no abnormality on magnetic resonance venography. After additional workup including lumbar puncture with an opening pressure of 55 cm H2O, a diagnosis of IIH was confirmed. Medical treatment with oral carbonic anhydrase inhibitors was initiated, followed by same-day bilateral optic nerve sheath decompression and ventriculoperitoneal shunt placement the following week. Fundus examination 2 months later revealed a persistent blood and thunder fundus suggestive of bilateral central retinal vein occlusions. Over the course of 6 months, both eyes displayed postpapilledema optic atrophy with light perception and hand motion vision in the right and left eyes, respectively. On Goldmann perimetry, the patient had vague limited isolated responses in both eyes to the largest target. Conclusions Fulminant IIH can present with profoundly blinding complications recalcitrant to aggressive medical and surgical intervention. Central retinal vein occlusion is an uncommon blinding complication of IIH.
APA, Harvard, Vancouver, ISO, and other styles
24

Sayed, Hisham Kamal, S. A. Bogacz, and G. Krafft. "Design studies for the next generation electron ion colliders." International Journal of Modern Physics A 29, no. 09 (April 8, 2014): 1450053. http://dx.doi.org/10.1142/s0217751x14500535.

Full text
Abstract:
The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 3–11 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large β function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.
APA, Harvard, Vancouver, ISO, and other styles
25

Mata Sánchez, D., A. G. Istrate, M. H. van Kerkwijk, R. P. Breton, and D. L. Kaplan. "PSR J1012+5307: a millisecond pulsar with an extremely low-mass white dwarf companion." Monthly Notices of the Royal Astronomical Society 494, no. 3 (April 13, 2020): 4031–42. http://dx.doi.org/10.1093/mnras/staa983.

Full text
Abstract:
ABSTRACT Binaries harbouring millisecond pulsars (MSPs) enable a unique path to determine neutron star (NS) masses: radio pulsations reveal the motion of the NS, while that of the companion can be characterized through studies in the optical range. PSR J1012+5307 is an MSP in a 14.5-h orbit with a helium-core white dwarf (WD) companion. In this work we present the analysis of an optical spectroscopic campaign, where the companion star absorption features reveal one of the lightest known WDs. We determine a WD radial velocity semi-amplitude of $K_2 = 218.9 \pm 2.2\, \rm km\, s^{-1}$, which combined with that of the pulsar derived from the precise radio timing, yields a mass ratio of q = 10.44 ± 0.11. We also attempt to infer the WD mass from observational constraints using new binary evolution models for extremely low-mass (ELM) WDs, but find that they cannot reproduce all observed parameters simultaneously. In particular, we cannot reconcile the radius predicted from binary evolution with the measurement from the photometric analysis ($R_{\rm WD}=0.047_{-0.002}^{+0.003}\, \mathrm{ R}_{\odot }$). Our limited understanding of ELM WD evolution, which results from binary interaction, therefore comes as the main factor limiting the precision with which we can measure the mass of the WD in this system. Our conservative WD mass estimate of $M_{\rm WD} = 0.165 \pm 0.015\, \mathrm{ M}_{\rm \odot }$, along with the mass ratio enables us to infer a pulsar mass of $M_{\rm NS} = 1.72 \pm 0.16\, \mathrm{ M}_{\rm \odot }$. This value is clearly above the canonical $\sim 1.4\, \mathrm{ M}_{\rm \odot }$, therefore adding PSR J1012+5307 to the growing list of massive MSPs.
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Zhiyang, Xichao Dong, Yuanhao Li, and Cheng Hu. "Formation Design for Single-Pass GEO InSAR Considering Earth Rotation Based on Coordinate Rotational Transformation." Remote Sensing 12, no. 3 (February 8, 2020): 573. http://dx.doi.org/10.3390/rs12030573.

Full text
Abstract:
The single-pass geosynchronous synthetic aperture radar interferometry (GEO InSAR) adopts the formation of a slave satellite accompanying the master satellite, which can reduce the temporal decorrelation caused by atmospheric disturbance and observation time gap between repeated tracks. Current formation design methods for spaceborne SAR are based on the Relative Motion Equation (RME) in the Earth-Centered-Inertial (ECI) coordinate system (referred to as ECI-RME). Since the Earth rotation is not taken into account, the methods will lead to a significant error for the baseline calculation while applied to formation design for GEO InSAR. In this paper, a formation design method for single-pass GEO InSAR based on Coordinate Rotational Transformation (CRT) is proposed. Through CRT, the RME in Earth-Centered-Earth-Fixed (ECEF) coordinate system (referred to as ECEF-RME) is derived. The ECEF-RME can be used to describe the accurate baseline of close-flying satellites for different orbital altitudes, but not limited to geosynchronous orbit. Aiming at the problem that ECEF-RME does not have a regular geometry as ECI-RME does, a numerical formation design method based on the minimum baseline error criterion is proposed. Then, an analytical formation design method is proposed for GEO InSAR, based on the Minimum Along-track Baseline Criterion (MABC) subject to a fixed root mean square of the perpendicular baseline. Simulation results verify the validity of the ECEF-RME and the analytical formation design method. The simulation results also show that the proposed method can help alleviate the atmospheric phase impacts and improve the retrieval accuracy of the digital elevation model (DEM) compared with the ECI-RME-based approach.
APA, Harvard, Vancouver, ISO, and other styles
27

Koch, Andreas, Michael Hanke, and Nikolay Kacharov. "Kinematics of outer halo globular clusters: M 75 and NGC 6426." Astronomy & Astrophysics 616 (August 2018): A74. http://dx.doi.org/10.1051/0004-6361/201833110.

