Dissertations / Theses on the topic 'Option Pricing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Option Pricing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bieta, Volker, Udo Broll, and Wilfried Siebe. "Strategic option pricing." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71719.
Full text劉伯文 and Pak-man Lau. "Option pricing: a survey." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31977911.
Full textGu, Chenchen. "Option Pricing Using MATLAB." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/382.
Full textLau, Pak-man. "Option pricing : a survey /." [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B14386057.
Full textMatsumoto, Manabu. "Options on portfolios of options and multivariate option pricing and hedging." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324627.
Full textNeset, Yngvild. "Spectral Discretizations of Option Pricing Models for European Put Options." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26546.
Full textCompiani, Vera. "Particle methods in option pricing." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13896/.
Full textBelova, Anna, and Tamara Shmidt. "Meshfree methods in option pricing." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-16383.
Full textPour, Abdollah Farshchi Elham. "Option Pricing with Extreme Events." Thesis, Uppsala universitet, Analys och tillämpad matematik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-161963.
Full textWiklund, Erik. "Asian Option Pricing and Volatility." Thesis, KTH, Matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93714.
Full textSammanfattning En Asiatisk option är en vägberoende exotisk option, vilket betyder att antingen settlement-priset eller strike-priset beräknas utifrån någon form av aggregering av underliggande tillgångens priser under optionens livstid. Denna uppsats fokuserar på Aritmetiska Asiatiska optioner av Europeisk karaktär där settlement-priset vid lösen bestäms av det aritmetiska medelvärdet av underliggande tillgångens priser de sista sju dagarna. För denna typ av option finns det inga slutna analytiska formler för att beräkna optionens teoretiska värde. Det finns dock slutna approximativa formler för värdering av denna typ av optioner. En sådan, som används i denna uppsats, approximerar värdet av en Aritmetisk Asiatisk option genom att betinga värderingen på det geometriska medelpriset. För att utvärdera noggrannheten i denna approximation och för att se om det är möjligt att använda den väl kända Black-Scholes-formeln för att värdera Asiatiska optioner, så analyseras differenserna mellan Monte-Carlo-simulering och dessa slutna formlers värderingar i denna uppsats. Differenserna analyseras utifrån ett flertal olika scenarion för volatiliteten. I allmänhet så fungerar Asiatapproximationsformeln bra för värdering av Asiatiska optioner. För volatilitetsscenarion som innebär en drastisk volatilitetsförändring och där den perioden med högre volatilitet ligger innan optionens medelvärdesperiod, så undervärderar Asiatapproximationen optionens värde. Dessa undervärderingar är mycket påtagliga för OTM-optioner, avtar för ATM-optioner och är små, om än signifikanta, för ITM-optioner. Black-Scholes formel övervärderar i allmänhet Asiatiska optioners värde. Detta är väntat då Black-Scholes formel är ämnad för standard Europeiska optioner, vilka endast beaktar underliggande tillgångens pris vid optionens slutdatum som settlement-pris. Detta pris är i snitt högre än Asiatisk optioners settlement-pris när underliggande tillgångens pris har en positiv drift. Men, för vissa volatilitetsscenarion som innebär en drastisk volatilitetsförändring och där den perioden med högra volatilitet ligger innan optionens medelvärdesperiod, så undervärderar även Black-Scholes formel optionens värde. Som för Asiatapproximationen så är dessa över- och undervärderingar mycket påtagliga för OTM-optioner och avtar för ATM och ITM-optioner.
Nisol, Gilles. "Option pricing with transaction costs." Thesis, KTH, Matematik (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102780.
Full textRoss, David James. "Topics in American option pricing." Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/8337.
Full textPanas, Vassilios Gerassimos. "Option pricing with transaction costs." Thesis, Imperial College London, 1993. http://hdl.handle.net/10044/1/7362.
Full textChen, Miao. "Option pricing in incomplete markets." Thesis, University of Warwick, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491472.
Full textJönsson, Ola. "Option pricing and Bayesian learning /." Lund: Univ., Dep. of Economics, 2007. http://www.gbv.de/dms/zbw/541563130.pdf.
Full textGuichard, Regis Stephane Hubert. "Two topics in option pricing." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312324.
Full textWhalley, A. E. "Option pricing with transaction costs." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298265.
Full textChen, Kan. "Approximate methods for option pricing." Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501648.
Full textFei, Bingxin. "Computational Methods for Option Pricing." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/381.
Full textMarques, Catarina Neto. "Option pricing under variable volatility." Master's thesis, Instituto Superior de Economia e Gestão, 2017. http://hdl.handle.net/10400.5/14171.
Full textA teoria de valorização de opções que conhecemos hoje em dia deu o seu maior passo quando Fischer Black e Myron Scholes escreveram um artigo com uma fórmula fechada que permitia calcular os preços de opções Europeias de compra e venda cujo subjacente é uma acção ou um índice. No entanto, evidências mostram que a fórmula anterior não funciona bem num grande número de situações reais: os preços estimados desviam-se significativamente dos preços de mercado. Isto deve-se às hipóteses, muito restritivas, em que o modelo está assente. Esta dissertação alarga o modelo de Black-Scholes a situações em que a volatilidade do preço do ativo é variável. As implicações desta extensão são estudadas tanto de um ponto de vista teórico como prático. Existem muitos modelos propostos para o caso em estudo e este trabalho foca-se nos modelos de volatilidade local porque mantêm as características mais importantes do modelo original. Foram selecionadas quatro funções diferentes para descrever a volatilidade do preço do ativo e um método de diferenças finitas foi implementado para obter estimações e previsões do preço de opções. Os resultados obtidos realmente indicam que os modelos de volatilidade local estimam melhor os preços das opções do que o modelo de Black-Scholes original.
The modern theory of option pricing gave its biggest step when Fischer Black and Myron Scholes wrote a paper with a closed form solution for the prices of European call and put options on a single stock or index. However, evidence shows that the former formula no longer holds in many real cases: the estimated prices deviate significantly from the market ones. This is due to the very restrictive assumptions on which the model is based. This dissertation extends the Black-Scholes model by making the volatility of the asset price variable. The implications of this extension are studied from both theoretical and practical points of view. Several models have been proposed and this work focuses on the local volatility models because they maintain the most important features of the classical model. Four different functions were selected to describe the volatility of the asset price and a finite difference method was implemented in order to obtain the estimations and predictions of the option prices. The results suggest that indeed local volatility models have a better performance than the classical Black-Scholes model in estimating option prices.
info:eu-repo/semantics/publishedVersion
Timsina, Tirtha Prasad. "Sensitivities in Option Pricing Models." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/28904.
Full textPh. D.
Christoforidou, Amalia. "Regime-switching option pricing models." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6684/.
Full textStafford, D. (Daniel). "Machine learning in option pricing." Master's thesis, University of Oulu, 2019. http://urn.fi/URN:NBN:fi:oulu-201901091016.
Full textDokuchaev, Mikhail. "Numerical Methods for Option Pricing." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/86211.
Full textPreo, Alice <1990>. "Option Pricing with Genetic Programming." Master's Degree Thesis, Università Ca' Foscari Venezia, 2015. http://hdl.handle.net/10579/5981.
Full textLarsson, Karl. "Pricing American Options using Simulation." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-51341.
Full textDuan, Fangjing. "Option pricing models and volatility surfaces." St. Gallen, 2005. http://www.biblio.unisg.ch/org/biblio/edoc.nsf/wwwDisplayIdentifier/03607991001/$FILE/03607991001.pdf.
Full textD'Elia, Riccardo Giuseppe. "Deep Learning for American Option Pricing." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19526/.
Full textKalavrezos, Michail, and Michael Wennermo. "Stochastic Volatility Models in Option Pricing." Thesis, Mälardalen University, Department of Mathematics and Physics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-538.
Full textIn this thesis we have created a computer program in Java language which calculates European call- and put options with four different models based on the article The Pricing of Options on Assets with Stochastic Volatilities by John Hull and Alan White. Two of the models use stochastic volatility as an input. The paper describes the foundations of stochastic volatility option pricing and compares the output of the models. The model which better estimates the real option price is dependent on further research of the model parameters involved.
Sherwani, Yasir. "Binomial approximation methods for option pricing." Thesis, Uppsala University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120639.
Full textLei, Ngai Heng. "Martingale method in option pricing theory." Thesis, University of Macau, 2003. http://umaclib3.umac.mo/record=b1447303.
Full textInkaya, Alper. "Option Pricing With Fractional Brownian Motion." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613736/index.pdf.
Full textScholes price of a European call option on an asset which is assumed to follow a geometric fBm is derived. The statistical aspects of fBm are investigated. Estimators for the self-similarity parameter H and simulation methods of fBm are summarized. Using the R/S methodology of Hurst, the estimations of the parameter H are obtained and these values are used to evaluate the fractional Black&
Scholes prices of a European call option with different maturities. Afterwards, these values are compared to Black&
Scholes price of the same option to demonstrate the effect of long-range dependence on the option prices. Also, estimations of H at different time scales are obtained to investigate the multiscaling in financial data. An outlook of the future work is given.
Sheng, Gong. "Filtered historical simulation and option pricing." Thesis, Uppsala universitet, Analys och tillämpad matematik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-154743.
Full textDemin, Mikhail. "Finite Volume Methods for Option Pricing." Thesis, Högskolan i Halmstad, Tillämpad matematik och fysik (MPE-lab), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-16397.
Full textKazantzaki, Savina. "Aspects of exotic option pricing theory." Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/11787.
Full textJahandideh, Mohammad Taghi. "Option pricing for infinite variance data." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26665.
Full textCartea, A. I. G. "Option pricing with Levy-Stable processes." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270341.
Full textNordström, Walter. "Adaptive tree techniques in option pricing." Thesis, KTH, Numerisk analys, NA, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-167979.
Full textNär man prissätter amerikanska optioner där underliggande har diskreta utdelningar så kan vanliga trädmodeller vara otillräckliga. J. W. Nieuwenhuis och M. H. Vellekoop har hittat en ny trädmetod där interpolation används för att lösa de problem som uppstår. På ORC har man upptäckt att genom att använda ett adaptivt träd för att öka punkttätheten i trädet kring utdelningarna så kan man få snabbare konvergens av optionspriset. I detta arbete undersöker vi det adaptiva trädets effekter på prissättningsalgoritmen och isolerar olika felkällor. Vi använder den kunskapen till att effektivisera algoritmen för optimal noggrannhet och prestanda.
Shen, Liya. "Option pricing with the wavelet method." Thesis, University of Essex, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437680.
Full textPEREIRA, MANOEL FRANCISCO DE SOUZA. "OPTION PRICING VIA NONPARAMETRIC ESSCHER TRANSFORM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19219@1.
Full textO apreçamento de opções é um dos temas mais importantes da economia financeira. Este estudo introduz uma versão não paramétrica da Transformada de Esscher para o apreçamento neutro ao risco de opções financeiras. Os tradicionais métodos paramétricos exigem a formulação de um modelo neutro ao risco explícito e são operacionalmente apenas para poucas funções densidade de probabilidade. Em nossa proposta, com simples suposições, evitamos a necessidade da formulação de um modelo neutro ao risco para os retornos. Primeiro, simulamos uma amostra de trajetórias de retornos sob a distribuição original P. Então, baseado na Transformada de Esscher, a amostra é reponderada, dando origem a uma amostra com risco neutralizado. Em seguida, os preços dos derivativos são obtidos através de uma simples média dos payoffs de cada trajetória da opção. Comparamos nossa proposta com alguns métodos de apreçamento tradicionais, aplicando quatro exercícios em situações diferentes, para destacar as diferenças e as semelhanças entre os métodos. Sob as mesmas condições e em situações similares, o método proposto reproduz os resultados dos métodos de apreçamento estabelecidos na literatura, o modelo de Black e Scholes (1973) e o método de Duan (1995). Quando as condições são diferentes, o método proposto indica que há mais risco do que outros métodos podem capturar.
Option valuation is one of the most important topics in financial economics. This study introduces a nonparametric version of the Esscher transform for risk neutral option pricing. Traditional parametric methods require the formulation of an explicit risk-neutral model and are operational only for a few probability density functions. In our proposal, we make only mild assumptions on the price kernel and there is no need for the formulation of the risk-neutral model for the returns. First, we simulate sample paths for the returns under the historical distribution P. Then, based on the Esscher transform, the sample is reweighted, giving rise to a risk-neutralized sample from which derivative prices can be obtained by a simple average of the pay-offs of the option to each path. We compare our proposal with some traditional pricing methods, applying four exercises under different situations, which seek to highlight the differences and similarities between the methods. Under the same conditions and in similar situations, the option pricing method proposed reproduces the results of pricing methods fully established in the literature, the Black and Scholes [3] model and the Duan [13] method. When the conditions are different, the results show that the method proposed indicates that there is more risk than the other methods can capture.
Hao, Wenyan. "Quantum mechanics approach to option pricing." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/43020.
Full textWang, Junxiong. "Option Pricing Using Monte Carlo Methods." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/331.
Full textLu, Mengliu. "Option Pricing Using Monte Carlo Methods." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/380.
Full textLUO, SHAN-MING, and 羅善明. "The Comparison of BS Option Pricing Model and GARCH Option Pricing Model in Index Options." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/58041960664220628803.
Full text國立臺北大學
統計學系
98
Options have been playing an important role in real financial market since the first option had traded. However, it is a major subject that how the rational price of options had been made. Black & Scholes (1973) set up the landmark of option pricing after they proposed the famous Black-Scholes option pricing model. In practice, one of the assumptions made in Black-Scholes (BS) option pricing model, namely volatility is a fixed constant, isn’t in accordance with the practices in real world. Scholars afterward try to release the assumption made by Black-Scholes and proposed so called stochastic volatility model which can categorized in discrete- and continuous-time model. Among discrete-time models, Duan (1995) introduced the model in quantitative economics, Generalized Autoregressive Conditional Heteroskedasticity (GARCH), to amend the assumption that volatility in Black-Scholes option pricing model is a fixed constant. Like most other option pricing models, the closed-form solutions do not exist. Heston & Nandi (2000) proposed a GARCH option pricing model with specific closed-form solution that can be directly derived by using numerical integration techniques. This research attempted to check out how the Heston & Nandi (2000) GARCH option pricing model perform in Taiwan Stock Exchange Capitalization Weighted Stock Index options (TXO) based on Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and compared with BS option pricing model in option mispricing. The results show that it is outperformed by BS option pricing model both in in-sample and out-of-sample valuation though Heston & Nandi (2000) released the assumption mentioned above. The significant mispricing could be caused by different data definitions. On the other hand, like Heston & Nandi (2000), the significant mispricing may also caused by the poor estimates of the parameters in the model.
Yun, Wen Chen, and 陳韻文. "Pricing of Barrier Option ─ Using GARCH Option Pricing Model." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/05072525095887761139.
Full text世新大學
財務金融學系
92
Warrant is a kind of option. The call warrant have been sold in Taiwan in 1997. We also trade stock option after January 1st.2003. Because of trading option, we can expect that exotic option will be an important product in the market of Taiwan. Generally speaking, the way to pricing option are Black-Scholes model and numerical analysis. There are many different kinds of numerical analysis. For example, there are Binomial model and Monte Carlo Simulation. This thesis will pricing up-barrier warrant by using the trinomial GARCH model which creating by Ritchken & Trevor(1999). Besides, this thesis will also compare the result which be calculated by Black-Scholes model, Binomial model, and Trinomial model.
"Option pricing theory." Chinese University of Hong Kong, 1993. http://library.cuhk.edu.hk/record=b5887791.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1993.
Includes bibliographical references (leaves 71-73).
Chapter I. --- Introduction to Stochastic Calculus --- p.1
Stochastic Processes --- p.2
Stochastic Integration --- p.6
Quadratic Variation Processes and Mutual Variation Process --- p.11
The Ito Formula --- p.13
Girsanov's Theorem --- p.16
Stochastic Differential Equations --- p.18
Chapter II. --- Pricing American Equity Options --- p.21
A Representation Formula for European Put Option --- p.22
The Free Boundary Formulation of American Put Option --- p.24
A Representation Formula for American Put Option --- p.27
An Alternative Representation Formula for American Put Option --- p.35
The Optimal Exercise Boundary --- p.37
Numerical Valuations of the Representation Formulae --- p.39
Chapter III. --- The Effects of Margin Requirements on Option Prices --- p.42
Pricing European Options --- p.44
Pricing American Options --- p.46
Chapter IV. --- General Pricing Theory --- p.49
Transformations of Price Processes --- p.50
No Arbitrage Condition and Completeness of Market --- p.52
More on Market Completeness --- p.58
Term Structure of Interest Rate and Interest Rate Options --- p.61
Pricing Equity Options --- p.67
Bibliography --- p.71
Cheng, Tsun-Hung, and 鄭圳宏. "Deep Learning for Option Pricing Using TAIEX Options." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/ff87uk.
Full text國立臺北商業大學
財務金融系研究所
107
This paper explores the pricing of TAIEX put options with deep learning. We first choose the contracts which volume over 1000 lots to avoid the problem of liquidity, then convert call premiums with high strike price to those of put by using the put-call parity. Moreover, we use TAIEX future, historical volatility, and 30-days money market rate as underlying, volatility, and risk-free rate respectively. The inputs of deep learning include the underlying, strike price, volatility, time to maturity, and risk-free rate, as those in the Black-Scholes-Merton Framework. The results show that the pricing error of deep learning is small than that of Black-Scholes-Merton model for the at-the-money and out-of-the money contracts, based on the criteria of mean square error and mean absolute error. However, the result is opposite for the in-the-money contract. The summary is that the performance of deep learning is slightly better than that of Black-Scholes-Merton model for all contracts.
Huang, Teng-Ching, and 黃騰進. "The Pricing Performance of Markov Chain Option Pricing Algorithm on Barrier Options." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/c4e6v4.
Full text銘傳大學
財務金融學系碩士班
93
In this study we adapt the numerical method of Markov chain option pricing algorithm to price barrier warrants in Taiwan and compare it with the method of Rubinstein and Reiner(1991). In theory Markov chain is more accurate and flexible , and the empirical results show that Markov chain option pricing algorithm has lower pricing errors . Finally , by this study we also find that issuers will set a volatility markup when they issue warrants , and the volatility markup is around 15%~25%.
Sun, Ya-ling, and 孫雅玲. "Pricing double barrier option." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/57516550309939540038.
Full text國立成功大學
數學系應用數學碩博士班
95
This study, a boundary element method is designed to deal with double touch barrier options with rebate. That is, a dobule touch barrier call is knocked out when the price reaches the upper or lower barreir before expiration day, but the seller have to pay rebate to buyer. In this thesis, first the pricing of option、barrier option and double barrier option are reviewed. The black-scholes model is converted to a heat equation boundary value problem. Then use a boundary element method to deal with the bounday value problem and solve the price of continuous double barrier options with rebate. Finally,some sensitive analysis are present.
Yu, Shang-En, and 余尚恩. "Fuzzy Option Pricing Model." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/13974811463039935724.
Full text朝陽科技大學
財務金融系碩士班
90
Option is a tool that investors often use to arbitrage or hedge. However, either Black-Scholes model or CRR model can only provide a theoretical reference value. This paper applies fuzzy set to the CRR model. It is expected that the fuzzy volatility, instead of the crisp one as in conventional CRR model, can provide reasonable ranges and corresponding memberships of option prices. As a result, investors with various risk preferences can interpret the optimal differently.