Academic literature on the topic 'Optoelectronic devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optoelectronic devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optoelectronic devices"
Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin, and Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices." Materials 15, no. 24 (December 7, 2022): 8731. http://dx.doi.org/10.3390/ma15248731.
Full textKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa, and Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology." Journal of Composites Science 6, no. 12 (December 16, 2022): 393. http://dx.doi.org/10.3390/jcs6120393.
Full textSang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan, and Dandan Sang. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction." Molecules 28, no. 3 (January 30, 2023): 1334. http://dx.doi.org/10.3390/molecules28031334.
Full textAlles, M. A., S. M. Kovalev, and S. V. Sokolov. "Optoelectronic Defuzzification Devices." Физические основы приборостроения 1, no. 3 (September 15, 2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.
Full textBhattacharya, Pallab, and Lily Y. Pang. "Semiconductor Optoelectronic Devices." Physics Today 47, no. 12 (December 1994): 64. http://dx.doi.org/10.1063/1.2808754.
Full textOsten, W. "Advanced Optoelectronic Devices." Optics & Laser Technology 31, no. 8 (November 1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.
Full textJerrard, H. G. "Picosecond optoelectronic devices." Optics & Laser Technology 18, no. 2 (April 1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.
Full textChapman, David. "Optoelectronic semiconductor devices." Microelectronics Journal 25, no. 8 (November 1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.
Full textDjuris˘Ić, A. B., and W. K. Chan. "Organic Optoelectronic Devices." HKIE Transactions 11, no. 2 (January 2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.
Full textVazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin, and Kostantin Subkhankulov. "OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES." Electrical and data processing facilities and systems 18, no. 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.
Full textDissertations / Theses on the topic "Optoelectronic devices"
Thompson, Paul. "II-VI optoelectronic devices." Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/726.
Full textVaughan, John. "Optoelectronic devices for spectrochemical sensing." Thesis, University of Manchester, 2005. https://www.research.manchester.ac.uk/portal/en/theses/optoelectronic-devices-for-spectrochemical-sensing(a6ea9f13-f235-4920-b63e-51e64a402327).html.
Full textHiggins, Steven Paul. "Computer simulation of optoelectronic devices." Thesis, University of Essex, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413634.
Full textShapira, Ofer Ph D. Massachusetts Institute of Technology. "Optical and optoelectronic fiber devices." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40511.
Full textIncludes bibliographical references (p. 111-119).
The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, demonstrated first in our work, are the surface-emitting fiber laser, the hollow-core fiber amplifier, the thermally self-monitored high-power transmission fiber device, and the photo-detecting fiber-web based imaging system. This work presents the design, analysis, and characterization of those devices. It opens with a study of the transmission properties of the multimode hollow-core, photonic bandgap fiber constructed of a periodic multilayer cladding. A defect is then introduced into one of the cladding layers and the interaction between core and defect modes is investigated. The second chapter addresses the experimental problem encountered in many multimode waveguide applications: how to extract, and to some extent to control, the modal content of the field at the output of a waveguide. We developed a non-interferometric approach to achieve mode decomposition based on a modified phase retrieval algorithm that can yield the complete vectorial eigenmode content of any general waveguiding structure and demonstrated its validity experimentally. In the third chapter an active material is introduced into the hollow-core to form a surface-emitting fiber laser. A unique azimuthally anisotropic optical wave front results from the interplay between the cylindrical resonator, the anisotropic gain medium, and the linearly polarized axial pump. We show that the direction and polarization of the wave front are directly controlled by the pump polarization.
(cont.) In the last two chapters, a new type of fiber is presented, constructed of semiconducting, insulating, and conducting materials, which enables the integration of semiconductor devices into the fiber structure. In the first we demonstrate a fiber comprised of an optical transmission element designed for the transport of high power radiation and multiple thermal-detecting elements encompassing the hollow core for distributed temperature monitoring and real-time failure detection. In the second, we demonstrate optical imaging using large-area, three-dimensional optical-detector arrays, built from one-dimensional photodetecting optoelectronic fibers. Lensless imaging of an object is achieved using a phase retrieval algorithm.
by Ofer Shapira.
Ph.D.
Martins, Emiliano. "Light management in optoelectronic devices." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6133.
Full textLi, Guangru. "Nanostructured materials for optoelectronic devices." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Full textDibos, Alan. "Nanofabrication of Hybrid Optoelectronic Devices." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463975.
Full textEngineering and Applied Sciences - Applied Physics
Tan, Eugene. "Design, fabrication and characterization of N-channel InGaAsP-InP based inversion channel technology devices (ICT) for optoelectronic integrated circuits (OEIC), double heterojunction optoelectronic switches (DOES), heterojunction field-effect transistors (HFET), bipolar inversion channel field-effect transistors (BICFET) and bipolar inversion channel phototransistors (BICPT)." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ42767.pdf.
Full textKim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.
Full textDie vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Yiu, Wai-kin, and 姚偉健. "Plasmonic enhancement of organic optoelectronic devices." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/211120.
Full textpublished_or_final_version
Physics
Master
Master of Philosophy
Books on the topic "Optoelectronic devices"
Dragoman, Daniela. Advanced optoelectronic devices. Berlin: Springer, 1999.
Find full textMooney, William J. Optoelectronic devices and principles. Englewood Cliffs, N.J: Prentice Hall, 1991.
Find full textPiprek, Joachim, ed. Optoelectronic Devices. New York: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b138826.
Full textBhattacharya, Pallab. Semiconductor optoelectronic devices. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997.
Find full textDragoman, Daniela, and Mircea Dragoman. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5.
Full textBhattacharya, P. K. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1993.
Find full textDragoman, Daniela. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Find full textBhattacharya, Pallab. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1994.
Find full textBhattacharya, Pallab Kumar. Semiconductor optoelectronic devices. London: Prentice-Hall International, 1994.
Find full textPradhan, Basudev, ed. Perovskite Optoelectronic Devices. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57663-8.
Full textBook chapters on the topic "Optoelectronic devices"
Panish, Morton B., and Henryk Temkin. "Optoelectronic Devices." In Gas Source Molecular Beam Epitaxy, 322–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78127-8_10.
Full textLunardi, Leda, Sudha Mokkapati, and Chennupati Jagadish. "Optoelectronic Devices." In Guide to State-of-the-Art Electron Devices, 265–74. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118517543.ch20.
Full textEvstigneev, Mykhaylo. "Optoelectronic Devices." In Introduction to Semiconductor Physics and Devices, 275–304. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08458-4_12.
Full textGupta, K. M., and Nishu Gupta. "Optoelectronic Devices." In Advanced Semiconducting Materials and Devices, 311–50. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19758-6_9.
Full textPatrick, Dale R., Stephen W. Fardo, Ray E. Richardson, and Vigyan Vigs Chandra. "Optoelectronic Devices." In Electronic Devices and Circuit Fundamentals, Solution Manual, 76–86. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003403272-13.
Full textPatrick, Dale R., Stephen W. Fardo, Ray E. Richardson, and Vigyan (Vigs) Chandra. "Optoelectronic Devices." In Electronic Devices and Circuit Fundamentals, 511–80. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003393139-13.
Full textNelson, A. W. "Key Optoelectronic Devices." In Electronic Materials, 67–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_7.
Full textLozes-Dupuy, F., H. Martinot, and S. Bonnefont. "Optoelectronic semiconductor devices." In Perspectives for Parallel Optical Interconnects, 149–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49264-8_7.
Full textBanerjee, Amal. "Semiconductor Optoelectronic Devices." In Synthesis Lectures on Engineering, Science, and Technology, 245–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45750-0_14.
Full textDragoman, Daniela, and Mircea Dragoman. "Basic Concepts of Optoelectronic Devices." In Advanced Optoelectronic Devices, 1–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5_1.
Full textConference papers on the topic "Optoelectronic devices"
Ruden, P. P. "Materials-theory-based device modeling for III-nitride devices." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Gail J. Brown and Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344555.
Full textJabbour, Ghassan E., Bernard Kippelen, Neal R. Armstrong, and Nasser Peyghambarian. "Organic electroluminescent devices: aluminum alkali-halide composite cathode for enhanced device performance." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Bernard Kippelen. SPIE, 1999. http://dx.doi.org/10.1117/12.348413.
Full text"Optoelectronic devices." In 2011 69th Annual Device Research Conference (DRC). IEEE, 2011. http://dx.doi.org/10.1109/drc.2011.5994526.
Full text"Optoelectronic devices." In 2013 71st Annual Device Research Conference (DRC). IEEE, 2013. http://dx.doi.org/10.1109/drc.2013.6633854.
Full textJain, Nikhil, Himanshu Singhvi, Siddharth Jain, and Rishabh upadhyay. "Optoelectronic devices." In ICWET '10: International Conference and Workshop on Emerging Trends in Technology. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1741906.1742213.
Full textMcInerney, John G. "Bistable Optoelectronic Devices." In O-E/Fibers '87, edited by Theodore E. Batchman, Richard F. Carson, Robert L. Galawa, and Henry J. Wojtunik. SPIE, 1987. http://dx.doi.org/10.1117/12.967536.
Full textKobayashi, Tetsuro, and Bong Young Lee. "Ultrafast Optoelectronic Devices." In 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.s-e-2.
Full textTzolov, Velko P., Dazeng Feng, Stoyan Tanev, and Z. Jan Jakubczyk. "Modeling tools for integrated and fiber optical devices." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Giancarlo C. Righini and S. Iraj Najafi. SPIE, 1999. http://dx.doi.org/10.1117/12.343726.
Full textLaporta, Paolo, Stefano Longhi, Gino Sorbello, Stefano Taccheo, and Cesare Svelto. "Erbium-ytterbium miniaturized laser devices for optical communications." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Shibin Jiang and Seppo Honkanen. SPIE, 1999. http://dx.doi.org/10.1117/12.344495.
Full textHood, Patrick J., John C. Mastrangelo, and Shaw H. Chen. "New materials technology for latching electro-optic devices." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Julian P. G. Bristow and Suning Tang. SPIE, 1999. http://dx.doi.org/10.1117/12.344610.
Full textReports on the topic "Optoelectronic devices"
Kolodzey, James. SiGeC Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada377834.
Full textKolodzey, James. SiGeC Alloys for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada295007.
Full textGeorge, Nicholas. Optoelectronic Materials Devices Systems Research. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada358443.
Full textLaBounty, Christopher, Ali Shakouri, Patrick Abraham, and John E. Bowers. Integrated Cooling for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada459476.
Full textMiller, David A. Ultrafast Quantum Well Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada384413.
Full textPeyghambarian, Nasser. (AASERT 95) Quantum Dot Devices and Optoelectronic Device Characterization. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada379743.
Full textDing, Yujie J. Optoelectronic Devices Based on Novel Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada451063.
Full textHolub, M., D. Saha, D. Basu, P. Bhattacharya, L. Siddiqui, and S. Datta. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada498345.
Full textChaung, S. L. Semiconductor Quantum-Well Lasers and Ultrafast Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada319314.
Full textLi, Baohua. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ad1012928.
Full text