Full text
Abstract:
Globular clusters (GCs) and their dynamic interactions with the Galactic components provide an important insight into the structure and formation of the early Milky Way. We present a kinematic study of two outer halo GCs based on a combination of VLT/FORS2, VLT/FLAMES, and Magellan/MIKE low- and high-resolution spectroscopy of 32 and 27 member stars, respectively. Although both clusters are located at Galactocentric distances of 15 kpc, they have otherwise very different properties. M 75 is a luminous and metal-rich system at [Fe/H] = −1.2 dex, which is a value that we confirm from the calcium triplet region. This GC shows mild evidence for rotation with an amplitude of Arot ~ 5 km s−1. One of the most metal-poor GCs in the Milky Way (at [Fe II/H] = −2.3 dex), NGC 6426 exhibits marginal evidence of internal rotation at the 2 km s−1 level. Both objects have velocity dispersions that are consistent with their luminosity. Although limited by small-number statistics, the resulting limits on their Arot/σ0 ratios suggest that M 75 is a slow rotator driven by internal dynamics rather than being affected by the weak Galactic tides at its large distances. In this work, M 75 (Arot/σ0 = 0.31) is fully consistent with the properties of other, younger halo clusters. At Arot/σ0 = 0.8 ± 0.4, NGC 6426 appears to have a remarkably ordered internal motion for its low metallicity, but the large uncertainty does not allow for an unambiguous categorization as a fast rotator. An accretion origin of M 75 cannot be excluded, based on the eccentric orbit, which we derived from the recent data release 2 of Gaia, and considering its younger age.
APA, Harvard, Vancouver, ISO, and other styles
28

Yong, Yang, Shuai Zhang, and Yan Huai Qu. "HHT Based Analysis on Experiments of Rotor System with Rub-Impact." Advanced Engineering Forum 2-3 (December 2011): 111–16. http://dx.doi.org/10.4028/www.scientific.net/aef.2-3.111.

Full text
Abstract:
Based on the demand of engineering, the motion characteristics and time-frequency properties of rotor system with rub-impact at fixed limiter are studied by experiment. Three typical cases at different rotating speeds are chosen from the experiment. On the basis of traditional amplitude spectrum and shaft center orbit methods, Hilbert-Huang transformation is applied to the fault signals analysis. Fault features are characterized completely and accurately by Hilbert spectrum. It is show that the vibration of the system is with typical characteristic of periodic motions and corresponding time-frequency (instantaneous frequency) -amplitude /energy representations in the rotor system with rub-impact at fixed limiter.
APA, Harvard, Vancouver, ISO, and other styles
29

Sekanina, Zdeněk. "Earth's 2006 encounter with comet 73P/Schwassmann-Wachmann: Products of nucleus fragmentation seen in closeup." Proceedings of the International Astronomical Union 2, S236 (August 2006): 211–20. http://dx.doi.org/10.1017/s1743921307003249.

Full text
Abstract:
AbstractThe large numbers of nucleus fragments observed are a spectacular illustration of the process of cascading fragmentation in progress, a concept introduced to interpret the properties of the Kreutz system of sungrazers and comet D/1993 F2. The objective is to describe the fragmentation sequence and hierarchy of comet 73P, the nature of the fragmentation process and observed events, and the expected future evolution of this comet. The orbital arc populated by the fragments refers to an interval of 3.74 days in the perihelion time. This result suggests that they all could be products (but not necessarily first-generation fragments) of two 1995 events, in early September (involving an enormous outburst) and at the beginning of November. The interval of perihelion times is equivalent to a range of about 2.5 m/s in separation velocity or 0.00012 the Sun's attraction in nongravitational deceleration. Their combined effect suggests minor orbital momentum changes acquired during fragmentation and decelerations compatible with survival over two revolutions about the Sun. Fragment B is a likely first-generation product of one of the 1995 events. From the behavior of the primary fragment C, 73P is not a dying comet, even though fragment B and others were episodically breaking up into many pieces. Each episode began with the sudden appearance of a starlike nucleus condensation and a rapidly expanding outburst, followed by a development of jets, and a gradual tailward extension of the fading condensation, until the discrete masses embedded in it could be resolved. In April-May, this debris traveled first to the southwest, but models show their eventual motion toward the projected orbit. Fainter fragments were imaged over limited time, apparently because of their erratic activity (interspersed with periods of dormancy) rather than improptu disintegration. A dust trail joining the fragments and reminiscent of comet 141P/Machholz suggests that cascading fragmentation exerts itself profoundly over an extremely broad mass range of particulate debris.
APA, Harvard, Vancouver, ISO, and other styles
30

Bohn, Alexander J., Christian Ginski, Matthew A. Kenworthy, Eric E. Mamajek, Mark J. Pecaut, Markus Mugrauer, Nikolaus Vogt, et al. "Discovery of a directly imaged planet to the young solar analog YSES 2." Astronomy & Astrophysics 648 (April 2021): A73. http://dx.doi.org/10.1051/0004-6361/202140508.

