Academic literature on the topic 'Optoretinography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optoretinography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Optoretinography"

1

Cooper, Robert F., David H. Brainard, and Jessica I. W. Morgan. "Optoretinography of individual human cone photoreceptors." Optics Express 28, no. 26 (December 14, 2020): 39326. http://dx.doi.org/10.1364/oe.409193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yao, Xincheng, and Tae-Hoon Kim. "Fast intrinsic optical signal correlates with activation phase of phototransduction in retinal photoreceptors." Experimental Biology and Medicine 245, no. 13 (June 19, 2020): 1087–95. http://dx.doi.org/10.1177/1535370220935406.

Full text
Abstract:
Quantitative assessment of physiological condition of retinal photoreceptors is desirable for better detection and treatment evaluation of eye diseases that can cause photoreceptor dysfunctions. Functional intrinsic optical signal (IOS) imaging, also termed as optoretinography (ORG) or optophysiology, has been proposed as a high-resolution method for objective assessment of retinal physiology. Fast IOS in retinal photoreceptors shows a time course earlier than that of electroretinography a-wave, promising an objective marker for noninvasive ORG of early phototransduction process in retinal photoreceptors. In this article, recent observations of fast photoreceptor-IOS in animal and human retinas are summarized, and the correlation of fast photoreceptor-IOS to five steps of phototransduction process is discussed. Transient outer segment conformational change, due to inter-disc space shrinkage correlated with activation phase of phototransduction, has been disclosed as a primary source of the fast photoreceptor-IOS. Impact statement As the center of phototransduction, retinal photoreceptors are responsible for capturing and converting photon energy to bioelectric signals for following visual information processing in the retina. This article summarizes experimental observation and discusses biophysical mechanism of fast photoreceptor-intrinsic optical signal (IOS) correlated with early phase of phototransduction. Quantitative imaging of fast photoreceptor-IOS may provide objective optoretinography to advance the study and diagnosis of age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and other eye diseases that can cause photoreceptor dysfunctions.
APA, Harvard, Vancouver, ISO, and other styles
3

Pandiyan, Vimal Prabhu, Xiaoyun Jiang, Aiden Maloney-Bertelli, James A. Kuchenbecker, Utkarsh Sharma, and Ramkumar Sabesan. "High-speed adaptive optics line-scan OCT for cellular-resolution optoretinography." Biomedical Optics Express 11, no. 9 (August 26, 2020): 5274. http://dx.doi.org/10.1364/boe.399034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Guangying, Taeyoon Son, Tae-Hoon Kim, and Xincheng Yao. "Functional optoretinography: concurrent OCT monitoring of intrinsic signal amplitude and phase dynamics in human photoreceptors." Biomedical Optics Express 12, no. 5 (April 9, 2021): 2661. http://dx.doi.org/10.1364/boe.423733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Tae-Hoon, Benquan Wang, Yiming Lu, Taeyoon Son, and Xincheng Yao. "Functional optical coherence tomography enables in vivo optoretinography of photoreceptor dysfunction due to retinal degeneration." Biomedical Optics Express 11, no. 9 (August 27, 2020): 5306. http://dx.doi.org/10.1364/boe.399334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vienola, Kari V., Robert J. Zawadzki, and Ravi S. Jonnal. "Contributed Session I: Towards clinically friendly optoretinography (ORG) using 100 kHz swept-source OCT without adaptive optics (AO)." Journal of Vision 22, no. 3 (February 1, 2022): 4. http://dx.doi.org/10.1167/jov.22.3.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

КИМ, А. Л., and Г. Ж. КАПАНОВА. "OPTICAL COHERENCE TOMOGRAPHY IN OPHTHALMOLOGY: A REVIEW." Farmaciâ Kazahstana, no. 1 (May 19, 2022): 15–21. http://dx.doi.org/10.53511/pharmkaz.2022.91.69.004.

Full text
Abstract:
Актуальность: В различных литературных источниках встречается более 75 000 публикаций, связанных с оптической когерентной томографией (ОКТ). ОКТ стала одной из самых быстро и успешно проводимых методов визуализации со значительной клинической и экономической эффективностью. ОКТ впервые была применена для визуализации структур глаза более 20 лет назад и до сих пор остается незаменимой в офтальмологии. С помощью ОКТ стало возможно неинвазивно получать оптические срезы тканей с разрешением выше, чем у любого другого метода. Динамическое развитие науки и техники привело к повышению чувствительности аппаратов ОКТ, увеличению разрешающей способности, скорости сканирования. В данном обзоре рассматривается развитие метода ОКТ, представлены данные о современных ОКТ-приборах.Цель: изучить ключевые технологии и перспективные инновации ОКТ глаза.Материалы и методы: всесторонний обзор современных достижений в области ОКТ глаза.Результаты: наиболее революционные будущие инновации ОКТ включают улучшение разрешения и скорости визуализации, новые реализации для двухмодальных или даже мультимодальных систем, а также использование эндогенного или экзогенного контраста в этих гибридных системах ОКТ, ориентированных на молекулярную и метаболическую визуализацию. Некоторые недавно разработанные расширения, например, оптическая когерентная эластография, динамическая контрастная ОКТ, опторетинография и ОКТ с искусственным интеллектом, также имеют большой потенциал в будущем. Перевод OКT глаза в широкую клиническую практику, включая нормативные требования к медицинскому оборудованию, остается попрежнему крайне важным.Выводы. Обладая превосходной неинвазивной способностью делать срезы по глубине с микрометровым разрешением, ОКТ является самой быстро внедряемой технологией визуализации в офтальмологии. Тем не менее, ОКТ используется не полностью и имеет значительный потенциал роста. Это относится не только к области применения в офтальмологии, но и к изначальной цели ОКТ сделать возможной оптическую биопсию, т. е. визуализацию микроструктуры ткани in situ с разрешением, приближающимся к гистологическому, но без необходимости иссечения ткани. Introduction: There are more than 75,000 publications related to optical coherence tomography (OCT) in various literary sources. OCT has become one of the fastest and most successful imaging modalities with signi cant clinical and costeffectiveness. OCT was rst used to visualize the structures of the eye more than 20 years ago and still remains indispensable in ophthalmology. With the help of OCT, it has become possible to noninvasively obtain optical sections of tissues with a resolution higher than that of any other method. The dynamic development of science and technology has led to an increase in the sensitivity of OCT devices, an increase in resolution, and scanning speed. This review discusses the development of the OCT method and presents data on modern OCT devices.Objective: to explore key technologies and promising innovations in OCT of the eye.Materials and Methods: A Comprehensive Review of Current Advances in OCT of the Eye.Results: The most revolutionary future OCT innovations include improvements in imaging resolution and speed, new implementations for bimodal or even multimodal systems, and the use of endogenous or exogenous contrast in these hybrid OCT systems focused on molecular and metabolic imaging. Some recently developed extensions, such as optical coherence elastography, dynamic contrast OCT, optoretinography, and AIassisted OCT, also have great potential for the future. The translation of OCT of the eye into broad clinical practice, including regulatory requirements for medical devices, remains critical.Conclusions. With its excellent noninvasive ability to make micrometerresolution depth slices, OCT is the fastestgrowing imaging technology in ophthalmology. However, OCT is underused and has signi cant growth potential. This applies not only to the eld of application in ophthalmology, but also to the original purpose of OCT to enable optical biopsy, i.e. in situ visualization of tissue microstructure with a resolution approaching histological, but without the need for tissue excision.
APA, Harvard, Vancouver, ISO, and other styles
8

Roorda, Austin. "Optoretinography is coming of age." Proceedings of the National Academy of Sciences 118, no. 51 (December 14, 2021). http://dx.doi.org/10.1073/pnas.2119737118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vienola, Kari, Denise Valente, Robert Zawadzki, and Ravi Jonnal. "Velocity-based optoretinography for clinical applications." Optica, August 29, 2022. http://dx.doi.org/10.1364/optica.460835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pandiyan, Vimal, Sierra Schleufer, Emily Slezak, James Fong, RISHI UPADHYAY, Austin Roorda, Ren Ng, and Ramkumar Sabesan. "Characterizing Cone Spectral Classification by Optoretinography." Biomedical Optics Express, November 9, 2022. http://dx.doi.org/10.1364/boe.473608.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Optoretinography"

1

Kim, Tae-Hoon, Jie Ding, and Xincheng Yao. "Intrinsic signal optoretinography of dark adaptation." In Ophthalmic Technologies XXXII, edited by Daniel X. Hammer, Karen M. Joos, and Daniel V. Palanker. SPIE, 2022. http://dx.doi.org/10.1117/12.2607791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Guangying, Taeyun Son, Tae-Hoon Kim, and Xincheng Yao. "Intrinsic signal optoretinography of photoreceptor phototransduction and energy metabolism." In Ophthalmic Technologies XXXI, edited by Daniel X. Hammer, Karen M. Joos, and Daniel V. Palanker. SPIE, 2021. http://dx.doi.org/10.1117/12.2577080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Tae-Hoon, Benquan Wang, Yiming Lu, Taeyoon Son, and Xincheng Yao. "Intrinsic signal optoretinography of rod photoreceptor dysfunction due to retinal degeneration." In Ophthalmic Technologies XXXI, edited by Daniel X. Hammer, Karen M. Joos, and Daniel V. Palanker. SPIE, 2021. http://dx.doi.org/10.1117/12.2576897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tomczewski, Slawomir, Piotr Wegrzyn, Egidijus Auksorius, Piotr Ciacka, Dawid Borycki, Kamil Lizewski, and Maciej Wojtkowski. "Optoretinography with use of spatio-temporal optical coherence tomography STOC-T." In Optical Coherence Imaging Techniques and Imaging in Scattering Media, edited by Maciej Wojtkowski, Yoshiaki Yasuno, and Benjamin J. Vakoc. SPIE, 2021. http://dx.doi.org/10.1117/12.2616047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Son, Taeyoon, Tae-Hoon Kim, Guangying Ma, Hoonsup Kim, and Xincheng Yao. "Functional optical coherence tomography for nonmydriatic intrinsic signal optoretinography of human photoreceptors." In Ophthalmic Technologies XXXI, edited by Daniel X. Hammer, Karen M. Joos, and Daniel V. Palanker. SPIE, 2021. http://dx.doi.org/10.1117/12.2576690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Guangying, Taeyoon Son, Tae-Hoon Kim, and Xincheng Yao. "Comparative optoretinography of intrinsic signal amplitude and phase change in the human retina." In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI, edited by Joseph A. Izatt and James G. Fujimoto. SPIE, 2022. http://dx.doi.org/10.1117/12.2609242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pandiyan, Vimal Prabhu, Sierra Schleufer, Xiaoyun Jiang, James Kuchenbecker, and Ramkumar Sabesan. "Foveal cone optoretinography using a reflective mirror-based line-scan adaptive optics OCT." In Ophthalmic Technologies XXXII, edited by Daniel X. Hammer, Karen M. Joos, and Daniel V. Palanker. SPIE, 2022. http://dx.doi.org/10.1117/12.2610421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Curatolo, Andrea, Slawomir Tomczewski, Piotr Wegrzyn, Dawid Borycki, Egidijus Auksorius, and Maciej Wojtkowski. "Towards spatially mapped frequency response of human photoreceptor length variation with flicker optoretinography." In Ophthalmic Technologies XXXII, edited by Daniel X. Hammer, Karen M. Joos, and Daniel V. Palanker. SPIE, 2022. http://dx.doi.org/10.1117/12.2609513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tomczewski, Slawomir, Piotr Wegrzyn, Dawid Borycki, Andrea Curatolo, and Maciej Wojtkowski. "In vivo frequency characterization of human photoreceptors response to a flicker stimulus with optoretinography." In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/oct.2022.cs3e.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zawadzki, Robert J., Pengfei Zhang, Ewelina Pijewska, Denise Valente, Ratheesh K. Meleppat, Kari V. Vienola, Sarah J. Karlen, et al. "Progress in measurements and interpretation of light-evoked retinal function using OCT based optoretinography (ORG)." In Optical Coherence Imaging Techniques and Imaging in Scattering Media, edited by Maciej Wojtkowski, Yoshiaki Yasuno, and Benjamin J. Vakoc. SPIE, 2021. http://dx.doi.org/10.1117/12.2616045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography