Dissertations / Theses on the topic 'Optimization algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Optimization algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Astete, morales Sandra. "Contributions to Convergence Analysis of Noisy Optimization Algorithms." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS327/document.
Full textThis thesis exposes contributions to the analysis of algorithms for noisy functions. It exposes convergence rates for linesearch algorithms as well as for random search algorithms. We prove in terms of Simple Regret and Cumulative Regret that a Hessian based algorithm can reach the same results as some optimal algorithms in the literature, when parameters are tuned correctly. On the other hand we analyse the convergence order of Evolution Strategies when solving noisy functions. We deduce log-log convergence. We also give a lower bound for the convergence rate of the Evolution Strategies. We extend the work on revaluation by applying it to a discrete settings. Finally we analyse the performance measure itself and prove that the use of an erroneus performance measure can lead to misleading results on the evaluation of different methods
Reimann, Axel. "Evolutionary algorithms and optimization." Doctoral thesis, [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969093497.
Full textParpas, Panayiotis. "Algorithms for stochastic optimization." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434980.
Full textJohnson, Jared. "Algorithms for Rendering Optimization." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5329.
Full textPh.D.
Doctorate
Computer Science
Engineering and Computer Science
Computer Science
CESARI, TOMMASO RENATO. "ALGORITHMS, LEARNING, AND OPTIMIZATION." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/699354.
Full textStults, Ian Collier. "A multi-fidelity analysis selection method using a constrained discrete optimization formulation." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31706.
Full textCommittee Chair: Mavris, Dimitri; Committee Member: Beeson, Don; Committee Member: Duncan, Scott; Committee Member: German, Brian; Committee Member: Kumar, Viren. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Rafique, Abid. "Communication optimization in iterative numerical algorithms : an algorithm-architecture interaction." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/17837.
Full textDost, Banu. "Optimization algorithms for biological data." Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3397170.
Full textTitle from first page of PDF file (viewed March 23, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 149-159).
Xiong, Xiaoping. "Stochastic optimization algorithms and convergence /." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2360.
Full textThesis research directed by: Business and Management. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Quttineh, Nils-Hassan. "Algorithms for Costly Global Optimization." Licentiate thesis, Mälardalen University, School of Education, Culture and Communication, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5970.
Full textThere exists many applications with so-called costly problems, which means that the objective function you want to maximize or minimize cannot be described using standard functions and expressions. Instead one considers these objective functions as ``black box'' where the parameter values are sent in and a function value is returned. This implies in particular that no derivative information is available.The reason for describing these problems as expensive is that it may take a long time to calculate a single function value. The black box could, for example, solve a large system of differential equations or carrying out a heavy simulation, which can take anywhere from several minutes to several hours!These very special conditions therefore requires customized algorithms. Common optimization algorithms are based on calculating function values every now and then, which usually can be done instantly. But with an expensive problem, it may take several hours to compute a single function value. Our main objective is therefore to create algorithms that exploit all available information to the limit before a new function value is calculated. Or in other words, we want to find the optimal solution using as few function evaluations as possible.A good example of real life applications comes from the automotive industry, where on the development of new engines utilize advanced models that are governed by a dozen key parameters. The goal is to optimize the model by changing the parameters in such a way that the engine becomes as energy efficient as possible, but still meets all sorts of demands on strength and external constraints.
Zhou, Yi. "Optimization Algorithms for Clique Problems." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0013/document.
Full textThis thesis considers four clique problems: the maximum vertex weight clique problem (MVWCP), the maximum s-plex problem (MsPlex), the maximum balanced biclique problem (MBBP) and the clique partitioning problem (CPP). The first three are generalization and relaxation of the classic maximum clique problem (MCP), while the last problem belongs to a clique grouping problem. These combinatorial problems have numerous practical applications. Given that they all belong to the NP-Hard family, it is computationally difficult to solve them in the general case. For this reason, this thesis is devoted to develop effective algorithms to tackle these challenging problems. Specifically, we propose two restart tabu search algorithms based on a generalized PUSH operator for MVWCP, a frequency driven local search algorithms for MsPlex, a graph reduction based tabu search as well as effective exact branch and bound algorithms for MBBP and lastly, a three phase local search algorithm for CPP. In addition to the design of efficient move operators for local search algorithms, we also integrate components like graph reduction or upper bound propagation in order to deal deal with very large real-life networks. The experimental tests on a wide range of instances show that our algorithms compete favorably with the main state-of-the-art algorithms
Liu, Qiuliang. "Image mosaic algorithms and optimization." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 58 p, 2007. http://proquest.umi.com/pqdweb?did=1400965051&sid=9&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full text李國誠 and Kwok-shing Lee. "Convergences of stochastic optimization algorithms." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B3025632X.
