Dissertations / Theses on the topic 'Optimisatiion géométrique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Optimisatiion géométrique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tassouli, Siham. "Neurodynamic chance-constrained geometric optimization." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG062.
Full textIn many real-world scenarios, decision-makers face uncertainties that can affect the outcomes of their decisions. These uncertainties arise from various sources, such as variability in demand, fluctuating market conditions, or incomplete information about system parameters. Traditional deterministic optimization approaches assume that all parameters are known with certainty, which may not accurately reflect the reality of the problem. Chance-constrained optimization provides a more realistic and robust approach by explicitly accounting for the uncertainty in decision-making. Geometric programming is often misunderstood as a technique exclusively designed for posynomial problems. However, it is a versatile mathematical theory with significant value in addressing a broad range of separable problems. In fact, its true strength lies in its ability to effectively tackle seemingly inseparable problems by leveraging their linear algebraic structure. This general applicability of geometric programming makes it a valuable tool for studying and solving various optimization problems, extending its practical usefulness beyond its initial perception. Recurrent neural networks (RNNs) offer a biologically inspired computational framework with great optimization potential. By emulating the interconnected structure of neurons in the brain, RNNs excel in modeling complex and dynamic systems. This capability allows them to capture temporal dependencies and feedback loops, making them well-suited for optimization scenarios that involve sequential decision-making or iterative processes. Moreover, one of the key advantages of neurodynamic approaches is their hardware implementation feasibility. The primary objective of this thesis is to develop neurodynamic algorithms that are efficient and effective in solving chance-constrained geometric optimization problems. The thesis begins by focusing on chance-constrained geometric programs involving independent random variables. In addition, a specific type of geometric programs known as rectangular programs is also examined in detail. The objective is to understand the characteristics and complexities associated with this subclass of geometric programs. Subsequently, the thesis explores applying copula theory to address chance-constrained geometric programs with dependent random variables. Copula theory provides a mathematical framework for modeling and analyzing the dependence structure between random variables, thereby enhancing the understanding and optimization of these problems. Lastly, the thesis investigates distributionally robust geometric optimization, which considers uncertain distributions of random variables. This approach focuses on developing optimization algorithms that are robust against uncertainty in the underlying probability distributions, ensuring more reliable and stable solutions
Rakotoarisoa, Hery. "Modélisation géométrique et optimisation de structures géologiques 3D." Lyon 1, 1992. http://www.theses.fr/1992LYO19004.
Full textBobenrieth, Cédric. "Modélisation géométrique par croquis." Thesis, Strasbourg, 2019. https://publication-theses.unistra.fr/public/theses_doctorat/2019/Bobenrieth_Cedric_2019_ED269.pdf.
Full textNowadays, 3D modeling is omnipresent, however modern tools for creating 3D models are complex and time consuming. Conversely, the sketch is a natural way to quickly communicate ideas, so a method allowing the automatic reconstruction of 3D objects from a sketch would simplify this process. This method should solve two problems: the computation of the hidden parts of the drawn shape and the determination of the 3D coordinates from the 2D data of the sketch. In this thesis, we present two new approaches that aim to overcome these problems. The first makes use of a priori and a pre-existing database to allow automatic 3D reconstruction of flowers from a single sketch from any angle of view. The second allows the reconstruction of all types of objects, without limitations, using a more informative drawing style and being guided by the user
Menguy, Yann. "Optimisation quadratique et géométrique de problèmes de dosimétrie inverse." Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005003.
Full textSergent, Philippe. "Optimisation géométrique du contrôle actif dans les gaines de ventilation." Phd thesis, Ecole Nationale des Ponts et Chaussées, 1996. http://tel.archives-ouvertes.fr/tel-00529385.
Full textLedoux, Yann. "Optimisation des procédés d'emboutissage par caractérisation géométrique et essais numériques." Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00419320.
Full textSERGENT, PHILIPPE. "Optimisation géométrique du contrôle actif dans les gaines de ventilation." Marne-la-vallée, ENPC, 1996. http://www.theses.fr/1996ENPC9607.
Full textDelgado, Gabriel. "Optimisation des structures composites: Une analyse de sensibilité géométrique et topologique." Phd thesis, Ecole Polytechnique X, 2014. http://pastel.archives-ouvertes.fr/pastel-01005520.
Full textChaigne, Benoît. "Méthodes hiérarchiques pour l'optimisation géométrique de structures rayonnantes." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00429366.
Full textShindo, Kyo. "Analyse mécanique et optimisation géométrique de la dent restaurée par méthode indirecte." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC003/document.
Full textThe rehabilitation of dental function following the fitting of prostheses obtained by cemented ceramic restorations is one of the major challenges of restorative dentistry. It is now well established that the ceramic/composite interface has an important significance for the longevity of the restoration and its observation using X-ray µ-CT enabled us to characterize some types of defects within the cement layer (air voids and debonding). The mechanical analysis of the restored tooth considering those defects exhibits their negative influence on the strength of the assembly. The influence of design parameters has also been studied considering a simplified 2D axisymmetric FE model in order to avoid the morphological diversity of real geometries. Results show that the design of the inner shape of the crown (editable within the CAD/CAM process) is mechanically relevant. A 3D finite element study extending to the periodontal ligament has then been realized in order to approach this problem in a more realistic perspective. Results show high stresses near from the cervical margin of the crown, coinciding with a common clinical failure mode. This 3D model was also used in a additional study allowing us to conclude that the geometrical data used in modern CAD/CAM processes are sufficient to develop a mechanical optimization of the restoration design. A reverse engineering method based on the interpolation of B-Spline surfaces on scanned data acquired during clinic procedures is therefore introduced in order to integrate a patient specific mechanical optimization within the digital chain of CAD/CAM processes
Allègre, Guillaume. "Représentation géométrique des arrangements de droites du plan." Phd thesis, Université Joseph Fourier (Grenoble), 2003. http://tel.archives-ouvertes.fr/tel-00004631.
Full textChaigne, Benoït. "Méthodes hiérarchiques pour l'optimisation géométrique de structures rayonnantes." Nice, 2009. http://www.theses.fr/2009NICE4108.
Full textA reflector antenna is a device that is widely use for satellite communications. The life length of such a device depends highly on the fatigue due to the energy consumption for the signal emission. Thus, one of the goals of the optimal design of an antenna is to improve the productivity of systems designed for a given task, for a fixed input power. A reflector antenna is characterizes by radiating surfaces whose geometry is the main parameter that can be controlled to fulfill the task. Based on the time-harmonic wave propagation simulation in free space, numerical procedures for the optimal design of the shape of radiating structures are examined. Namely, we aim at minimizing a criterion that represents the task in mathematical terms. In this framework, classical optimization methods are often submitted to challenging difficulties related to the fact that the problems are ill-posed because multimodal and numerically stiff. Since the control is the geometry of the reflectors, we have investigated in this thesis the potential enhancements of basic algorithms using hierarchical parametric representations. The theoretical foundations of the proposed algorithms rely to the Multigrid methods for solving PDE. A theoretical example for shape optimization is considered in, order to derive different multilevel strategies. These strategies are the applied to real-case problems for the optimal design of reflector antennas. Numerical experiences show that basic algorithms are effectively enhanced in terms of robustness and convergence rate
Payan, Frédéric. "Optimisation du compromis débit/distorsion pour la compression géométrique de maillages surfaciques triangulaires." Phd thesis, Université de Nice Sophia-Antipolis, 2004. http://tel.archives-ouvertes.fr/tel-00011445.
Full textgéométriques permettent l'utilisation de modèles théoriques pour le
débit et la distorsion des sous-bandes de coefficients. Finalement,
nous proposons un codeur géométrique incluant une allocation rapide et performante qui optimise la quantification des coefficients pour que la qualité visuelle de l'objet reconstruit soit maximisée sous la contrainte d'un débit total fixé. Expérimentalement, l'algorithme
proposé donne de meilleurs résultats que toutes les méthodes de l'état de l'art.
Tescari, Stefania. "Optimisation géométrique dérivée de l’approche constructale pour réacteurs thermochimiques sous rayonnement solaire concentré." Perpignan, 2010. http://www.theses.fr/2010PERP1009.