Full text
Abstract:
Context. To understand the origin and formation pathway of wide-orbit gas giant planets, it is necessary to expand the limited sample of these objects. The mass of exoplanets derived with spectrophotometry, however, varies strongly as a function of the age of the system and the mass of the primary star. Aims. By selecting stars with similar ages and masses, the Young Suns Exoplanet Survey (YSES) aims to detect and characterize planetary-mass companions to solar-type host stars in the Scorpius-Centaurus association. Methods. Our survey is carried out with VLT/SPHERE with short exposure sequences on the order of 5 min per star per filter. The subtraction of the stellar point spread function (PSF) is based on reference star differential imaging using the other targets (with similar colors and magnitudes) in the survey in combination with principal component analysis. Two astrometric epochs that are separated by more than one year are used to confirm co-moving companions by proper motion analysis. Results. We report the discovery of YSES 2b, a co-moving, planetary-mass companion to the K1 star YSES 2 (TYC 8984-2245-1, 2MASS J11275535-6626046). The primary has a Gaia EDR3 distance of 110 pc, and we derive a revised mass of 1.1 M⊙ and an age of approximately 14 Myr. We detect the companion in two observing epochs southwest of the star at a position angle of 205° and with a separation of ~1.′′05, which translates to a minimum physical separation of 115 au at the distance of the system. Photometric measurements in the H and Ks bands are indicative of a late L spectral type, similar to the innermost planets around HR 8799. We derive a photometric planet mass of 6.3−0.9+1.6 MJup using AMES-COND and AMES-dusty evolutionary models; this mass corresponds to a mass ratio of q = (0.5 ± 0.1)% with the primary. This is the lowest mass ratio of a direct imaging planet around a solar-type star to date. We discuss potential formation mechanisms and find that the current position of the planet is compatible with formation by disk gravitational instability, but its mass is lower than expected from numerical simulations. Formation via core accretion must have occurred closer to the star, yet we do not find evidence that supports the required outward migration, such as via scattering off another undiscovered companion in the system. We can exclude additional companions with masses greater than 13 MJup in the full field of view of the detector (0.′′15<ρ<5.′′50), at 0.′′5 we can rule out further objects that are more massive than 6 MJup, and for projected separations ρ >2′′ we are sensitive to planets with masses as low as 2 MJup. Conclusions. YSES 2b is an ideal target for follow-up observations to further the understanding of the physical and chemical formation mechanisms of wide-orbit Jovian planets. The YSES strategy of short snapshot observations (≤5 min) and PSF subtraction based on a large reference library proves to be extremely efficient and should be considered for future direct imaging surveys.
APA, Harvard, Vancouver, ISO, and other styles
31

Malarkey, J., and S. A. Thorpe. "Line Vortices and the Vacillation of Langmuir Circulation." Journal of Physical Oceanography 46, no. 7 (July 2016): 2123–41. http://dx.doi.org/10.1175/jpo-d-16-0006.1.

Full text
Abstract:
AbstractThree types of breakdown of Langmuir circulation (Lc) are observed, two of which are represented in large-eddy simulation (LES) models, but the third, vacillation, is not. The stability of Lc can be examined by representing the downwind-aligned vortices by line vortices that are subjected to perturbations. Earlier conclusions relating to stability in homogeneous water of infinite depth are found to be in error because no stationary unperturbed state exists. The motion of vortices is examined and shown to be consistent with an explanation of Lc devised by Csanady. Motion of line vortices in water of limited depth or bounded below by a thermocline is examined. The motion replicates some of the features of vacillation observed by Smith in deep water bounded by a thermocline, including its periodicity and fluctuations in the formation of bubble bands. Vortices describe closed orbits within the Langmuir cells. Particle motions in the vacillating Lc pattern exhibit trapping close to the line vortices or near the cell boundaries. Vacillation appears not to have been observed in water of limited depth. Here, the vacillation period is predicted to be longer than the deep-water equivalent and may be too long for vacillations to be detected.
APA, Harvard, Vancouver, ISO, and other styles
32

Helmi, A., F. van Leeuwen, P. J. McMillan, D. Massari, T. Antoja, A. C. Robin, L. Lindegren, et al. "Gaia Data Release 2." Astronomy & Astrophysics 616 (August 2018): A12. http://dx.doi.org/10.1051/0004-6361/201832698.

Full text
Abstract:
Context. Aims. The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Methods. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Results. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.1-2.6+6.2 × 1011 M⊙ based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. Conclusions. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
APA, Harvard, Vancouver, ISO, and other styles
33

Sahlmann, Johannes. "Astrometric exoplanet surveys in practice." Proceedings of the International Astronomical Union 11, A29A (August 2015): 217–18. http://dx.doi.org/10.1017/s1743921316002878.

Full text
Abstract:
AbstractConversely to the transit photometry and radial velocity methods, the astrometric discovery of exoplanets is still limited by the sensitivity of available instruments. Ground-based surveys are now sensitive to giant planets in orbit around nearby low-mass stars and brown dwarfs. In 2014, ESA's Gaia mission began its survey, which is expected to discover thousands of giant exoplanets by detecting the astrometric orbital motions of the host stars.
APA, Harvard, Vancouver, ISO, and other styles
34

Carruba, V., S. Aljbaae, R. C. Domingos, and W. Barletta. "Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars." Monthly Notices of the Royal Astronomical Society 504, no. 1 (April 7, 2021): 692–700. http://dx.doi.org/10.1093/mnras/stab914.

Full text
Abstract:
ABSTRACT Artificial neural networks (ANNs) have been successfully used in the last years to identify patterns in astronomical images. The use of ANN in the field of asteroid dynamics has been, however, so far somewhat limited. In this work, we used for the first time ANN for the purpose of automatically identifying the behaviour of asteroid orbits affected by the M1:2 mean-motion resonance with Mars. Our model was able to perform well above 85 per cent levels for identifying images of asteroid resonant arguments in term of standard metrics like accuracy, precision, and recall, allowing to identify the orbital type of all numbered asteroids in the region. Using supervised machine learning methods, optimized through the use of genetic algorithms, we also predicted the orbital status of all multi-opposition asteroids in the area. We confirm that the M1:2 resonance mainly affects the orbits of the Massalia, Nysa, and Vesta asteroid families.
APA, Harvard, Vancouver, ISO, and other styles
35

Busetti, F., H. Beust, and C. Harley. "Stability of planets in triple star systems." Astronomy & Astrophysics 619 (November 2018): A91. http://dx.doi.org/10.1051/0004-6361/201833097.

