Academic literature on the topic 'Opto-electronic Devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Opto-electronic Devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Opto-electronic Devices"
Boyanov, Petar. "PRIMARY PROCESSING OF SIGNALS IN AN OPTO-ELECTRONIC DEVICES." Journal Scientific and Applied Research 8, no. 1 (November 14, 2015): 10–15. http://dx.doi.org/10.46687/jsar.v8i1.172.
Full textBhattacharya, P., S. Ghosh, and A. D. Stiff-Roberts. "QUANTUM DOT OPTO-ELECTRONIC DEVICES." Annual Review of Materials Research 34, no. 1 (August 4, 2004): 1–40. http://dx.doi.org/10.1146/annurev.matsci.34.040203.111535.
Full textStavila, V., A. A. Talin, and M. D. Allendorf. "MOF-based electronic and opto-electronic devices." Chem. Soc. Rev. 43, no. 16 (2014): 5994–6010. http://dx.doi.org/10.1039/c4cs00096j.
Full textKrawczyk, S. K. "Senso-opto-micro-electronic (somet) devices." Sensors and Actuators 11, no. 3 (April 1987): 289–97. http://dx.doi.org/10.1016/0250-6874(87)80008-2.
Full textAhuja, Swati, Mark Scarbecz, Heath Balch, and David R Cagna. "Verification of the Accuracy of Electronic Mandibular Movement-recording Devices: An in vitro Investigation." International Journal of Experimental Dental Science 6, no. 2 (2017): 84–94. http://dx.doi.org/10.5005/jp-journals-10029-1162.
Full textNikić, Marta, Aleksandar Opančar, Florian Hartmann, Ludovico Migliaccio, Marie Jakešová, Eric Daniel Głowacki, and Vedran Đerek. "Micropyramid structured photo capacitive interfaces." Nanotechnology 33, no. 24 (March 23, 2022): 245302. http://dx.doi.org/10.1088/1361-6528/ac5927.
Full textIchinose, Noboru. "Fields of Opto-Electronic Materials and Devices." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 84, no. 1 (2000): 12–21. http://dx.doi.org/10.2150/jieij1980.84.1_12.
Full textVlad, V. I. "Opto-electronic Bistable Devices for Image Processing." Optica Acta: International Journal of Optics 32, no. 9-10 (September 1985): 1235–50. http://dx.doi.org/10.1080/713821835.
Full textUeda, O. "Degradation of III–V Opto‐Electronic Devices." Journal of The Electrochemical Society 135, no. 1 (January 1, 1988): 11C—22C. http://dx.doi.org/10.1149/1.2095535.
Full textHeeger, Alan J., and James Long. "Opto-electronic Devices Fabricated from Semiconducting Polymers." Optics and Photonics News 7, no. 8 (August 1, 1996): 23. http://dx.doi.org/10.1364/opn.7.8.000023.
Full textDissertations / Theses on the topic "Opto-electronic Devices"
Russell, Ben. "Modelling of novel opto-electronic devices." Thesis, University of York, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444759.
Full textRajagopalan, Dharmashankar. "Opto-Electronic Processes in SrS:Cu ACTFEL Devices." UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_theses/273.
Full textAli, Nazar Thamer. "Opto-electronic characterization of multi-terminal polysilicon switching devices." Thesis, University of Bradford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304120.
Full textWang, Shouyin. "Characterisation of ZnSe and ZnCdSe/ZnSe opto-electronic devices." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1394.
Full textThorat, Ruhi P. "Opto-Electronic Properties of Self-Contacted MoS2 Monolayer Devices." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1512731597427663.
Full textToffanin, Stefano. "Multifunctional organic semiconductors as active materials for electronic and opto-electronic devices." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426094.
Full textFin dalla scoperta dell’effetto fotoelettrico nell’antracene, i composti organici sono stati studiati come materiali multifunzionali data la loro capacità di mostrare una varietà di proprietà differenti, come il trasporto di carica, emissione/assorbimento di luce, fotoconduttività, elettroluminescenza e superconduttività. Il lavoro presentato in questa tesi di dottorato si prefigge lo scopo di studiare differenti classi di materiali organici ? coniugati che presentino le proprietà funzionali adatte per la realizzazione di dispositivi optoelettronici. In particolare viene prestata particolare attenzione allo studio di due specifiche proprietà che sono profondamente connesse con l’organizzazione molecolare nei dispositivi multifunzionali con dimensioni nanometriche: il trasporto di carica e l’emissione di luce. Nei film sottili, univocamente considerati interessanti dal punto di vista tecnologico, l’organizzazione molecolare è fortemente dipendente dai processi di deposizione e dalla natura del substrato. Per aumentare le prestazioni dei dispositivi basati sui film sottili risulta fondamentale comprendere le strutture supermolecolari e le caratteristiche morfologiche su scala micro- e nanometrica che possono favorire il trasporto di carica e/o i processi di trasferimento di energia. Si dimostra che in generale gli oligotiofeni lineari depositati in film sottile possano organizzarsi vantaggiosamente in modo da garantire l’opportuna sovrapposizione tra gli orbitali molecolari che permette un efficiente trasporto di carica. Introducendo una nuova classe di oligotiofeni ramificati, denominati spider-like, ci proponiamo di studiare come una complessa architettura 3D possa modificare le proprietà di emissione, di organizzazione supermolecolare e di trasporto. Si procede quindi ad indagare la possibilità di aumentare l’efficienza di emissione di luce di sistemi organici molecolari mediante l’introduzione di un nuovo sistema host-guest con proprietà di lasing ottenuto sublimando un derivato diarilfluorenico (T3, donore) con una noto colorante emettitore nel rosso (DCM, accettare). In questa soluzione solida binaria, si verifica un efficiente trasferimento di energia alla Förster tra la matrice di T3 e le molecole di colorante quando la concentrazione di colorante viene opportunamente ottimizzata. Inoltre, la soglia di emissione spontanea amplificata del campione avente le molecole di DCM disperse al 2% in peso nel T3 risulta quasi un ordine di grandezza più bassa rispetto a quella del campione modello misurato nelle stesse condizioni sperimentali avente la stessa concentrazione in peso si molecole di DCM disperse in una matrice di Alq3. La possibilità di combinare diverse proprietà funzionali in un unico dispositivo risulta di notevole interesse per un ulteriore sviluppo dell’elettronica organica nei componenti integrati e nei circuiti. Si è dimostrato che i transistor organici ad emissione di luce sono capaci di combinare in un singolo dispositivo le proprietà di switch dei transistor ad effetto di campo con la capacità di generare luce. Quando i materiali organici vengono utilizzati come strati attivi nei dispositivi, le interfacce formate dai diversi materiali assumono un ruolo di primaria importanza. La comprensione dei processi fisici che avvengono ad ogni interfaccia è cruciale per disegnare nuovi materiali per dispositivi o per aumentare le prestazioni quelli già esistenti. In questo lavoro di tesi viene presentato un nuovo approccio per realizzare transistor ambipolari ad emissione di luce. Nell’eterogiunzione che viene proposta il primo e il terzo strato sono dedicati al trasporto di portatori di carica (elettroni e lacune) per effetto di campo mentre il secondo strato è formato da una soluzione solida host-guest che mostra efficiente emissione di luce ed emissione spontanea di luce se pompata otticamente. La specificità dell’approccio che presentiamo è che le regioni di trasporto di carica sono fisicamente separate da quella in cui avviene la formazione dell’eccitone. In questo modo viene ridotta completamente l’interazione tra l’eccitone e il portatore di carica. Dopo aver ottimizzato il trasporto di carica e le proprietà di emissione di luce, si è potuto realizzare un dispositivo basato sull’eterogiunzione a tre strati che presenta valori di mobilità per gli elettroni e le lacune bilanciati (~10-1-10-2 cm2/Vs), alta densità di portatori di carica in corrispondenza del massimo di elettroluminescenza (~ 1 KA/cm2) e intensa emissione di luce.
Wallace, Chik-Ho Choy. "Modelling and electro-optic quantum-wells modulation devices." Thesis, University of Surrey, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267967.
Full textBilla, Muralidhar Reddy. "Liquid crystalline organic semiconductors for application in opto-electronic devices." Thesis, University of Hull, 2015. http://hydra.hull.ac.uk/resources/hull:11267.
Full textBao, Weixiao. "Liquid crystalline organic semiconductors for application in opto-electronic devices." Thesis, University of Hull, 2014. http://hydra.hull.ac.uk/resources/hull:10866.
Full textMossanen-Shams, Iden. "Investigation of two opto-electronic sensing devices for determination of position." Thesis, Brunel University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334351.
Full textBooks on the topic "Opto-electronic Devices"
Limited, Ferranti Electronics. Opto-electronic devices. Chadderton: Ferranti Electronics Ltd, 1985.
Find full textInternational Symposium on Opto-Electronic Imaging (1985 New Delhi, India). Opto-electronic imaging: Proceedings of the International Symposium on Opto-Electronic Imaging, December 2-5, 1985, New Delhi, India. Edited by Juyal D. P. 1941-, Mehta P. C. 1943-, Sharma M. K. 1941-, Instruments Research and Development Establishment., India. Ministry of Defence. Research and Development Organisation., and Optical Society of India. Dehra Dun: Instruments Research and Development Establishment, 1987.
Find full textMossanen-Shams, Iden. Investigation of two opto-electronic sensing devices for determination of position. Uxbridge: Brunel University, 1993.
Find full textHandbook of organic materials for optical and (opto)electronic devices: Properties and applications. Oxford: Woodhead Publishing, 2013.
Find full textCollins, John Vincent. Investigation into low cost methods of coupling semiconductor opto-electronic devices to optical fibres. Birmingham: University of Birmingham, 1999.
Find full textInternational Seminar on Laser and Opto-Electronic Technology in Industry (1986 Xiamen, Xiamen Shi, China). International Seminar on Laser and Opto-Electronic Technology in Industry: State-of-the-art review, 25-28 June, 1986, Xiamen, China. Edited by Fagan William F, Ke Jingtang, Pryputniewicz Ryszard J, and Zhongguo guang xue xue hui. Quan xi he guang xin xi chu li zhuan ye wei yuan hui. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1987.
Find full textFachtagung Schichtsysteme für Zukünftige Bauelemente der Mikro-, Opto-, Bioelektronik und Optik (2nd 1989? Technische Universität Karl-Marx-Stadt). 2. Fachtagung Schichtsysteme für Zukünftige Bauelemente der Mikro-, Opto-, Bioelektronik und Optik. Karl-Marx-Stadt: Technische Universität Karl-Marx-Stadt, 1989.
Find full textNonlinear Optical (NLO) Polymer Opto-Electronic Devices. Storming Media, 2000.
Find full textOstroverkhova, Oksana. Handbook of organic materials for optical and (opto)electronic devices. Woodhead Publishing Limited, 2013. http://dx.doi.org/10.1533/9780857098764.
Full textStructural Dynamics of Micro- and Opto-Electronic Systems. Wiley, 2009.
Find full textBook chapters on the topic "Opto-electronic Devices"
Pocholle, J. P., and M. H. Carpentier. "Solid-state opto-electronic devices." In The Microwave Engineering Handbook, 341–48. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4552-5_16.
Full textMcCarthy, Mary, Simon Fabbri, and Andrew Ellis. "Signal Processing Using Opto-Electronic Devices." In Springer Series in Optical Sciences, 291–323. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14992-9_10.
Full textWheatley, P., M. Whitehead, P. J. Bradley, G. Parry, J. E. Midwinter, P. Mistry, M. A. Pate, and J. S. Roberts. "Hard Limiting Opto-electronic Logic Devices." In Photonic Switching, 69–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73388-8_12.
Full textClaeys, Cor, and Eddy Simoen. "Opto-Electronic Components for Space." In Radiation Effects in Advanced Semiconductor Materials and Devices, 281–330. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04974-7_8.
Full textMasterov, A. V., V. N. Tolkov, and V. G. Yakhno. "Spatio-Temporal Structures in Opto-Electronic Devices." In Nonlinear Waves 1, 168–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74289-7_12.
Full textWoods, J. "II–VI electroluminescent devices." In Widegap II–VI Compounds for Opto-electronic Applications, 297–322. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3486-0_12.
Full textKaraağaç, H., E. Peksu, B. Alhalaili, and M. Saif Islam. "One-Dimensional Silicon Nano-/microstructures Based Opto-Electronic Devices." In Topics in Applied Physics, 731–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93460-6_26.
Full textKazemifard, Nafiseh, Behzad Rezaei, and Zeinab Saberi. "Conventional Technologies and Opto-electronic Devices for Detection of Food Biomarkers." In Biosensing and Micro-Nano Devices, 169–96. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8333-6_7.
Full textNishizawa, J. i., and K. Suto. "Preparation of widegap II–VI homojunction devices by stoichiometry control." In Widegap II–VI Compounds for Opto-electronic Applications, 323–50. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3486-0_13.
Full textPugliesi, I., P. Krok, A. Błaszczyk, M. Mayor, and E. Riedle. "Naphthalene Bisimides: on the Way to Ultrafast Opto-electronic Devices." In Springer Series in Chemical Physics, 628–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_204.
Full textConference papers on the topic "Opto-electronic Devices"
"Opto electronic devices." In 2009 67th Annual Device Research Conference (DRC). IEEE, 2009. http://dx.doi.org/10.1109/drc.2009.5354976.
Full textIkegami, Tetsuhiko. "Opto-Electronic Devices --What's Missing--." In 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.a-0-3.
Full textThylen, Lars, Per Arve, Bjorn Hessmo, Petter Holmstrom, Petter Janes, Anders Karlsson, and Min Qiu. "Progress in Opto-Electronic Devices." In Asia-Pacific Optical and Wireless Communications. SPIE, 2004. http://dx.doi.org/10.1117/12.525436.
Full textShen, G. D., Y. X. Chen, B. F. Cui, J. J. Li, J. Han, B. L. Guan, X. Guo, et al. "High-efficiency active opto-electronic devices." In Photonics Asia 2007, edited by Lianghui Chen, Hiroyuki Suzuki, Paul T. Rudy, and Ninghua Zhu. SPIE, 2007. http://dx.doi.org/10.1117/12.784829.
Full textBosman, Erwin, Geert Van Steenberge, Jeroen Missine, Bram Van Hoe, and Peter Van Daele. "Packaging of opto-electronic devices for flexible applications." In OPTO, edited by Alexei L. Glebov and Ray T. Chen. SPIE, 2010. http://dx.doi.org/10.1117/12.841553.
Full textBahl, M., E. Heller, J. S. Ayubi-Moak, W. C. Ng, R. Scarmozzino, G. Letay, and L. Schneider. "Mixed-level simulation of opto-electronic devices." In 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2016. http://dx.doi.org/10.1109/nusod.2016.7547050.
Full textSharma, Sudhir K., V. K. Sharma, Avinashi Kapoor, K. N. Tripathi, S. C. K. Misra, and Subhas Chandra. "Polymeric thin film micro-opto-electronic devices." In Indo-Russian Workshop on Micromechanical Systems, edited by Vladimir I. Pustovoy and Vinoy K. Jain. SPIE, 1999. http://dx.doi.org/10.1117/12.369459.
Full textTsang, W. T. "Future Prospects of Opto-Electronic Devices and Processings." In 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.d-1-1.
Full textKasahara, K., I. Ogura, and Y. Yamanaka. "Progress in Arrays of Opto-Electronic Bistable Devices and Sources." In Optical Computing. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/optcomp.1991.ma1.
Full textKaul, Anupama B. "Chemically and mechanically exfoliated MoS2 for electronic & opto-electronic devices." In 2016 Lester Eastman Conference on High Performance Devices (LEC). IEEE, 2016. http://dx.doi.org/10.1109/lec.2016.7578920.
Full textReports on the topic "Opto-electronic Devices"
Brandelik, Joseph. Nonlinear Optical (NLO) Polymer Opto-Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada384482.
Full textBulovic, Vladimir. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada547102.
Full textOsgood, Richard M., and Jr. Selective Processing Techniques For Electronic And Opto-Electronic Applications: Quantum-Well Devices and Integrated Optic Circuits. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada299161.
Full textOsgood, Jr, and Richard M. Selective Processing Techniques for Electronics and Opto-Electronic Applications: Quantum-Well Devices and Integrated Optic Circuits. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada262887.
Full textMishra, Umesh K. The Study of the Materials Properties of LTG (Al) GaAs and its Electronic and Opto-Electronic Device Applications. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada301931.
Full text