Full textThis work aims to optimize thermochemical reactor driven by concentrated solar radiation. The definition of a simplified model, deriving from the constructal approach, allows to study the influence of the geometry and shape factor variation on the reactor performances and so to find the optima reactor shape. The influence of the operating parameters on the optimal geometry and on the maximal reactor efficiency is then studied. Starting from the simplified model, the limiting effects are pointed out, and new reactor configurations, at high performance, are proposed. The validity domain of the simplified model is defined by comparing the results with 2D numerical simulations. The model is then used to optimize a thermochemical reactor, applied to the production of solar fuels
Gurtner, Gérald. "Géométrie, topologie et optimisation des réseaux et structures cellulaires." Paris 7, 2011. http://www.theses.fr/2011PA077165.
Full textSome particular networks of very different essences - electrical, thermal, fluidic, mecanic - exhibit, in a first approximation, some strong mathematical analogies, allowing us to conduct a common analysis of their emergent properties - electrical, thermal or fluidic conductivity, and elastic moduli. With a variationnal approach, we established absolute bounds on these quantifies as well as a set of geometrical necessary and sufficient conditions (NSC) to reach them. These conditions lead to new optimal structures, both in two and three dimensions. Thanks to a numerical program, which allowed us to verify these predictions, we then characterized the bending/streching transition which appears in fibrous networks. With the help of the NSC, we computed analytically some statistic, microscopic features of these networks, which might be of importance in the future to understand this phenomenon, as our analyze suggests it. Moreover, we used the programm to investigate the problem of the junctions' energy and showed the presence of several transitions, described by power laws. Finally, we calculated the macroscopic characteristics of some networks close to the optimality, and introduced a new average quantity based on the NSC which seemed to be of importance to quantify this deviation from optimality
Abril, Bucero Marta. "Matrices de moments, géométrie algébrique réelle et optimisation polynomiale." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4118/document.
Full textThe objective of this thesis is to compute the optimum of a polynomial on a closed basic semialgebraic set and the points where this optimum is reached. To achieve this goal we combine border basis method with Lasserre's hierarchy in order to reduce the size of the moment matrices in the SemiDefinite Programming (SDP) problems. In order to verify if the minimum is reached we describe a new criterion to verify the flat extension condition using border basis. Combining these new results we provide a new algorithm which computes the optimum and the minimizers points. We show several experimentations and some applications in different domains which prove the perfomance of the algorithm. Theorethically we also prove the finite convergence of a SDP hierarchie contructed from a Karush-Kuhn-Tucker ideal and its consequences in particular cases. We also solve the particular case where the minimizers are not KKT points using Fritz-John Variety
Jacquenot, Guillaume. "Méthode générique pour l'optimisation d'agencement géométrique et fonctionnel." Phd thesis, Ecole centrale de nantes - ECN, 2010. http://tel.archives-ouvertes.fr/tel-00468463.
Full textFoare, Marion. "Analyse d'images par des méthodes variationnelles et géométriques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM043/document.
Full textIn this work, we study both theoretical and numerical aspects of an anisotropic Mumford-Shah problem for image restoration and segmentation. The Mumford-Shah functional allows to both reconstruct a degraded image and extract the contours of the region of interest. Numerically, we use the Amborsio-Tortorelli approximation to approach a minimizer of the Mumford-Shah functional. It Gamma-converges to the Mumford-Shah functional and allows also to extract the contours. However, the minimization of the Ambrosio-Tortorelli functional using standard discretization schemes such as finite differences or finite elements leads to difficulties. We thus present two new discrete formulations of the Ambrosio-Tortorelli functional using the framework of discrete calculus. We use these approaches for image restoration and for the reconstruction of normal vector field and feature extraction on digital data. We finally study another similar shape optimization problem with Robin boundary conditions. We first prove existence and partial regularity of solutions and then construct and demonstrate the Gamma-convergence of two approximations. Numerical analysis shows once again the difficulties dealing with Gamma-convergent approximations
Carrère, Frédéric. "Optimisation de formes en aérodynamique hypersonique avec contraintes géométriques et furtivité électromagnétique." Bordeaux 1, 1994. http://www.theses.fr/1994BOR10637.
Full textVerneau, Guillaume. "Optimisation géométrique de MOSFETs de puissance en vue d'intégrer l'alimentation de l'étage de commande." Phd thesis, Grenoble INPG, 2003. http://tel.archives-ouvertes.fr/tel-00385862.
Full textOlaru, Sorin. "Contribution à l'étude de la commande prédictive sous contraintes par approche géométrique." Paris 11, 2005. http://www.theses.fr/2005PA112130.
Full textThis thesis is a contribution to the study of the predictive control under constraints essentially using a geometrical approach. The feasible domain resulting from a set of linear constraints is represented by a polyhedron. But, since the dynamics of the system to be controlled intervenes in the structure of the constraints, it results a parameterization of the optimization problem to be solved on line. The structure of the feasible region can then be analyzed through the concept of parameterized polyhedron. This characterization of the feasible domain initially enables to establish necessary and sufficient feasibility conditions for the predictive law, the relationships with the stability of the closed loop system being highlighted using the invariant set theory. Analysing the position of the unconstrained optimum with respect to the polyhedral feasible domain can lead to a partitioning of the parameters space, allowing the construction of an explicit formulation of the predictive law as well in the nominal case as for multiparametric optimizations constructed with robustness improvement purposes. The originality of the approach, related to this geometrical point of view, allows, beside the construction of explicit laws, the analysis of the redundancy phenomenon. It proposes a partition of the parameters space in regions corresponding to subsets of constraints locally nonredundant. All these results lead to off-line design procedures for the predictive laws such that their effective implementation may use techniques spread from on-line optimization to fully explicit piecewise laws evaluated by look-up table positioning mechanisms
Novytskyi, Dimitri. "Méthodes géométriques pour la mémoire et l'apprentissage." Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00285602.
Full textNovytskyy, Dmytro. "Méthodes géométriques pour la mémoire et l'apprentissage." Toulouse 3, 2007. http://www.theses.fr/2007TOU30152.
Full textThis thesis is devoted to geometric methods in optimization, learning and neural networks. In many problems of (supervised and unsupervised) learning, pattern recognition, and clustering there is a need to take into account the internal (intrinsic) structure of the underlying space, which is not necessary Euclidean. For Riemannian manifolds we construct computational algorithms for Newton method, conjugate-gradient methods, and some non-smooth optimization methods like the r-algorithm. For this purpose we develop methods for geodesic calculation in submanifolds based on Hamilton equations and symplectic integration. Then we construct a new type of neural associative memory capable of unsupervised learning and clustering. Its learning is based on generalized averaging over Grassmann manifolds. Further extension of this memory involves implicit space transformation and kernel machines. Also we consider geometric algorithms for signal processing and adaptive filtering. Proposed methods are tested for academic examples as well as real-life problems of image recognition and signal processing. Application of proposed neural networks is demonstrated for a complete real-life project of chemical image recognition (electronic nose)
Olaru, Sorin. "La commande des systèmes dynamiques sous contraintes Interaction optimisation-géométrie-commande." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00641658.
Full textKhoury, Ibrahim. "Optimisation de la géométrie de l'outillage pour les procédés de forgeage." Troyes, 2008. http://www.theses.fr/2008TROY0012.
Full textIn the forging field, numerical simulation allows reducing the use of the experimental investigation and tests required in a real tryout process. In The LASMIS laboratory a finite element package has been developed to solve elasto-visco-plasticity problems with ductile damage in large deformation. In the optimisation of forming process, several research teams approached the optimization of performs. They don’t take into account the apparition of damage during the simulation of the forging process. The thesis objective is to identify the pertinent geometric parameters of axisymetric parts which allow the minimisation of the forging energy. The two major criteria’s are the correct filling and the absence of damage appearance. In this work, two automatic procedures are introduced to test the filling by comparing geometry of the rough forged and the machined one. Then a procedure has been set to localize if the damage occurs in zones that will be machined or in zones that are inside the machined forged part. Then, a semi automatic optimization method is described in order to study the effect of the geometric parameters on the forging energy with the constraint of maximal value of damage to be kept out of the final machined part. The originality of this work is the study of the effect of the geometrical parameters with technological significations on the forging energy and the appearance and the localization of the damage in the forged part
Abid, Saïd. "Optimisation d'épaisseur de structures minces isotropes et composites en présence de non linéarités géométriques." Compiègne, 1995. http://www.theses.fr/1995COMPD793.
Full textTehar, Sabar. "Optimisation géométrique d'un four à arc électrique pour une productivité et une durée de vie maximales." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23668/23668.pdf.
Full textIraqi, Mehdi. "Approches théoriques pour une optimisation géométrique des formes urbaines : vers un aménagement fractal de la ville." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCC027/document.
Full textThis thesis aims to establish a urban structure that optimizes inhabitant's preferences. In other words, we want to find out which city shape answers the best the residents' aspirations, according to their consumption preferences for urban and green amenities. By considering a theoretical field of study and by characterizing the population by a Cobb-Douglas behavioral pattern, we will build step by step a city, assuming successive arrivais of new individuals, in order to find out which geometric shape gives the most suitable answer. The final goal of this thesis is there to suggest a city with a fractal shape as an appro- priate answer to the resident's expectations. We will show that this structure provides indeed both a balance between accesses to urban amenities and accesses to green amenities and a balance between amenities and budget, with an effective distance compensation that satisfies the overall exigencies of the city
Dossal, Charles. "Estimation de fonctions géométriques et déconvolution." Phd thesis, Ecole Polytechnique X, 2005. http://tel.archives-ouvertes.fr/tel-00855128.
Full textGodineau, Kévin. "Optimisation du pilotage de chaînes opto-mécaniques pour l'exécution de trajectoires en fabrication additive par fusion laser sur lit de poudre." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN019.
Full textIn metal additive manufacturing by laser powder bed fusion, the geometry and mechanical characteristics of the produced parts are generated during the manufacturing process. These two aspects are greatly influenced by the laser spot trajectories, and by the control of the energy provided to the powder locally. The numerical control system, whose purpose is to generate instructions to be sent to actuators, has therefore a significant impact on the quality of the parts produced.This work proposes to study the local impact of the operations carried out in the numerical control on both the trajectories executed and the energy provided to the material. In the literature, few studies have addressed these aspects in additive manufacturing. For this reason, an experimental platform is implemented and used to analyze and better understand the operations currently implemented in industrial numerical controls.First, a mathematical model representative of the machine geometry is established. This model converts the laser spot trajectories into instructions for actuators. The model developed is used to improve the calibration step of the machines. Once the system is calibrated, the instructions sent to the actuators are studied. The various processes carried out in the industrial numerical control are analysed, limitations are highlighted and several proposals for improvements are implemented. All these developments are then used to precisely control the energy supplied to the material in the case of certain trajectories adapted to the process. The scientific developments proposed in these works are all validated experimentally on an additive manufacturing machine or on the test bench developed. The work carried out makes it possible to envisage many perspectives concerning the improvement of the treatments carried out inside the numerical control in additive manufacturing
Ghidossi, Rémy. "Membranes céramiques : optimisation de la géométrie par simulation numérique et application industrielle." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11015.
Full textLanterne, Célestin. "Réparation et optimisation de maillages 3D pour l'impression 3D." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0454.
Full text3D printers use 3D models in the form of meshes to define the geometry and the appearance of objects to be printed. A 3D mesh must have some topological properties so that the geometry it represents could be printable and the geometry itself must respect certain conditions to be printable. These properties and conditions may vary depending on the 3D printing technologies in use.Many 3D meshes used for printing were not initially designed for this purpose application. The main primary use of these meshes is visualization, which does not require the same topological properties and geometric conditions. The subject of this thesis is the repair of these meshes to make them printable.A repair chain including several steps was designed for this purpose. Non-manifold conditions are repaired by extracting related components (surfaces). The boundaries of surfaces are detected and classified according to the best repair to be applied on each. The boundaries of surfaces are repaired according to their classification either by a filling method or by an offset method. The weakness of the geometry is detected and controlled
Rivière, Thomas. "Optimisation de graphes sous contrainte géométrique : création d'un réseau de routes aériennes pour un contrôle Sector-Less." Phd thesis, Toulouse, INPT, 2006. http://oatao.univ-toulouse.fr/7432/1/riviere.pdf.
Full textRaulo, Jacky. "Optimisation des sections de pales d'hélice." Rouen, 1997. http://www.theses.fr/1997ROUES022.
Full textCatapano, Anita. "Stiffness and strength optimisation of the anisotropy distribution for laminated structures." Paris 6, 2013. http://www.theses.fr/2013PA066062.
Full textIn this thesis we deal with the problem of determining the best distribution of the anisotropy for a laminated structure that has to be simultaneously the stiffest and the strongest one. The work has been divided into three main parts. In the first part we presented all the concepts and tools that we have used to develop the research. In the second part we have proposed a tensor invariant formulation, through the polar method, of different polynomial failure criteria for orthotropic sheets. Then, we considered the problem of determining the optimal material orientation to maximise strength by the minimisation of the failure index. The last part of the thesis is dedicated to the development of a new strategy to optimise simultaneously the stiffness and strength of a laminated structure. Our approach is inspired from an already existing hierarchical strategy for the only stiffness maximisation. First of all we defined a new laminate level failure criterion valid for an equivalent homogenised plate. Then, conscious of having two functional, the complementary energy and the laminate failure index, to be minimised at the same time, we proved that the first step of the strategy can be stated as two problems characterised by two functional that are sequentially minimised, preserving only the orthotropy direction. In the first step of the strategy we developed three different algorithms to determine the optimal distribution of material parameters for a given structure. Finally we dealt with the problem of determining the laminate stacking sequence satisfying the optimal distribution of material parameters issued from the first step of the hierarchical strategy
Diolez, Gilles. "Maîtrise de la position géométrique des solides : vers de nouveaux outils plus efficaces." Phd thesis, Paris, ENSAM, 2006. http://pastel.archives-ouvertes.fr/pastel-00002351.
Full textNguyen, Ngoc Tinh. "Étude et optimisation d'antennes lentilles intégrées mono- et multi-excitations en ondes millimétriques." Rennes 1, 2009. http://www.theses.fr/2009REN1S084.
Full textIntegrated lens antennas (ILAs) have been widely used for many applications such as indoor and outdoor wireless communications. Such radiating structures suit very well for high-gain and shaped beam applications. Nevertheless, they are often bulky for embedded applications (automotive radars, space communications), and their radiation characteristics are generally fixed. The purpose of this PhD work was twofold: i) to propose new techniques for size reduction of integrated lens antennas, and ii) to implement and validate new analysis and optimisation tools, especially for the design of lenses fed by focal arrays. Two size reduction techniques have been studied numerically using the FDTD method and validated experimentally: they consist either in introducing air cavities around the primary feed, or in using high-permittivity materials. On the other hand, we have implemented new functionalities in our already-existing GO/PO analysis kernel (Geometrical Optics / Physical Optics) in order to improve the accuracy and reliability of the GO/PO modelling of focal array fed lenses. This new analysis tool has been also combined to Genetic Algorithms for optimisation purposes. Many numerical results obtained in Ka- and V-bands have been validated experimentally
Gouri, Rabah. "Optimisation électrique et géométrique d'un électrofiltre à barrière diélectrique en configuration fil-tube carré. Application aux particules submicroniques." Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2279/document.
Full textThe objective of this work is the study of the collection efficiency of submicron particles with wire-to-square tubeElectroStatic Precipitator (ESP) using a Dielectric Barrier Discharge (DBD). The experiments are performed with incense smokeparticles having a mean size of about 0.32 μm. An aerosol spectrometer is employed for characterizing the size distribution ofthese particles at the outlet of the ESPs. The collection efficiency is estimated for various applied voltages and frequencies(ranges: 4–30 kV, 0.3–1000 Hz) at a fixed air flow rate.The first step of our study consisted of an electrical characterization of the reference precipitator and the evaluation of itscollection efficiency performances. The results have shown that electrical behavior of the wire-to-square tube configuration issimilar to the wire-to- cylinder configuration. Furthermore, it reveals that the square configuration charged with a DBD gives verygood results (more than 99% of efficiency). The second step of the study was devoted to the geometrical optimization of thesquare ESP. The obtained results have established that the wire diameter, the number of faces has a minimal effect on electrostatic precipitation. However, the tube section, the width of the ground electrode and its discretization have an important effect. Also, the analysis of the effect of the presence of a second Dielectric Barrier (DB) has shown that in the case of the single DB, the discharge mode is rather homogeneous. In contrast, the discharge has a filamentary behavior in the case of the double DB. Results show that the particle collection efficiency of both ESPs is higher at high applied voltages and within a certai
Jartoux, Bruno. "On combinatorial approximation algorithms in geometry." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1078/document.
Full textThe analysis of approximation techniques is a key topic in computational geometry, both for practical and theoretical reasons. In this thesis we discuss sampling tools for geometric structures and geometric approximation algorithms in combinatorial optimization. Part I focuses on the combinatorics of geometric set systems. We start by discussing packing problems in set systems, including extensions of a lemma of Haussler, mainly the so-called shallow packing lemma. For said lemma we also give an optimal lower bound that had been conjectured but not established in previous work on the topic. Then we use this lemma, together with the recently introduced polynomial partitioning technique, to study a combinatorial analogue of the Macbeath regions from convex geometry: Mnets, for which we unify previous existence results and upper bounds, and also give some lower bounds. We highlight their connection with epsilon-nets, staples of computational and combinatorial geometry, for example by observing that the unweighted epsilon-net bound of Chan et al. (SODA 2012) or Varadarajan (STOC 2010) follows directly from our results on Mnets. Part II deals with local-search techniques applied to geometric restrictions of classical combinatorial optimization problems. Over the last ten years such techniques have produced the first polynomial-time approximation schemes for various problems, such as that of computing a minimum-sized hitting set for a collection of input disks from a set of input points. In fact, it was shown that for many of these problems, local search with radius Θ(1/epsilon²) gives a (1 + epsilon)-approximation with running time n^{O(1/epsilon²)}. However the question of whether the exponent of n could be decreased to o(1/epsilon²) was left open. We answer it in the negative: the approximation guarantee of local search cannot be improved for any of these problems. The key ingredient is a new lower bound on locally expanding planar graphs, which is then used to show the impossibility results
Duan, Liuyun. "Modélisation géométrique de scènes urbaines par imagerie satellitaire." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4025.
Full textAutomatic city modeling from satellite imagery is one of the biggest challenges in urban reconstruction. The ultimate goal is to produce compact and accurate 3D city models that benefit many application fields such as urban planning, telecommunications and disaster management. Compared with aerial acquisition, satellite imagery provides appealing advantages such as low acquisition cost, worldwide coverage and high collection frequency. However, satellite context also imposes a set of technical constraints as a lower pixel resolution and a wider that challenge 3D city reconstruction. In this PhD thesis, we present a set of methodological tools for generating compact, semantically-aware and geometrically accurate 3D city models from stereo pairs of satellite images. The proposed pipeline relies on two key ingredients. First, geometry and semantics are retrieved simultaneously providing robust handling of occlusion areas and low image quality. Second, it operates at the scale of geometric atomic regions which allows the shape of urban objects to be well preserved, with a gain in scalability and efficiency. Images are first decomposed into convex polygons that capture geometric details via Voronoi diagram. Semantic classes, elevations, and 3D geometric shapes are then retrieved in a joint classification and reconstruction process operating on polygons. Experimental results on various cities around the world show the robustness, scalability and efficiency of the proposed approach
Briançon, Tanguy. "Problème de régularité en optimisation de formes." Rennes 1, 2002. http://www.theses.fr/2002REN10047.
Full textBoisson, Viviane. "Etude de la géométrie optimale des périphéries des jonctions Planar." Lyon 1, 1985. http://www.theses.fr/1985LYO19019.
Full textBriançon, Tanguy. "Problemes de régularité en optimisation de formes." Phd thesis, Université Rennes 1, 2002. http://tel.archives-ouvertes.fr/tel-00002013.
Full textChambrion, Thomas. "Méthodes géométriques pour la commande de systèmes mécaniques en dimension infinie." Habilitation à diriger des recherches, Université de Lorraine, 2014. http://tel.archives-ouvertes.fr/tel-01011390.
Full textBonnivard, Matthieu. "Influence des perturbations géométriques de domaines sur les solutions d'équations aux dérivées partielles." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00555121.
Full textBus, Norbert. "The use of geometric structures in graphics and optimization." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1117/document.
Full textReal-world data has a large geometric component, showing significant geometric patterns. How to use the geometric nature of data to design efficient methods has became a very important topic in several scientific fields, e.g., computational geometry, discrete geometry, computer graphics, computer vision. In this thesis we use geometric structures to design efficient algorithms for problems in two domains, computer graphics and combinatorial optimization. Part I focuses on a geometric data structure called well-separated pair decomposition and its usage for one of the most challenging problems in computer graphics, namely efficient photo-realistic rendering. One solution is the family of many-lights methods that approximate global illumination by individually computing illumination from a large number of virtual point lights (VPLs) placed on surfaces. Considering each VPL individually results in a vast number of calculations. One successful strategy the reduce computations is to group the VPLs into a small number of clusters that are treated as individual lights with respect to each point to be shaded. We use the well-separated pair decomposition of points as a basis for a data structure for pre-computing and compactly storing a set of view independent candidate VPL clusterings showing that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We show that instead of clustering points and/or VPLs independently what is required is to cluster the product-space of the set of points to be shaded and the set of VPLs based on the induced pairwise illumination. Additionally we propose an adaptive sampling technique to reduce the number of visibility queries for each product-space cluster. Our method handles any light source that can be approximated with virtual point lights (VPLs), highly glossy materials and outperforms previous state-of-the-art methods. Part II focuses on developing new approximation algorithms for a fundamental NP-complete problem in computational geometry, namely the minimum hitting set problem with particular focus on the case where given a set of points and a set of disks, we wish to compute the minimum-sized subset of the points that hits all disks. It turns out that efficient algorithms for geometric hitting set rely on a key geometric structure, called epsilon-net. We give an algorithm that uses only Delaunay triangulations to construct epsilon-nets of size 13.4/epsilon and we provide a practical implementation of a technique to calculate hitting sets in near-linear time using small sized epsilon-nets. Our results yield a 13.4 approximation for the hitting set problem with an algorithm that runs efficiently even on large data sets. For smaller datasets, we present an implementation of the local search technique along with tight approximation bounds for its approximation factor, yielding an (8 + epsilon)-approximation algorithm with running time O(n^{2.34})
Meyer, Serge. "Etude et faisabilité d'un filtre optique à cristaux liquides accordable en longueur d'onde : optimisation des paramètres opto géométriques." Université de Marne-la-Vallée, 2001. http://www.theses.fr/2001MARN0157.
Full textChen, Qing Hua. "Optimisation des caractéristiques métallurgiques et géométriques des zones superficielles de pièces traitees par laser : modélisations et étude expérimentale." Lyon, INSA, 1995. http://www.theses.fr/1995ISAL0082.
Full text[In order to control the characteristics of the transformation hardened zone induced by laser beams at the surface of ferrous alloys, the objective of the present study is to set up a modeling technique to predict the induced effects and to select the trial parameters. We have performed a very complete bibliographical analysis of the different approaches essentially thermal ones) and drawn out three types of models: analytical models, pure numerical models and semi-phenomenological models. We have concluded that it is necessary to conduct parallelly all the three types of models to reach our objectives. The reasons are the followings: 1. The comparison among the different models, if possible, allows to verify their effectiveness and that of relating softwares developed in the study. 2. The semi- phenomenological model is indispensable to obtain the important mean thermo-physical parameters which can be injected into other models. 3. The analytical models can be used in the simple situations and give a rapid response to certain problems. 4. The numerical models using finite differences method permit us to treat many complex situations (laser beams transformed by the optical devices treatment of· rides of pieces etc. . . ). All our theoretical approaches have been supported by the relating experiments proving their correctness and effectiveness. These experiments also reveal the interests of a "ceramic" absorbent material. ]
Al-Khalidi, Khaldoun. "Reconstruction tomographique en géométrie conique par la technique du maximum de vraisemblance : optimisation et parallélisation." Besançon, 1996. http://www.theses.fr/1996BESA2009.
Full textRenaud, Denis. "Caractérisation du propulseur PEGASES : diagnostics du filtre magnétique et du faisceau : optimisation de la géométrie." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2018/document.
Full textThe PEGASES ion thruster differs from standard electric propulsion technologies through its use of electronegative gases, such as SF₆, as a propellant. Its operation relies on the trapping of electrons using a magnetic field and the creation of a plasma dominated by positive and negative ions. These ions are alternately accelerated to produce thrust, and later undergo a recombination to ensure beam neutrality. This thruster eliminates the need for an electron-producing neutralizer, which is a standard feature in other sources such as the Hall thruster. This thesis is divided into three parts. The first describes the development and implementation of a new EXB probe for the study of the ion beam properties, the identification of the beam chemical composition and the verification of the presence of negative and positive ion species. The second part concerns the design and application of a new laser photodetachment diagnostic for the measurement of the negative ion fraction. Lastly, a new ion-ion thruster with a circular geometry, known as AIPE, has been designed, constructed and successfully tested. This prototype eliminates the plasma asymmetry present in PEGASES and reveals the importance of the magnetic filter to source operation