Full text
Abstract:
Context. Numerous theoretical studies of the stellar dynamics of triple systems have been carried out, but fewer purely empirical studies that have addressed planetary orbits within these systems. Most of these empirical studies have been for coplanar orbits and with a limited number of orbital parameters. Aims. Our objective is to provide a more generalized empirical mapping of the regions of planetary stability in triples by considering both prograde and retrograde motion of planets and the outer star; investigating highly inclined orbits of the outer star; extending the parameters used to all relevant orbital elements of the triple’s stars and expanding these elements and mass ratios to wider ranges that will accommodate recent and possibly future observational discoveries. Methods. Using N-body simulations, we integrated numerically the various four-body configurations over the parameter space, using a symplectic integrator designed specifically for the integration of hierarchical multiple stellar systems. The triples were then reduced to binaries and the integrations repeated to highlight the differences between these two types of system. Results. This established the regions of secular stability and resulted in 24 semi-empirical models describing the stability bounds for planets in each type of triple orbital configuration. The results were then compared with the observational extremes discovered to date to identify regions that may contain undiscovered planets.
APA, Harvard, Vancouver, ISO, and other styles
36

Olszewski, Raphael. "Open access resources on motion artifact in adult dentomaxillofacial CBCT: illustrated pictorial review of medical literature." NEMESIS 15, no. 1 (February 5, 2021): 1–37. http://dx.doi.org/10.14428/nemesis.v15i1.60503.

Full text
Abstract:
Objective: to know how much open access/open knowledge reference figures were available on motion artifacts in CBCT dentomaxillofacial imaging, and to describe and to categorize clinical variation of motion artifacts related to diverse types of head motion retrospectively observed during CBCT scanning time. Material and methods: a search equation was performed on Pubmed database. We found 56 articles. The 45 articles were out of scope, and 7 articles were excluded after applying exclusion and inclusion criteria. Only 4 articles were finally freely accessible and selected for this review. Moreover, we retrospectively used our department CBCT database to search examinations with motion artifacts. We also checked retrospectively for radiological protocols as the type of motion artifact was described when occurred during the CBCT scanning time by the main observer. We had obtained the approval from the Ethical committee for this study. Results: The accessibility of free figures on motion artifact in dentomaxillofacial CBCT is limited to 13 figures not annotated, and to one annotated figure presenting a double contour around cortex of bony orbits. We proposed to categorize the motion artifacts into three levels: low, intermediary, and major. Each level was related to: 1) progressive image quality degradation, 2) distortion of anatomy, and 3) potential possibility of performing clinical diagnosis. All 45 figures were annotated. Conclusions: There exists a scarce open access literature on motion artifacts in CBCT. In our pictorial review we found that low level motion artifacts were more related to head rotation in axial plane (rolling). Rolling and lateral translation were responsible of intermediary level motion artifacts. Major level motion artifacts were created by complex motion with multiple rotation axes, multiple translation directions, and by anteroposterior translation. The main limitation of this study is related to retrospectively report empirical observation of patient motion during CBCT scanning and to compare these observations with motion artifacts found on clinical images. More robust methodology should be further developed using a virtual simulation of various types of head movements and associated parameters to consolidate the open knowledge on motion artifacts in dentomaxillofacial CBCT.
APA, Harvard, Vancouver, ISO, and other styles
37

Fritz, T. K., G. Battaglia, M. S. Pawlowski, N. Kallivayalil, R. van der Marel, S. T. Sohn, C. Brook, and G. Besla. "Gaia DR2 proper motions of dwarf galaxies within 420 kpc." Astronomy & Astrophysics 619 (November 2018): A103. http://dx.doi.org/10.1051/0004-6361/201833343.

Full text
Abstract:
A proper understanding of the Milky Way (MW) dwarf galaxies in a cosmological context requires knowledge of their 3D velocities and orbits. However, proper motion (PM) measurements have generally been of limited accuracy and are available only for more massive dwarfs. We therefore present a new study of the kinematics of the MW dwarf galaxies. We use the Gaia DR2 for those dwarfs that have been spectroscopically observed in the literature. We derive systemic PMs for 39 galaxies and galaxy candidates out to 420 kpc, and generally find good consistency for the subset with measurements available from other studies. We derive the implied Galactocentric velocities, and calculate orbits in canonical MW halo potentials of low (0.8 × 1012 M⊙) and high mass (1.6 × 1012 M⊙). Comparison of the distributions of orbital apocenters and 3D velocities to the halo virial radius and escape velocity, respectively, suggests that the satellite kinematics are best explained in the high-mass halo. Tuc III, Crater II, and additional candidates have orbital pericenters small enough to imply significant tidal influences. Relevant to the missing satellite problem, the fact that fewer galaxies are observed to be near apocenter than near pericenter implies that there must be a population of distant dwarf galaxies yet to be discovered. Of the 39 dwarfs: 12 have orbital poles that do not align with the MW plane of satellites (given reasonable assumptions about its intrinsic thickness); 10 have insufficient PM accuracy to establish whether they align; and 17 satellites align, of which 11 are co-orbiting and (somewhat surprisingly, in view of prior knowledge) 6 are counter-orbiting. Group infall might have contributed to this, but no definitive association is found for the members of the Crater-Leo group.
APA, Harvard, Vancouver, ISO, and other styles
38

Cham, Jorge G., and Mark R. Cutkosky. "Dynamic Stability of Open-Loop Hopping." Journal of Dynamic Systems, Measurement, and Control 129, no. 3 (September 21, 2006): 275–84. http://dx.doi.org/10.1115/1.2718237.

Full text
Abstract:
Simulations and physical robots have shown that hopping and running are possible without sensory feedback. However, stable behavior is often limited to a certain range of the parameters of the open-loop system. Even the simplest of hopping systems can exhibit unstable behavior that results in unpredictable nonperiodic motion as system parameters are adjusted. This paper analyzes the stability of a simplified vertical hopping model driven by an open-loop, feedforward motor pattern. Periodic orbits of the resulting hybrid system are analyzed through a generalized formula for the system’s Poincare Map and Jacobian. The observed behavior is validated experimentally in a physical pneumatically actuated hopping machine. This approach leads to observations on the stability of this and similar systems, revealing inherent limitations of open-loop hopping and providing insights that can inform the design and control of dynamic legged robots capable of rapid and robust locomotion.
APA, Harvard, Vancouver, ISO, and other styles
39

McLaughlin, Kenneth W., and Janak Panthi. "Synchronous Rotation in the Eclipsing Binary 68 Herculis Inferred from Doppler Shifts in its Spectrum and Light Curve Modeling." Journal of the Iowa Academy of Science 121, no. 1-4 (January 1, 2014): 5–15. http://dx.doi.org/10.17833/121-02.1.

Full text
Abstract:
Our differential photometry of the eclipsing binary 68 Herculis through V- and R-filters shows periodic minima consistent with a previously established period. As a function of its orbital motion, we report spectra over a limited wavelength range encompassing H-alpha 656.3 nm and helium 667.8 nm lines. Doppler shifts of both stars were resolved in H-alpha, while only the more massive star rendered the helium line with Doppler shifts that agree with the radial velocity we derive for it from the H-alpha profile. Sinusoidal curve-fits to the orbital dependence of the radial velocities imply circular orbits for both components, with amplitudes indicating a mass ratio for the two stars in agreement with published values. A subtle Doppler shift associated with stellar rotation is evident in the radial velocity of the primary component as its eclipse commences; modeling indicates this rotation is synchronous with the orbital revolution, an expected tidal effect of near-contact binary systems.
APA, Harvard, Vancouver, ISO, and other styles
40

Solórzano, Carlos Renato Huaura, and Antonio Fernando Bertachini de Almeida Prado. "Third-Body Perturbation Using a Single Averaged Model: Application in Nonsingular Variables." Mathematical Problems in Engineering 2007 (2007): 1–14. http://dx.doi.org/10.1155/2007/40475.

Full text
Abstract:
The Lagrange's planetary equations written in terms of the classical orbital elements have the disadvantage of singularities in eccentricity and inclination. These singularities are due to the mathematical model used and do not have physical reasons. In this paper, we studied the third-body perturbation using a single averaged model in nonsingular variables. The goal is to develop a semianalytical study of the perturbation caused in a spacecraft by a third body using a single averaged model to eliminate short-period terms caused by the motion of the spacecraft. This is valid if no resonance occurs with the moon or the sun. Several plots show the time histories of the Keplerian elements of equatorial and circular orbits, which are the situations with singularities. In this paper, the expansions are limited only to second order in eccentricity and for the ratio of the semimajor axis of the perturbing and perturbed bodies and to the fourth order for the inclination.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhou, Lei, Li-Yong Zhou, Rudolf Dvorak, and Jian Li. "Systematic survey of the dynamics of Uranus Trojans." Astronomy & Astrophysics 633 (January 2020): A153. http://dx.doi.org/10.1051/0004-6361/201936332.

Full text
Abstract:
Context. The discovered Uranus Trojan (UT) 2011 QF99 and several candidate UTs have been reported to be in unstable orbits. This implies that the stability region around the triangular Lagrange points L4 and L5 of Uranus should be very limited. Aims. In this paper, we aim to locate the stability region for UTs and find out the dynamical mechanisms responsible for the structures in the phase space. The null detection of primordial UTs also needs to be explained. Methods. Using the spectral number as the stability indicator, we constructed the dynamical maps on the (a0, i0) plane. The proper frequencies of UTs were determined precisely with a frequency analysis method that allows us to depict the resonance web via a semi-analytical method. We simulated radial migration by introducing an artificial force acting on planets to mimic the capture of UTs. Results. We find two main stability regions: a low-inclination (0° −14°) and a high-inclination regime (32° −59°). There is also an instability strip in each of these regions at 9° and 51°, respectively. These strips are supposed to be related with g − 2g5 + g7 = 0 and ν8 secular resonances. All stability regions are in the tadpole regime and no stable horseshoe orbits exist for UTs. The lack of moderate-inclined UTs is caused by the ν5 and ν7 secular resonances, which could excite the eccentricity of orbits. The fine structures in the dynamical maps are shaped by high-degree secular resonances and secondary resonances. Surprisingly, the libration centre of UTs changes with the initial inclination, and we prove it is related to the quasi 1:2 mean motion resonance (MMR) between Uranus and Neptune. However, this quasi-resonance has an ignorable influence on the long-term stability of UTs in the current planetary configuration. About 36.3% and 0.4% of the pre-formed orbits survive fast and slow migrations with migrating timescales of 1 and 10 Myr, respectively, most of which are in high inclination. Since low-inclined UTs are more likely to survive the age of the solar system, they make up 77% of all such long-life orbits by the end of the migration, making a total fraction up to 4.06 × 10−3 and 9.07 × 10−5 of the original population for fast and slow migrations, respectively. The chaotic capture, just like depletion, results from secondary resonances when Uranus and Neptune cross their mutual MMRs. However, the captured orbits are too hot to survive until today. Conclusions. About 3.81% UTs are able to survive the age of the solar system, among which 95.5% are on low-inclined orbits with i0 < 7.5°. However, the depletion of planetary migration seems to prevent a large fraction of such orbits, especially for the slow migration model. Based on the widely adopted migration models, a swarm of UTs at the beginning of the smooth outward migration is expected and a fast migration is favoured if any primordial UTs are detected.
APA, Harvard, Vancouver, ISO, and other styles
42

Nordström, B., J. Andersen, J. Holmberg, B. R. Jørgensen, M. Mayor, and F. Pont. "The Geneva–Copenhagen Survey of the Solar Neighbourhood." Publications of the Astronomical Society of Australia 21, no. 2 (2004): 129–33. http://dx.doi.org/10.1071/as04013.

