Academic literature on the topic 'Optoelectronic properties of nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optoelectronic properties of nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optoelectronic properties of nanoparticles"
Sakurai, Makoto, Ke Wei Liu, Romain Ceolato, and Masakazu Aono. "Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles." Key Engineering Materials 547 (April 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/kem.547.7.
Full textRiyadh, Shahad, Mohammed Salman Mohammad, and Noorulhuda Riyadh Naser. "Optical Properties of Germanium Nanoparticles Prepared by Laser Ablation." University of Thi-Qar Journal of Science 10, no. 2 (December 26, 2023): 137–40. http://dx.doi.org/10.32792/utq/utjsci/v10i2.1119.
Full textLee, Chang-Woo, Ki-Woo Lee, and Jai-Sung Lee. "Optoelectronic properties of β-Fe2O3 hollow nanoparticles." Materials Letters 62, no. 17-18 (June 2008): 2664–66. http://dx.doi.org/10.1016/j.matlet.2008.01.008.
Full textMA, DONGLING, and ARNOLD KELL. "HOLLOW, BRANCHED AND MULTIFUNCTIONAL NANOPARTICLES: SYNTHESIS, PROPERTIES AND APPLICATIONS." International Journal of Nanoscience 08, no. 06 (December 2009): 483–514. http://dx.doi.org/10.1142/s0219581x09006419.
Full textQureshi, Akbar Ali, Sofia Javed, Hafiz Muhammad Asif Javed, Muhammad Jamshaid, Usman Ali, and Muhammad Aftab Akram. "Systematic Investigation of Structural, Morphological, Thermal, Optoelectronic, and Magnetic Properties of High-Purity Hematite/Magnetite Nanoparticles for Optoelectronics." Nanomaterials 12, no. 10 (May 11, 2022): 1635. http://dx.doi.org/10.3390/nano12101635.
Full textAgrahari, Vivek, Mohan Chandra Mathpal, Mahendra Kumar, and Arvind Agarwal. "Investigations of optoelectronic properties in DMS SnO2 nanoparticles." Journal of Alloys and Compounds 622 (February 2015): 48–53. http://dx.doi.org/10.1016/j.jallcom.2014.10.009.
Full textSathyaseela, Balaraman. "Ce Doped SnO2 Nanoparticcles: Investigation of Structural and Optical Properties." Nanomedicine & Nanotechnology Open Access 9, no. 1 (2024): 1–7. http://dx.doi.org/10.23880/nnoa-16000282.
Full textLi, Dikun, Hua Lu, Yangwu Li, Shouhao Shi, Zengji Yue, and Jianlin Zhao. "Plasmon-enhanced photoluminescence from MoS2 monolayer with topological insulator nanoparticle." Nanophotonics 11, no. 5 (January 21, 2022): 995–1001. http://dx.doi.org/10.1515/nanoph-2021-0685.
Full textLiao, Jianhui, Sander Blok, Sense Jan van der Molen, Sandra Diefenbach, Alexander W. Holleitner, Christian Schönenberger, Anton Vladyka, and Michel Calame. "Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties." Chemical Society Reviews 44, no. 4 (2015): 999–1014. http://dx.doi.org/10.1039/c4cs00225c.
Full textKHASHAN, KHAWLA S. "OPTOELECTRONIC PROPERTIES OF ZnO NANOPARTICLES DEPOSITION ON POROUS SILICON." International Journal of Modern Physics B 25, no. 02 (January 20, 2011): 277–82. http://dx.doi.org/10.1142/s0217979211054744.
Full textDissertations / Theses on the topic "Optoelectronic properties of nanoparticles"
Landes, Christy. "The dependence of the opto-electronic properties of CdSe nanoparticles on surface properties." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/30657.
Full textSinha, Banita. "Physicochemical and theoretical investigations on the synthesis characterization and optoelectronic properties of nanoparticles." Thesis, University of North Bengal, 2016. http://ir.nbu.ac.in/handle/123456789/2625.
Full textGarcía, Castelló Núria. "Atomistic study of structural and electronic transport properties of silicon quantum dots for optoelectronic applications." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/145640.
Full textLes nanopartícules de silici (silicon quantum dots, Si QDs, en anglès) són interessants materials que es proposen com a candidats per a la tercera generació de cel•les solars. Degut al confinement quàntic de les càrregues elèctriques dins del QD, el valor de l'energia de gap del material augmenta a mesura que la mida del QD disminueix, donant valors més gran que el Si bulk i fent que els QDs de Si siguin uns bons candidats per a dispositius amb valors de l'energia de gap modificables. En aquesta Tesi Doctoral proposem un marc teòric per estudiar el transport electrònic en nanoestructures aportant una descripció ab initio dels estats electrònics, basant-se en l'ús conjunt de dues tècniques: la Teoria del Funcional de la Densitat (Density Funcional Theory, DFT, en anglès) pel modelatge de la densitat d'estats del dispositiu i el Hamiltonià de Transferència (Transfer Hamiltonian, TH, en anglès) per la descripció del transport electrònic. Les principals conclusions d’aquesta Tesi Doctoral són: • En el cas de QDs de Si de pocs nanometres dins de matrius dielèctriques, la interfície fortament no-planar entre el Si i el SiO2 requereix un tractament diferent de la communtment utilitzada en l'heterojunció planar Si/SiO2. En aquesta Tesi Doctoral hem observat que, per Si QDs de mida petita, el model de partícula-dins-d'una-caixa no descriu les densitats d'estats i les barrers de potencial d'una forma acurada. Això és degut a què aquest model no recull l'efecte de la interfície, propietat que sembla ser essencial en la mida nanomètrica. • Respecte el transport electrònic en QDs de Si, Per una banda, el corrent d'electrons (forats) és més gran per a QDs DE Si de mida més gran (petita), i, per l'altra banda, el corrent d'electrons (forats) és més important per a sistemes amorfs (cristal•lins). • Les principals influències de dopatge tipus p (amb B) i tipus n (amb P) és (1) les configuracions de més baixa energia de formació són dins del QD quan dopem amb P, i a la interfície entre el QD i la primera capa d'oxígens quan dopem amb B, i (2) hi ha un millora en la conductivitat per la posició energètica més favorable pel dopatge amb P però no per la posició pel dopatge amb B.
Taha, Hatem. "Optoelectronic and mechanical properties of Sol-Gel derived Multi-Layer ITO thin films improved by elemental doping, Carbon Nanotubes and Nanoparticles." Thesis, Taha, Hatem (2018) Optoelectronic and mechanical properties of Sol-Gel derived Multi-Layer ITO thin films improved by elemental doping, Carbon Nanotubes and Nanoparticles. PhD thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/41359/.
Full textAghili, Yajadda Mir Massoud. "An investigation on the electrical and optical properties of thin films of gold nanoislands." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/18963.
Full textGinger, David Stanton. "Optoelectronic properties of CdSe nanocrystals." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621187.
Full textBeliatis, Michail. "Laser fabrication of plasmonic metal nanoparticles for optoelectronic devices." Thesis, University of Surrey, 2011. http://epubs.surrey.ac.uk/761383/.
Full textFigueiredo, José Maria Longras. "Optoelectronic properties of resonant tunnelling diodes." Doctoral thesis, Universidade do Porto. Reitoria, 2000. http://hdl.handle.net/10216/14347.
Full textCasey, Abby. "Optoelectronic properties of new conjugated materials." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/46164.
Full textFigueiredo, José Maria Longras. "Optoelectronic properties of resonant tunnelling diodes." Tese, Universidade do Porto. Reitoria, 2000. http://hdl.handle.net/10216/14347.
Full textBooks on the topic "Optoelectronic properties of nanoparticles"
service), SpringerLink (Online, ed. Self-Organized Arrays of Gold Nanoparticles: Morphology and Plasmonic Properties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textTrügler, Andreas. Optical Properties of Metallic Nanoparticles. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25074-8.
Full textP, Gubin S., ed. Magnetic nanoparticles. Weinheim: Wiley-VCH, 2009.
Find full textZarrabi, Nasim. Optoelectronic Properties of Organic Semiconductors. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93162-9.
Full textRoundhill, D. Max, and John P. Fackler, eds. Optoelectronic Properties of Inorganic Compounds. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6.
Full textRoundhill, D. Max. Optoelectronic Properties of Inorganic Compounds. Boston, MA: Springer US, 1999.