Full textRoberts, Christopher. "Genetic algorithms for cluster optimization." Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368792.
Full textCaramanis, Constantine (Constantine Michael) 1977. "Adaptable optimization : theory and algorithms." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38301.
Full textIncludes bibliographical references (p. 189-200).
Optimization under uncertainty is a central ingredient for analyzing and designing systems with incomplete information. This thesis addresses uncertainty in optimization, in a dynamic framework where information is revealed sequentially, and future decisions are adaptable, i.e., they depend functionally on the information revealed in the past. Such problems arise in applications where actions are repeated over a time horizon (e.g., portfolio management, or dynamic scheduling problems), or that have multiple planning stages (e.g., network design). The first part of the thesis focuses on the robust optimization approach to systems with uncertainty. Unlike the probability-driven stochastic programming approach, robust optimization is built on deterministic set-based formulations of uncertainty. This thesis seeks to place Robust Optimization within a dynamic framework. In particular, we introduce the notion of finite adaptability. Using geometric results, we characterize the benefits of adaptability, and use these theoretical results to design efficient algorithms for finding near-optimal protocols. Among the novel contributions of the work are the capacity to accommodate discrete variables, and the development of a hierarchy of adaptability.
(cont.) The second part of the thesis takes a data-driven view to uncertainty. The central questions are (a) how can we construct adaptability in multi-stage optimization problems given only data, and (b) what feasibility guarantees can we provide. Multi-stage Stochastic Optimization typically requires exponentially many data points. Robust Optimization, on the other hand, has a very limited ability to address multi-stage optimization in an adaptable manner. We present a hybrid sample-based robust optimization methodology for constructing adaptability in multi-stage optimization problems, that is both tractable and also flexible, offering a hierarchy of adaptability. We prove polynomial upper bounds on sample complexity. We further extend our results to multi-stage problems with integer variables in the future stages. We illustrate the ideas above on several problems in Network Design, and Portfolio Optimization. The last part of the thesis focuses on an application of adaptability, in particular, the ideas of finite adaptability from the first part of the thesis, to the problem of air traffic control. The main problem is to sequentially schedule the departures, routes, ground-holding, and air-holding, for every flight over the national air space (NAS).
(cont.) The schedule seeks to minimize the aggregate delay incurred, while satisfying capacity constraints that specify the maximum number of flights that can take off or land at a particular airport, or fly over the same sector of the NAS at any given time. These capacities are impacted by the weather conditions. Since we receive an initial weather forecast, and then updates throughout the day, we naturally have a multistage optimization problem, with sequentially revealed uncertainty. We show that finite adaptability is natural, since the scheduling problem is inherently finite, and furthermore the uncertainty set is low-dimensional. We illustrate both the applicability of finite adaptability, and also its effectiveness, through several examples.
by Constantine Caramanis.
Ph.D.
Hu, Liujia. "Convergent algorithms in simulation optimization." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54883.
Full textCollether, John. "Portfolio optimization by heuristic algorithms." Thesis, University of Essex, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.635985.
Full textArvidsson, Elisabeth. "Optimization algorithms for Quantum Annealing." Thesis, KTH, Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279447.
Full textViitanen, Sami. "Some new global optimization algorithms /." Åbo : Åbo Akad. Förl, 1997. http://www.gbv.de/dms/goettingen/239457927.pdf.
Full textNaji, Azimi Zahra <1982>. "Algorithms for Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2695/1/Naji_Azimi_Zahra_Tesi.pdf.
Full textNaji, Azimi Zahra <1982>. "Algorithms for Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2695/.
Full textHarris, Steven C. "A genetic algorithm for robust simulation optimization." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178645751.
Full textSamek, Michal. "Optimization of Aircraft Tracker Parameters." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234937.
Full textAggarwal, Varun. "Analog circuit optimization using evolutionary algorithms and convex optimization." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40525.
Full textIncludes bibliographical references (p. 83-88).
In this thesis, we analyze state-of-art techniques for analog circuit sizing and compare them on various metrics. We ascertain that a methodology which improves the accuracy of sizing without increasing the run time or the designer effort is a contribution. We argue that the accuracy of geometric programming can be improved without adversely influencing the run time or increasing the designer's effort. This is facilitated by decomposition of geometric programming modeling into two steps, which decouples accuracy of models and run-time of geometric programming. We design a new algorithm for producing accurate posynomial models for MOS transistor parameters, which is the first step of the decomposition. The new algorithm can generate posynomial models with variable number of terms and real-valued exponents. The algorithm is a hybrid of a genetic algorithm and a convex optimization technique. We study the performance of the algorithm on artificially created benchmark problems. We show that the accuracy of posynomial models of MOS parameters is improved by a considerable amount by using the new algorithm. The new posynomial modeling algorithm can be used in any application of geometric programming and is not limited to MOS parameter modeling. In the last chapter, we discuss various ideas to improve the state-of-art in circuit sizing.
by Varun Aggarwal.
S.M.
Pelikan, Martin. "Hierarchical Bayesian optimization algorithm : toward a new generation of evolutionary algorithms /." Berlin [u.a.] : Springer, 2005. http://www.loc.gov/catdir/toc/fy053/2004116659.html.
Full textCorbineau, Marie-Caroline. "Proximal and interior point optimization strategies in image recovery." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC085/document.
Full textInverse problems in image processing can be solved by diverse techniques, such as classical variational methods, recent deep learning approaches, or Bayesian strategies. Although relying on different principles, these methods all require efficient optimization algorithms. The proximity operator appears as a crucial tool in many iterative solvers for nonsmooth optimization problems. In this thesis, we illustrate the versatility of proximal algorithms by incorporating them within each one of the aforementioned resolution methods.First, we consider a variational formulation including a set of constraints and a composite objective function. We present PIPA, a novel proximal interior point algorithm for solving the considered optimization problem. This algorithm includes variable metrics for acceleration purposes. We derive convergence guarantees for PIPA and show in numerical experiments that it compares favorably with state-of-the-art algorithms in two challenging image processing applications.In a second part, we investigate a neural network architecture called iRestNet, obtained by unfolding a proximal interior point algorithm over a fixed number of iterations. iRestNet requires the expression of the logarithmic barrier proximity operator and of its first derivatives, which we provide for three useful types of constraints. Then, we derive conditions under which this optimization-inspired architecture is robust to an input perturbation. We conduct several image deblurring experiments, in which iRestNet performs well with respect to a variational approach and to state-of-the-art deep learning methods.The last part of this thesis focuses on a stochastic sampling method for solving inverse problems in a Bayesian setting. We present an accelerated proximal unadjusted Langevin algorithm called PP-ULA. This scheme is incorporated into a hybrid Gibbs sampler used to perform joint deconvolution and segmentation of ultrasound images. PP-ULA employs the majorize-minimize principle to address non log-concave priors. As shown in numerical experiments, PP-ULA leads to a significant time reduction and to very satisfactory deconvolution and segmentation results on both simulated and real ultrasound data
Cruz, Mencía Francisco. "Enhancing performance on combinatorial optimization algorithms." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665199.
Full textLa optimización combinatoria es un tipo específico de optimización donde el dominio de las variables es discreto. Este tipo de problemas de optimización tienen una gran aplicabilidad debido a su capacidad de optimización sobre objetos unitarios y no divisibles. Más allá de los algoritmos genéricos, la comunidad investigadora es muy activa proponiendo algoritmos capaces de abordar problemas de optimización combinatoria para problemas específicos. El objetivo de esta tesis es investigar cómo ampliar la aplicabilidad de algoritmos de optimización combinatoria que explotan la estructura de los problemas a resolver. Lo hacemos desde la perspectiva del hardware de una computadora, persiguiendo la explotación total de los recursos computacionales que ofrece el hardware actual. Para alcanzar generalidad trabajamos con tres problemas diferentes. Primero abordamos el problema de generación de estructuras de la coalición (CSGP). Encontramos que el algoritmo de última generación es IDP. Proponemos un algoritmo optimizado y paralelo capaz de resolver el CSGP. Conseguimos esto deniendo un nuevo metodo para llevar a cabo la operacion mas crtica -Splitting-, así como deniendo un nuevo método para dividir la operación del algoritmo en los diferente subprocesos. A continuación, estudiamos el problema de determinación del ganador (WDP) para las subastas combinatorias (CA). Encontramos que la escalabilidad de los solucionadores de vanguardia es limitada. Más concretamente, mostramos cómo mejorar la resolución de resultados de relajación LP para el WDP en subastas combinatorias de gran escala mediante la aplicación del algoritmo AD³. A continuación, contribuimos con una versión optimizada de AD³ que también se puede ejecutar en un escenario paralelo de memoria compartida. Finalmente, estudiamos la aplicación de AD³ para resolver las relajaciones LP de un problema más exigente de la computacionalmente: El problema de la predición de cadenas laterales (SCP). Presentamos una manera optimizada de resolver la operación más crítica, la resolución de un problema cuadrático para un factor arbitrario. En todos los casos proponemos algoritmos optimizados que se pueden escalar de forma paralela y que mejoran notablemente el estado de la técnica. Tres órdenes de magnitud en IDP, y un orden de magnitud en AD³. El objetivo nal de este trabajo es demostrar como un diseño algoritmo consciente de hardware puede conducir a mejoras de rendimiento signicativas. Mostramos estrategias exportables a algoritmos de optimización combinatoria similares. Estas estrategias ayudarán al diseñador de algoritmos lograr más eficiencia en las CPU modernas.
Combinatorial Optimization is a specific type of mathematical optimization where variables' domain is discrete. This kind of optimization problems have an enormous applicability due to its ability to optimize over unitary and non-divisible objects. Beyond generic algorithms, the research community is very active proposing algorithms able to tackle specific combinatorial optimization problems. The goal of this thesis is to investigate how to widen the applicability of Combinatorial Optimization algorithms that exploit the structure of the problems to solve. We do so from a computer's hardware perspective, pursuing the full exploitation of computational resources offered by today's hardware. For the sake of generality we work on three different problems. First we tackle the Coalition Structure Generation Problem (CSGP). We find that the state-of-the-art algorithm is IDP. We propose an optimized and parallel algorithm able to solve the CSGP. We reach this by defining a novel method to perform the most critical operation --Splitting-- as well as by defining a novel method to divide the the algorithm's operation in threads. Then, we study the Winner Determination Problem (WDP) for Combinatorial Auctions (CA), which is very related to the CSGP. We find that state-of-the-art solvers' scalability is limited. More specifically we show how to improve results solving LP relaxations for the WDP in Large Scale Combinatorial Auctions by applying the AD³ algorithm. Then we contribute with an optimized version of AD³ which is also able to run in a shared-memory parallel scenario. Finally we study the application of AD³ to solve the LP relaxations of a more CPU demanding problem: The Side-Chain Prediction (SCP). We present an optimized way to solve the most critical operation which is solving a Quadratic Problem for an Arbitrary Factor. In all the cases we propose optimized algorithms that are scalable in parallel and that improve significantly the state-of-the-art. Three orders of magnitude speedup on IDP, one order of magnitude speedup in AD³. The ultimate purpose of this work is to demonstrate how a hardware-aware algorithmic design can lead to significant speedups. We show strategies that are exportable to similar Combinatorial Optimization algorithms. Such strategies will help the algorithm designer to achieve more efficiency in modern CPUs.
Ericsson, Kenneth, and Robert Grann. "Image optimization algorithms on an FPGA." Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5727.
Full text
In this thesis a method to compensate camera distortion is developed for an FPGA platform as part of a complete vision system. Several methods and models is presented and described to give a good introduction to the complexity of the problems that is overcome with the developed method. The solution to the core problem is shown to have a good precision on a sub-pixel level.
Amouzgar, Kaveh. "Multi-objective optimization using Genetic Algorithms." Thesis, Högskolan i Jönköping, Tekniska Högskolan, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-19851.
Full textTian, Zhong Huan. "Gender based meta-heuristic optimization algorithms." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691331.
Full textWeicker, Karsten. "Evolutionary algorithms and dynamic optimization problems /." Osnabrück : Der Andere Verl, 2003. http://www.gbv.de/dms/ilmenau/toc/365163716weick.PDF.
Full textRaj, Ashish. "Evolutionary Optimization Algorithms for Nonlinear Systems." DigitalCommons@USU, 2013. http://digitalcommons.usu.edu/etd/1520.
Full textCarlson, Susan Elizabeth. "Component selection optimization using genetic algorithms." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/17886.
Full textFarah, Abdulkadir. "Differential evolution algorithms for network optimization." Thesis, University of Reading, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602400.
Full textFathi, Bayda. "Gradient optimization algorithms with fast convergence." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/50398/.
Full textChen, Qin, and 陈琴. "Algorithms for some combinatorial optimization problems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46589302.
Full textMota, Joao F. C. "Communication-Efficient Algorithms For Distributed Optimization." Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/283.
Full textABOUSABEA, Emad Mohamed Abd Elrahman. "Optimization algorithms for video service delivery." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00762636.
Full textCARBONO, ALONSO JOAQUIN JUVINAO. "MOORING PATTERN OPTIMIZATION USING GENETIC ALGORITHMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8242@1.
Full textGRUPO DE TECNOLOGIA DE COMPUTAÇÃO GRÁFICA - PUC-RIO
Com o crescimento da demanda de óleo, as empresas de petróleo têm sido forçadas a explorar novas reservas em águas cada vez mais profundas. Em função do alto custo das operações de exploração de petróleo, torna-se necessário o desenvolvimento de tecnologias capazes de aumentar a eficiência e reduzir os custos envolvidos. Neste contexto, a utilização de unidades flutuantes torna-se cada vez mais freqüente em águas profundas. O posicionamento das unidades flutuantes durante as operações de exploração de óleo é garantido pelas linhas de ancoragem, que são estruturas flexíveis compostas, geralmente, por trechos de aço, amarras e/ou cabos sintéticos. O presente trabalho apresenta o desenvolvimento de um Algoritmo Genético (AG) para solucionar o problema da disposição das linhas de ancoragem de unidades flutuantes utilizadas nas operações de exploração de petróleo. A distribuição das linhas de ancoragem é um dos fatores que influencia diretamente nos deslocamentos (offsets) sofridos pelas unidades flutuantes quando submetidas às ações ambientais, como ventos, ondas e correntes. Desta forma, o AG busca uma disposição ótima das linhas de ancoragem cujo objetivo final é a minimização dos deslocamentos da unidade flutuante. Os operadores básicos utilizados por este algoritmo são mutação, crossover e seleção. Neste trabalho, foi adotada a técnica steady-state, que só efetua a substituição de um ou dois indivíduos por geração. O cálculo da posição de equilíbrio estático da unidade flutuante é feito aplicando-se a equação da catenária para cada linha de ancoragem com o objetivo de se obterem as forças de restauração na unidade, e empregando-se um processo iterativo para calcular a sua posição final de equilíbrio.
With the increasing demand for oil, oil companies have been forced to exploit new fields in deep waters. Due to the high cost of oil exploitation operations, the development of technologies capable of increasing efficiency and reducing costs is crucial. In this context, the use of floating units in deep waters has become more frequent. The positioning of the floating units during oil exploitation operations is done using mooring lines, which are flexible structures usually made of steel wire, steel chain and/or synthetic cables. This work presents the development of a Genetic Algorithm (GA) procedure to solve the problem of the mooring pattern of floating units used in oil exploitation operations. The distribution of mooring lines is one of the factors that directly influence the displacements (offsets) suffered by floating units when subjected to environmental conditions such as winds, waves and currents. Thus, the GA seeks an optimum distribution of the mooring lines whose final goal is to minimize the units´ displacements. The basic operators used in this algorithm are mutation, crossover and selection. In the present work, the steady- state GA has been implemented, which performs the substitution of only one or two individuals per generation. The computation of the floating unit´s static equilibrium position is accomplished by applying the catenary equilibrium equation to each mooring line in order to obtain the out-of-balance forces on the unit, and by using an iterative process to compute the final unit equilibrium position.
Tang, Wang-Rei 1975. "The optimization of data compression algorithms." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/81553.
Full textChicoisne, Renaud Pierre. "Efficient algorithms for risk averse optimization." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/135193.
Full textMuchos problemas de decisión industriales o logísticos pueden ser vistos como problemas de optimización y para muchos de ellos no es razonable ocupar datos deterministas. Como veremos en este trabajo en el contexto de despachos de emergencia o de planificación de seguridad, las condiciones reales son desconocidas y tomar decisiones sin considerar esta incertidumbre pueden llevar a resultados catastróficos. La teoría y la aplicación de optimización bajo incertidumbre es un tema que ha generado un amplio área de investigación. Sin embargo, aún existen grandes diferencias en complejidad entre optimización determinista y su versión incierta. En esta tesis, se estudian varios problemas de optimización con aversión al riesgo con un enfasis particular en el problema de camino más corto (RASP), problemas estocásticos en redes en general y juegos de seguridad de Stackelberg. Para obtener distribuciones de tiempos de viaje precisos sobre una red vial a partir de datos GPS del sistema de tránsito, se presenta una revisión de los métodos existentes para proyectar trayectorias GPS y se definen dos nuevos algoritmos: Uno que permite la proyección de datos óptima con respecto a una medida de error convenientemente definida (MOE), y un método heurístico rápido que permite proyectar grandes cantidades de datos de manera contínua (MMH). Se presentan resultados computacionales en redes reales y generadas de gran tamaño. Luego, se desarrollan algoritmos eficientes para problemas de ruteo con aversión al riesgo utilizando métodos de Sample Average Approximation, técnicas de linealización y métodos de descomposición. Se estudian la medida de riesgo entrópica y el Conditional Value at Risk considerando correlaciones entre las variables aleatorias. Se presentan resultados computacionales prometedores en instancias generadas de tamaño mediano. Sin embargo, la naturaleza combinatorial de los problemas los vuelve rapidamente intratable a medida que el tamaño del problema crece. Para hacer frente a esta dificultad computacional, se presentan nuevas formulaciones para problemas en redes difíciles, que tienen un menor número de variables enteras. Estas formulaciones ayudan a derivar esquemas de brancheo que se aprovechan de la estructura especial de las formulaciones propuestas. Se muestra como aplicar estas ideas a los conjuntos de camino simple y de circuito hamiltoniano en redes generales, así como los conjuntos de camino simple y de corte en grafos dirigidos acíclicos (DAG). Este trabajo preliminar muestra ideas prometedoras para resolver problemas difíciles. Finalmente, se exploran las implicaciones de los métodos algortmicos y las formulaciones desarrolladas para resolver RASP en un área diferente. Se presentan nuevas formulaciones y enfoques de resolución para juegos de seguridad de Stackelberg cuando el defensor es averso al riesgo con respecto a la estrategia del atacante. Esto se puede resolver de manera polinomial cuando se enfrenta a un adversario y resolviendo un problema de optimización convexa en números enteros cuando el defensor enfrenta varios tipos de adversarios.
Lovestead, Raymond L. "Helical Antenna Optimization Using Genetic Algorithms." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/35295.
Full textMaster of Science
Shi, Yi. "Algorithms and Optimization for Wireless Networks." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/29480.
Full textPh. D.
Sun, Chuangchuang. "Rank-Constrained Optimization: Algorithms and Applications." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531750343188114.
Full textRen, Jintong. "Optimization algorithms for graph layout problems." Thesis, Angers, 2020. https://tel.archives-ouvertes.fr/tel-03178385.
Full textThis thesis considers two graph layout problems: the cyclic bandwidth problem (CBP) and the minimum linear arrangement problem (MinLA). The CBP is a natural extension of the bandwidth minimization problem (BMP) and the MinLA is a min-sum problem. These problems are widely applied in the real life. Since they are NP-hard problems, it is computational difficult to solve them in the general case. Therefore, this thesis is dedicated to developing effective heuristic algorithms to deal with these challenging problems.Specifically, we introduce two iterated local search algorithms, a memetic algorithm with different recombination operators for the CBP and a set based neighborhood heuristic algorithm to solve the MinLA. The two iterated local search algorithms are experimentallydemonstrated to be able to compete favourably with state-of-the-art methods, the feature of a suitable crossover for the memetic algorithm is identified for the CBP and the set based neighborhood heuristic algorithm is proven to be more efficient than the traditional 2-flip neighborhood algorithm
Jedor, Matthieu. "Bandit algorithms for recommender system optimization." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM027.
Full textIn this PhD thesis, we study the optimization of recommender systems with the objective of providing more refined suggestions of items for a user to benefit.The task is modeled using the multi-armed bandit framework.In a first part, we look upon two problems that commonly occured in recommendation systems: the large number of items to handle and the management of sponsored contents.In a second part, we investigate the empirical performance of bandit algorithms and especially how to tune conventional algorithm to improve results in stationary and non-stationary environments that arise in practice.This leads us to analyze both theoretically and empirically the greedy algorithm that, in some cases, outperforms the state-of-the-art
Kroyan, Julia. "Trust-search algorithms for unconstrained optimization /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3120456.
Full textWike, Carl E. 1948. "Supply chain optimization : formulations and algorithms." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9763.
Full textIncludes bibliographical references (leaves 103-106).
In this thesis, we develop practical solution methods for a supply chain optimization problem: a multi-echelon, un capacitated, time-expanded network of distribution centers and stores, for which we seek the shipping schedule that minimizes total inventory, backlogging, and shipping costs, assuming deterministic, time-varying demand over a fixed time horizon for a single product. Because of fixed ordering and shipping costs, this concave cost network flow problem is in a class of NP-hard network design problems. We develop mathematical programming formulations, heuristic algorithms, and enhanced algorithms using approximate dynamic programming (ADP). We achieve a strong mixed integer programming (MIP) formulation, and fast, reliable algorithms, which can be extended to problems with multiple products. Beginning with a lot-size based formulation, we strengthen the formulation in steps to develop one which is a variation of a node-arc formulation for the network design problem. In addition, we present a path-flow formulation for the single product case and an enhanced network design formulation for the multiple product case. The basic algorithm we develop uses a dynamic lot-size model with backlogging together with a greedy procedure that emulates inventory pull systems. Four related algorithms perform local searches of the basic algorithm's solution or explore alternative solutions using pricing schemes, including a Lagrangian-based heuristic. We show how approximate dynamic programming can be used to solve this supply chain optimization problem as a dynamic control problem using any of the five algorithms. In addition to improving all the algorithms, the ADP enhancement turns the simplest algorithm into one comparable to the more complex ones. Our computational results illustrate that our enhanced network design formulation almost always produces integral solutions and can be used to solve problems of moderate size (3 distribution centers, 30 stores, 30 periods). Our heuristic methods, particularly those enhanced by ADP methods, produce near optimal solutions for truly large scale problems.
by Carl E. Wike.
S.M.
Themelis, Andreas. "Proximal algorithms for structured nonconvex optimization." Thesis, IMT Alti Studi Lucca, 2018. http://e-theses.imtlucca.it/262/1/Themelis_phdthesis.pdf.
Full textStrappaveccia, Francesco <1982>. "Many-core Algorithms for Combinatorial Optimization." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6949/1/Strappaveccia_Francesco_tesi.pdf.
Full text