Full text
Abstract:
AbstractWe report on a new survey of metallicities, ages, and Galactic orbits for a complete, magnitude-limited, and kinematically unbiased all-sky sample of 16 682 nearby F- and G-dwarfs. Our ∼ 63 000 new, accurate radial velocities for nearly 13 500 of the stars, combined with Hipparcos parallaxes and Tycho-2 proper motions, complete the kinematic data for 14 139 stars and allow us to identify most of the binary stars in the sample. Isochrone ages have been determined whenever reliable results are possible, with particular attention to realistic error estimates.Among the basic properties of the Galactic disk that can be reinvestigated from our data are the metallicity distribution of G-dwarfs and the age–metallicity and age–velocity relations of the solar neighbourhood. We confirm the lack of metal-poor G-dwarfs relative to classical model predictions (the 'G-dwarf problem'), the near-constancy of the mean metallicity since the formation of the thin disk, and the appearance of the kinematic signature of the thick disk ∼ 10 Gyr ago.
APA, Harvard, Vancouver, ISO, and other styles
43

BALESCU, R. "Kinetic theory of the standard map in the localized weak-stochasticity regime." Journal of Plasma Physics 64, no. 4 (October 2000): 379–96. http://dx.doi.org/10.1017/s0022377800008680.

Full text
Abstract:
The well-known Chirikov–Taylor standard map is studied using the methods of non-equilibrium statistical mechanics. It appears possible to simplify the master equation whenever the stochasticity parameter is small and the initial density profile is sharply localized in phase space: this defines the ‘localized weak-stochasticity’ (LWS) regime. The resulting equation of evolution of the density profile involves a convolution in time. Its most conspicuous feature is the absence of a ‘short’ intrinsic time scale: the memory time is infinite. The master equation can therefore not be Markovianized as in usual kinetic theory (or as in the diffusive regime of the standard map). Moreover, the initial value of the fluctuations influences the rate of change of the density profile at all times. Quite unexpectedly, the contributions of the two terms of the master equation to the density profile are of the same order of magnitude. As a result, they practically cancel each other. It is this curious feature that explains the suppression of the motion by the islands and the KAM barriers that is well known from the study of individual standard map orbits. The LWS approximation is valid for a limited time (which is very long when the initial localization is very sharp).
APA, Harvard, Vancouver, ISO, and other styles
44

Arinchev, S. V. "Analysis of the Orbital Approach Dynamics of the Space Debris Collector to the Fragment of Debris by the Method of Thrust Reversal with Interruption." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 2 (131) (April 2020): 4–16. http://dx.doi.org/10.18698/0236-3941-2020-2-4-16.

Full text
Abstract:
The debris collector and a debris fragment move along random noncoplanar orbits in the altitude range of 400--2000 km. The thrust of the promising engine is 5000--25 000 N, the specific impulse of the promising fuel is not lower than 20 000 m/s. The remaining fuel after approach is not less than the specified. The debris collector undocks from the base station, transfers from its orbital plane to the debris fragment orbital plane, performs phasing, approaches the fragment, grabs it and returns to the base station. The paper considers only the stage of orbital approach. The duration of the entire flight mission is limited to one day. The phasing time is insufficient, therefore, at the start time of the orbital approach, the distance to the target is ~ 100 km, the relative velocity is ~ 1 km/s. On the other hand, for reliable and safe grabbing of a debris fragment, it is necessary to provide a distance of ~ 1 m and a relative velocity of ~ 1 m/s. It is shown that this can be achieved by approach using the method of thrust reversal with interruption. An effective algorithm of approach with target is proposed. An analysis of the orbital approach dynamics was performed by joint numerical integration of the orbital motion equations of the debris collector and the debris fragment by the 4th-order Runge --- Kutta method. Approach is performed in 6 cycles. In each cycle, the engine turns on three times. Two cycles are performed by sustainer engines, four cycles are performed by auxiliary engines of lower thrust. The fuel depletion and the non-sphericity of the Earth's gravitational field according to the 2nd zonal harmonic are taken into account. Calculation example is considered. Convergence estimates of the integration procedure by the resultant distance to the target and the resultant relative velocity are given. Resultant orbital approach is oscillation process with heavy damping. Damping is ensured by multiple firings of the sustainer (auxiliary) engine
APA, Harvard, Vancouver, ISO, and other styles
45

Guélin, M., N. A. Patel, M. Bremer, J. Cernicharo, A. Castro-Carrizo, J. Pety, J. P. Fonfría, et al. "IRC +10 216 in 3D: morphology of a TP-AGB star envelope." Astronomy & Astrophysics 610 (February 2018): A4. http://dx.doi.org/10.1051/0004-6361/201731619.

Full text
Abstract:
During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2–1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2–1), CO(1–0), CN(2–1) and C4H(24–23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (<40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small (r< 0.3′′) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s-1, with small turbulent motions. Based on that property, we have reconstructed the 3D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r< 25′′) envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 yr and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years.
APA, Harvard, Vancouver, ISO, and other styles
46

Gsell, Simon, Rémi Bourguet, and Marianna Braza. "Vortex-induced vibrations of a cylinder in planar shear flow." Journal of Fluid Mechanics 825 (July 20, 2017): 353–84. http://dx.doi.org/10.1017/jfm.2017.386.