Find full textM, Roundhill D., and Fackler John P, eds. Optoelectronic properties of inorganic compounds. New York: Plenum Press, 1999.
Find full textA, Jenekhe Samson, Wynne Kenneth J. 1940-, Pacific Polymer Federation, and Pacific Polymer Conference (4th : 1995 : Kauai, Hawaii), eds. Photonic and optoelectronic polymers. Washington, DC: American Chemical Society, 1997.
Find full textAcklin, Beate. Magnetic nanoparticles: Properties, synthesis, and applications. Hauppauge, N.Y: Nova Science Publisher's, Inc., 2011.
Find full textE, Kestell Aiden, and DeLorey Gabriel T, eds. Nanoparticles: Properties, classification, characterization, and fabrication. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textBook chapters on the topic "Optoelectronic properties of nanoparticles"
Gawad, Shady, Ana Valero, Thomas Braschler, David Holmes, Philippe Renaud, Vanni Lughi, Tomasz Stapinski, et al. "Optoelectronic Properties." In Encyclopedia of Nanotechnology, 2000. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100615.
Full textBanin, Uri, Oded Millo, Stefanie Dehnen, Andreas Eichhöfer, John F. Corrigan, Olaf Fuhr, Dieter Fenske, Kerstin Blech, Melanie Homberger, and Ulrich Simon. "Properties." In Nanoparticles, 371–454. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631544.ch5.
Full textPogorelov, V. Ye, V. P. Bukalo, and Yu A. Astashkin. "Molecular Spectroscopy of Nanoparticles." In Frontiers of Nano-Optoelectronic Systems, 421–29. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0890-7_28.
Full textGutsche, Christoph, Ingo Regolin, Andrey Lysov, Kai Blekker, Quoc-Thai Do, Werner Prost, and Franz-Josef Tegude. "III/V Nanowires for Electronic and Optoelectronic Applications." In Nanoparticles from the Gasphase, 357–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28546-2_14.
Full textKoshida, N. "Optoelectronic Properties of Porous Silicon." In Optical Properties of Low Dimensional Silicon Structures, 133–38. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2092-0_15.
Full textHan, Sang-Wook. "Microstructural Properties of Nanostructures." In Semiconductor Nanostructures for Optoelectronic Devices, 197–223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_7.
Full textFacibeni, Anna. "Antibacterial Properties of Silver Nanoparticles." In Silver Nanoparticles, 197–225. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003278955-5.
Full textGray, Gary M., and Christopher M. Lawson. "Structure-Property Relationships in Transition Metal-Organic Third-Order Nonlinear Optical Materials." In Optoelectronic Properties of Inorganic Compounds, 1–27. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_1.
Full textKershaw, Stephen V. "Metallo-Organic Materials for Optical Telecommunications." In Optoelectronic Properties of Inorganic Compounds, 349–406. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_10.
Full textSibley, Scott, Mark E. Thompson, Paul E. Burrows, and Stephen R. Forrest. "Electroluminescence in Molecular Materials." In Optoelectronic Properties of Inorganic Compounds, 29–54. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6101-6_2.
Full textConference papers on the topic "Optoelectronic properties of nanoparticles"
Jiang, Rui, Zhimou Xu, and Xiaopeng Qu. "The synthesis and the properties of the ZnS nanoparticles." In Optoelectronic Devices and Integration. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/oedi.2018.ot4a.29.
Full textKumari, Priyanka, Susruta Samanta, Kamakhya Prakash Misra, Anupam Sharma, Nilanjan Halder, and Saikat Chattopadhyay. "Optoelectronic properties of spherical ZnS nanoparticles synthesized by sol-gel method." In PROCEEDINGS OF THE 11TH INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS & EXHIBITION. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0139067.
Full textShin, Dong C., Myung S. Kim, Yong T. O, Sang J. Hong, and Beom G. Lee. "Optical properties of a SiO2photonic crystal layer fabricated by seeded growth of spherical nanoparticles." In Integrated Optoelectronic Devices 2005. SPIE, 2005. http://dx.doi.org/10.1117/12.588069.
Full textKesavan, Arul Varman, Arun D. Rao, and Praveen C. Ramamurthy. "Polydispersed Metal Nanoparticles at the Interface for Improved Optoelectronic Properties in Perovskite Photovoltaics." In 2018 4th IEEE International Conference on Emerging Electronics (ICEE). IEEE, 2018. http://dx.doi.org/10.1109/icee44586.2018.8937886.
Full textXavier, Sheena, M. K. Jiji, Smitha Thankachan, and E. M. Mohammed. "Effect of sintering temperature on the structural and electrical properties of cobalt ferrite nanoparticles." In OPTOELECTRONIC MATERIALS AND THIN FILMS: OMTAT 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861992.
Full textFantoni, Alessandro, Miguel Fernandes, Yuri Vygranenko, Manuela Vieira, Elisabete Alegria, Ana Ribeiro, Duarte Prazeres, and Rui P. Silva. "Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation." In Physics and Simulation of Optoelectronic Devices XXVI, edited by Marek Osiński, Yasuhiko Arakawa, and Bernd Witzigmann. SPIE, 2018. http://dx.doi.org/10.1117/12.2289983.
Full textYang, Qiguang, Jaetae Seo, Wan-Joong Kim, SungSoo Jung, Bagher Tabibi, Justin Vazquez, Jasmine Austin, and Doyle Temple. "Optical properties of morphology-controlled gold nanoparticles." In Photonics and Optoelectronics Meetings, edited by Peixiang Lu, Katsumi Midorikawa, and Bernd Wilhelmi. SPIE, 2008. http://dx.doi.org/10.1117/12.822839.
Full textVindhya, P. S., T. Jeyasingh, and V. T. Kavitha. "Dielectric properties of zinc oxide nanoparticles using annona muricata leaf." In THE 3RD INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND NANO MATERIALS FOR ADVANCED TECHNOLOGY (icONMAT 2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5093888.
Full textTrejo-Durán, M., D. Cornejo-Monroy, E. Alvarado-Méndez, A. Olivares-Vargas, J. M. Estudillo-Ayala, and V. Castaño-Meneses. "Nonlinear optical properties of Au nanoparticles in solution." In SPIE Optics + Optoelectronics. SPIE, 2013. http://dx.doi.org/10.1117/12.2017595.
Full textFarva, Umme, Tam Nguyen Truong Nguyen, and Chinho Park. "Optoelectronic properties of CdSe nanoparticles and their application to bulk hetero-junction solar cells." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411547.
Full textReports on the topic "Optoelectronic properties of nanoparticles"
Zhang, Mingjun. Mechanics of the Adhesive Properties of Ivy Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada606589.
Full textAikens, Christine M. Structure and Optical Properties of Noble Metal Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada575706.
Full textAikens, Christine M. Structure and Optical Properties of Noble Metal Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada575836.
Full textHsieh, Timothy H., and Brian M. Wong. Optoelectronic and excitonic properties of oligoacenes and one-dimensional nanostructures. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1002094.
Full textRadousky, H., M. McElfresh, A. Berkowitz, and G. P. Carman. Exchange-Coupling in Magnetic Nanoparticles to Enhance Magnetostrictive Properties. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/15013323.
Full textDiSalvo, Francis J. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1172321.
Full textPolsky, Ronen, Ryan W. Davis, Dulce C. Arango, Susan Marie Brozik, and David Roger Wheeler. Advanced optical measurements for characterizing photophysical properties of single nanoparticles. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/972888.
Full textLeonard, Francois Leonard. Temperature dependence of the electronic and optoelectronic properties of carbon nanotube devices. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1113878.
Full textKaraba, Parker. The Effect of pH on the Photoluminescent Properties of Silicon Nanoparticles. Portland State University Library, January 2016. http://dx.doi.org/10.15760/honors.326.
Full textDolomatov, M. Yu, R. Z. Bakhtizin, S. A. Shutkova, K. F. Latyipov, Z. Z. Ishniyazov, N. H. Paymurzina, and A. M. Petrov. Structure and electrophysical properties of materials based on nanoparticles of oil asphaltenes. PHYSICAL-TECHNICAL SOCIETY OF KAZAKHSTAN, December 2017. http://dx.doi.org/10.29317/ejpfm.2017010208.
Full text