Full text
Abstract:
The system composed of a circular cylinder, either fixed or elastically mounted, and immersed in a current linearly sheared in the cross-flow direction, is investigated via numerical simulations. The impact of the shear and associated symmetry breaking are explored over wide ranges of values of the shear parameter (non-dimensional inflow velocity gradient, $\unicode[STIX]{x1D6FD}\in [0,0.4]$) and reduced velocity (inverse of the non-dimensional natural frequency of the oscillator, $U^{\ast }\in [2,14]$), at Reynolds number $Re=100$; $\unicode[STIX]{x1D6FD}$, $U^{\ast }$ and $Re$ are based on the inflow velocity at the centre of the body and on its diameter. In the absence of large-amplitude vibrations and in the fixed body case, three successive regimes are identified. Two unsteady flow regimes develop for $\unicode[STIX]{x1D6FD}\in [0,0.2]$ (regime L) and $\unicode[STIX]{x1D6FD}\in [0.2,0.3]$ (regime H). They differ by the relative influence of the shear, which is found to be limited in regime L. In contrast, the shear leads to a major reconfiguration of the wake (e.g. asymmetric pattern, lower vortex shedding frequency, synchronized oscillation of the saddle point) and a substantial alteration of the fluid forcing in regime H. A steady flow regime (S), characterized by a triangular wake pattern, is uncovered for $\unicode[STIX]{x1D6FD}>0.3$. Free vibrations of large amplitudes arise in a region of the parameter space that encompasses the entire range of $\unicode[STIX]{x1D6FD}$ and a range of $U^{\ast }$ that widens as $\unicode[STIX]{x1D6FD}$ increases; therefore vibrations appear beyond the limit of steady flow in the fixed body case ($\unicode[STIX]{x1D6FD}=0.3$). Three distinct regimes of the flow–structure system are encountered in this region. In all regimes, body motion and flow unsteadiness are synchronized (lock-in condition). For $\unicode[STIX]{x1D6FD}\in [0,0.2]$, in regime VL, the system behaviour remains close to that observed in uniform current. The main impact of the shear concerns the amplification of the in-line response and the transition from figure-eight to ellipsoidal orbits. For $\unicode[STIX]{x1D6FD}\in [0.2,0.4]$, the system exhibits two well-defined regimes: VH1 and VH2 in the lower and higher ranges of $U^{\ast }$, respectively. Even if the wake patterns, close to the asymmetric pattern observed in regime H, are comparable in both regimes, the properties of the vibrations and fluid forces clearly depart. The responses differ by their spectral contents, i.e. sinusoidal versus multi-harmonic, and their amplitudes are much larger in regime VH1, where the in-line responses reach $2$ diameters ($0.03$ diameters in uniform flow) and the cross-flow responses $1.3$ diameters. Aperiodic, intermittent oscillations are found to occur in the transition region between regimes VH1 and VH2; it appears that wake–body synchronization persists in this case.
APA, Harvard, Vancouver, ISO, and other styles
47

Alcobé, Santiago, and Rafael Cubarsi. "A Titius-Bode like law for stellar populations in the velocity space." Proceedings of the International Astronomical Union 2, S235 (August 2006): 68. http://dx.doi.org/10.1017/s1743921306005096.

Full text
Abstract:
AbstractThe statistical algorithm MEMPHIS (Cubarsi & Alcobé 2006) was applied to a large sample from the Hipparcos catalogue with the full space motions (Cubarsi & Alcobé 2004), to segregate the kinematic populations of the solar neighbourhood. Four stellar populations were obtained, namely early-thin disk, young-thin disk, the whole thin disk (which contains both previous populations plus the continuum of old thin disk stars), and the thick disk population. Now, we wish to point out two main results from the analysis of such a segregation (Alcobé & Cubarsi 2005). First, the relationship between the maximum stellar velocity of a sample and its average age τ can be approximated by the relation |V|max ∝ τ. Second, the local stellar populations can be described from a Titius-Bode like law (TBLL) for the radial velocity dispersion, $\sigma_1 = 6.6 \, (\frac43)^n$, so that for values n = 2, 3, 5, 8 it determines some average energy levels of discrete populations, while for continuous intervals n ≤ 5 and n ≥ 7 it describes the velocity-age evolution of thin and thick disk components, as shown in the Table below.Thus, the velocity dispersions of the local kinematic populations seem to follow a geometrical progression, allowing us to do an analogy with the old Titius-Bode distribution for keplerian orbits, although a physical explanation for the later law remains still open (Lynch 2003). Indeed, such a TBLL in the velocity space could be already conjectured from previous published kinematic parameters of the Galactic components (e.g. Alcobé & Cubarsi 2001). As in the keplerian case, it is possible to argue that velocity dispersion values have too much uncertainty, but, even so, it is not possible to ignore anymore such a resemblance.Such results are consistent with Galactic formation models that predict some quasi-continuous stellar populations in the sense that the continuity is constricted by σ1 levels of the TBLL. The physical meaning of the variable n involved in the TBLL may be related with the average epicycle energy ER ~ σ21 of the stars representative of the disk heating process. It shows continuity from n = 3 to 5 for the thin disk, and from 7 to 8 for the thick disk, but discreteness from n = 2 to 3 between early-thin and young-thin disk, and from 5 to 8 between thin and thick disk components. For the thin disk, for example, the level n = 5 should represent the saturation point of maximum velocity dispersion, likely corresponding to the limited predicted by the observed wavenumber of spiral structure of the Milky Way, while the discontinuity from n = 5 to 7 indicates an abrupt jump in the average energy, that was produced when the thick disk was formed about 10±1 Gyr ago.
APA, Harvard, Vancouver, ISO, and other styles
48

Malfait, J., W. Homan, S. Maes, J. Bolte, L. Siess, F. De Ceuster, and L. Decin. "SPH modelling of wind-companion interactions in eccentric AGB binary systems." Astronomy & Astrophysics 652 (August 2021): A51. http://dx.doi.org/10.1051/0004-6361/202141161.

Full text
Abstract:
Context. The late evolutionary stages of low- and intermediate-mass stars are characterised by mass loss through a dust-driven stellar wind. Recent observations reveal complex structures within these winds, which are believed to be formed primarily via an interaction with a companion. How these complexities arise, and which structures are formed in which type of systems, is still poorly understood. Particularly, there is a lack of studies investigating the structure formation in eccentric systems. Aims. We aim to improve our understanding of the wind morphology of eccentric asymptotic giant branch (AGB) binary systems by investigating the mechanism responsible for the different small-scale structures and global morphologies that arise in a polytropic wind with different velocities. Methods. Using the smoothed particle hydrodynamics (SPH) code PHANTOM, we generated nine different high-resolution, 3D simulations of an AGB star with a solar-mass companion with various wind velocity and eccentricity combinations. The models assume a polytropic gas, with no additional cooling. Results. Compared to the zero-eccentricity situation, we find that for low eccentricities, for the case of a high wind velocity, and hence limited interaction between the wind and the companion, the standard two-edged spiral structure that dominates the shape of the wind in the orbital plane is only minimally affected. When the wind speed is lower, strong compression of the wind material by the companion occurs, causing a high-pressure region around the companion which shapes the wind into an irregular spiral. In extreme cases, with low wind velocity and high eccentricity, these instabilities grow to such proportion that they cause high-speed ejections of matter along the orbital plane, shaping the wind into a highly irregular morphology. In more eccentric orbits, the amplitude of the phase-dependent wind-companion interaction increases significantly, introducing additional complexities that make the outbursts even more energetic, leading in some cases to high-speed polar flows of matter. Further, the orbital motion of the stars tends to flatten the global density distribution of the models with no instabilities. We distinguish global flattening from an equatorial density enhancement, the latter being formed by a strong gravitational interaction of the companion with the wind particles. We classify the resulting morphologies according to these new definitions, and find that (i) all low-velocity models have an equatorial density enhancement and (ii), in general, the flattening increases for decreasing wind velocity, until the low wind velocity results in high-energy outflows that clear away the flattening. Conclusions. We conclude that for models with a high wind velocity, the short interaction with the companion results in a regular spiral morphology, which is flattened. In the case of a lower wind velocity, the stronger interaction results in the formation of a high-energy region and bow-shock structure that can shape the wind into an irregular morphology if instabilities arise. High-eccentricity models show a complex, phase-dependent interaction leading to wind structures that are irregular in three dimensions. However, the significant interaction with the companion compresses matter into an equatorial density enhancement, irrespective of eccentricity.
APA, Harvard, Vancouver, ISO, and other styles
49

Gárate, M., J. Cuadra, M. Montesinos, and P. Arévalo. "Feedback-limited Accretion: Variable Luminosity from Growing Planets." Monthly Notices of the Royal Astronomical Society, December 16, 2020. http://dx.doi.org/10.1093/mnras/staa3860.

Full text
Abstract:
Abstract Planets form in discs of gas and dust around stars, and continue to grow by accretion of disc material while available. Massive planets clear a gap in their protoplanetary disc, but can still accrete gas through a circumplanetary disk. For high enough accretion rates the planet should be detectable at infrared wavelengths. As the energy of the gas accreted on to the planet is released, the planet surroundings heat up in a feedback process.We aim to test how this planet feedback affects the gas in the coorbital region and the accretion rate itself. We modified the 2D code FARGO-AD to include a prescription for the accretion and feedback luminosity of the planet and use it to model giant planets on 10 au circular and eccentric orbits around a solar mass star. We find that this feedback reduces but does not halt the accretion on to the planet, although this result might depend on the near-coincident radial ranges where both recipes are implemented. Our simulations also show that the planet heating gives the accretion rate a stochastic variability with an amplitude $\Delta \dot{M}_p \sim 0.1 \dot{M}_p$. A planet on an eccentric orbit (e = 0.1) presents a similar variability amplitude, but concentrated on a well-defined periodicity of half the orbital period and weaker broadband noise, potentially allowing observations to discriminate between both cases. Finally, we find that the heating of the coorbital region by the planet feedback alters the gas dynamics, reducing the difference between its orbital velocity and the Keplerian motion at the edge of the gap, which can have important consequences for the formation of dust rings.
APA, Harvard, Vancouver, ISO, and other styles
50

Gabriel’yan, D. D., A. N. Gorbachev, and V. I. Demchenko. "Generalized algorithm for determining AES orbit parameters based on quadratic functionals." Journal of Radio Electronics 2021, no. 2 (February 2021). http://dx.doi.org/10.30898/1684-1719.2021.2.1.

Full text
Abstract:
The questions of development a generalized algorithm for determining the parameters of the low circular orbit (LCO) of an Earth satellite (ES) based on the use of quadratic functionals are in the focus of this paper. The functionals represent the square of the differences between the measured values of the ES sighting angles and the frequency of the received signal with the values of the same parameters obtained for the assumed values of the Keplerian orbital elements in accordance with the adopted model of the ES motion. Estimates of the orbit parameters are formed from the condition of the minimum of the proposed quality functionals. The proposed algorithm is aimed at the developing two equations for the relationship between the measured values of the azimuth and elevation angles, as well as the frequency of the received satellite signal and the parameters of the satellite orbit. The use of the indicated constraint equations makes it possible to pass from the six-dimensional space of the Keplerian orbital elements to the four-dimensional space of the Keplerian orbital elements when constructing the algorithm and choosing the initial approximations of the orbit parameters. Such a reduction in the dimension of space makes it possible to significantly reduce the amount of computational expenditure, which ensures the stability of the algorithm and expands the possibilities of its practical use with limited resources (computing power and restrictions on the permissible processing time). The following Keplerian orbital elements are proposed as four basic parameters: eccentricity, ascending node longitude, orbital inclination, and perigee argument. The other two elements, the semi-major axis of the orbit and the mean anomaly, are expressed as functions of four basic parameters. This choice is determined by the fact that, in the case of LCO, the pivoting of the initial values of the eccentricity and the argument of perigee is quite simple, which makes it possible to ensure convergence to the exact values of the orbit parameters in a wide value of the initial approximations. Within the Keplerian approximation of the satellite's orbital motion, mathematical relations are presented that determine the operations performed within the framework of the considered algorithm. However, a more complete consideration of the factors influencing the motion of the satellite only leads to more volumetric relations, but does not fundamentally affect the construction of the algorithm itself.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography