Academic literature on the topic 'Optimisatiion géométrique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optimisatiion géométrique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optimisatiion géométrique"
Abbas, Mohamed, Noureddine Said, and Boussad Boumeddane. "Optimisation d’un moteur Stirling de type gamma." Journal of Renewable Energies 13, no. 1 (October 25, 2023): 1–12. http://dx.doi.org/10.54966/jreen.v13i1.174.
Full textBellel, Nadir, and Abla Chaker. "Etude et Optimisation du Réseau de Circulation du Fluide Caloporteur d’un Convertisseur Thermique." Journal of Renewable Energies 7, no. 2 (December 31, 2004): 85–94. http://dx.doi.org/10.54966/jreen.v7i2.869.
Full textBarkatou, M., and A. Henrot. "Un résultat d'existence en optimisation de forme en utilisant une propriété géométrique de la normale." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 105–23. http://dx.doi.org/10.1051/cocv:1997105.
Full textCheknane, Ali, Boumediene Benyoucef, Jean-Pierre Charles, and Radia Zerdoum. "Optimisation et Conception d'une Grille Collectrice Appliquée aux Photopiles Fonctionnant sous Haute Concentration Solaire." Journal of Renewable Energies 7, no. 2 (December 31, 2004): 95–108. http://dx.doi.org/10.54966/jreen.v7i2.870.
Full textBelhamel, Maiouf. "Optimisation de la Performance d’un Collecteur Solaire Cylindro – parabolique à Caloduc : Réalisation et Dimensionnement du Caloduc." Journal of Renewable Energies 2, no. 1 (June 30, 1999): 39–49. http://dx.doi.org/10.54966/jreen.v2i1.923.
Full textSehaqui, Rachid, Meryem Sijelmassi, and Jaâfar Khalid Naciri. "Amélioration du transfert thermique par optimisation de la géométrie d'une conduite de révolution." Mécanique & Industries 6, no. 2 (March 2005): 189–93. http://dx.doi.org/10.1051/meca:2005019.
Full textDroin, Laurent, Maurice Amram, and Vick J. Chvojka. "Optimisation Géométrique de Guides d'Ondes Utilisés comme Filtres Passe-bas pour le Controle des Bruits de Basses Fréquences." Applied Acoustics 19, no. 4 (1986): 285–303. http://dx.doi.org/10.1016/0003-682x(86)90003-4.
Full textBouziani, Mourad, and Jacynthe Pouliot. "Optimisation de la mise à jour des bases de données géospatiales Proposition d'une procédure automatisée d'appariement géométrique d'objets linéaires." Revue internationale de géomatique 18, no. 1 (March 26, 2008): 113–37. http://dx.doi.org/10.3166/geo.18.113-137.
Full textVanbremeersch, Jacques, Pascale Godts, Eugène Constant, and Isabelle Valin. "Optimisation théorique et expérimentale des caractéristiques géométriques et électriques du transistor à effet de champ à grille submicronique." Annales des Télécommunications 45, no. 5-6 (May 1990): 321–28. http://dx.doi.org/10.1007/bf02995133.
Full textBeuf, Aurélien, Florence Raynal, Jean-Noël Gence, and Philippe Carrière. "Optimisation du protocole de mélange et de la géométrie d’une chambre d’hybridation de puces à ADN." La Houille Blanche, no. 6 (December 2007): 39–44. http://dx.doi.org/10.1051/lhb:2007080.
Full textDissertations / Theses on the topic "Optimisatiion géométrique"
Tassouli, Siham. "Neurodynamic chance-constrained geometric optimization." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG062.
Full textIn many real-world scenarios, decision-makers face uncertainties that can affect the outcomes of their decisions. These uncertainties arise from various sources, such as variability in demand, fluctuating market conditions, or incomplete information about system parameters. Traditional deterministic optimization approaches assume that all parameters are known with certainty, which may not accurately reflect the reality of the problem. Chance-constrained optimization provides a more realistic and robust approach by explicitly accounting for the uncertainty in decision-making. Geometric programming is often misunderstood as a technique exclusively designed for posynomial problems. However, it is a versatile mathematical theory with significant value in addressing a broad range of separable problems. In fact, its true strength lies in its ability to effectively tackle seemingly inseparable problems by leveraging their linear algebraic structure. This general applicability of geometric programming makes it a valuable tool for studying and solving various optimization problems, extending its practical usefulness beyond its initial perception. Recurrent neural networks (RNNs) offer a biologically inspired computational framework with great optimization potential. By emulating the interconnected structure of neurons in the brain, RNNs excel in modeling complex and dynamic systems. This capability allows them to capture temporal dependencies and feedback loops, making them well-suited for optimization scenarios that involve sequential decision-making or iterative processes. Moreover, one of the key advantages of neurodynamic approaches is their hardware implementation feasibility. The primary objective of this thesis is to develop neurodynamic algorithms that are efficient and effective in solving chance-constrained geometric optimization problems. The thesis begins by focusing on chance-constrained geometric programs involving independent random variables. In addition, a specific type of geometric programs known as rectangular programs is also examined in detail. The objective is to understand the characteristics and complexities associated with this subclass of geometric programs. Subsequently, the thesis explores applying copula theory to address chance-constrained geometric programs with dependent random variables. Copula theory provides a mathematical framework for modeling and analyzing the dependence structure between random variables, thereby enhancing the understanding and optimization of these problems. Lastly, the thesis investigates distributionally robust geometric optimization, which considers uncertain distributions of random variables. This approach focuses on developing optimization algorithms that are robust against uncertainty in the underlying probability distributions, ensuring more reliable and stable solutions
Rakotoarisoa, Hery. "Modélisation géométrique et optimisation de structures géologiques 3D." Lyon 1, 1992. http://www.theses.fr/1992LYO19004.
Full textBobenrieth, Cédric. "Modélisation géométrique par croquis." Thesis, Strasbourg, 2019. https://publication-theses.unistra.fr/public/theses_doctorat/2019/Bobenrieth_Cedric_2019_ED269.pdf.
Full textNowadays, 3D modeling is omnipresent, however modern tools for creating 3D models are complex and time consuming. Conversely, the sketch is a natural way to quickly communicate ideas, so a method allowing the automatic reconstruction of 3D objects from a sketch would simplify this process. This method should solve two problems: the computation of the hidden parts of the drawn shape and the determination of the 3D coordinates from the 2D data of the sketch. In this thesis, we present two new approaches that aim to overcome these problems. The first makes use of a priori and a pre-existing database to allow automatic 3D reconstruction of flowers from a single sketch from any angle of view. The second allows the reconstruction of all types of objects, without limitations, using a more informative drawing style and being guided by the user
Menguy, Yann. "Optimisation quadratique et géométrique de problèmes de dosimétrie inverse." Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005003.
Full textSergent, Philippe. "Optimisation géométrique du contrôle actif dans les gaines de ventilation." Phd thesis, Ecole Nationale des Ponts et Chaussées, 1996. http://tel.archives-ouvertes.fr/tel-00529385.
Full textLedoux, Yann. "Optimisation des procédés d'emboutissage par caractérisation géométrique et essais numériques." Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00419320.
Full textSERGENT, PHILIPPE. "Optimisation géométrique du contrôle actif dans les gaines de ventilation." Marne-la-vallée, ENPC, 1996. http://www.theses.fr/1996ENPC9607.
Full textDelgado, Gabriel. "Optimisation des structures composites: Une analyse de sensibilité géométrique et topologique." Phd thesis, Ecole Polytechnique X, 2014. http://pastel.archives-ouvertes.fr/pastel-01005520.
Full textChaigne, Benoît. "Méthodes hiérarchiques pour l'optimisation géométrique de structures rayonnantes." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00429366.
Full textShindo, Kyo. "Analyse mécanique et optimisation géométrique de la dent restaurée par méthode indirecte." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC003/document.
Full textThe rehabilitation of dental function following the fitting of prostheses obtained by cemented ceramic restorations is one of the major challenges of restorative dentistry. It is now well established that the ceramic/composite interface has an important significance for the longevity of the restoration and its observation using X-ray µ-CT enabled us to characterize some types of defects within the cement layer (air voids and debonding). The mechanical analysis of the restored tooth considering those defects exhibits their negative influence on the strength of the assembly. The influence of design parameters has also been studied considering a simplified 2D axisymmetric FE model in order to avoid the morphological diversity of real geometries. Results show that the design of the inner shape of the crown (editable within the CAD/CAM process) is mechanically relevant. A 3D finite element study extending to the periodontal ligament has then been realized in order to approach this problem in a more realistic perspective. Results show high stresses near from the cervical margin of the crown, coinciding with a common clinical failure mode. This 3D model was also used in a additional study allowing us to conclude that the geometrical data used in modern CAD/CAM processes are sufficient to develop a mechanical optimization of the restoration design. A reverse engineering method based on the interpolation of B-Spline surfaces on scanned data acquired during clinic procedures is therefore introduced in order to integrate a patient specific mechanical optimization within the digital chain of CAD/CAM processes
Books on the topic "Optimisatiion géométrique"
Michel, Pierre, ed. Variation et optimisation de formes: Une analyse géométrique. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.
Find full textGrötschel, Martin. Geometric algorithms and combinatorial optimization. 2nd ed. Berlin: Springer-Verlag, 1993.
Find full textGrötschel, Martin. Geometric algorithms and combinatorial optimization. Berlin: Springer-Verlag, 1988.
Find full textOptimal transport: Old and new. Berlin: Springer, 2009.
Find full textHildebrandt, Stefan. Mathematics and optimal form. New York: Scientific American Library, 1985.
Find full textPierre, Michel, and Antoine Henrot. Variation et optimisation de formes: Une analyse géométrique (Mathématiques et Applications). Springer, 2007.
Find full textAgrachev, Andrei A., and Yuri Sachkov. Control Theory from the Geometric Viewpoint. Springer, 2013.
Find full textGamkrelidze, R. V., Andrei A. Agrachev, and Yuri Sachkov. Control Theory from the Geometric Viewpoint. Springer, 2010.
Find full textControl Theory from the Geometric Viewpoint. Springer, 2004.
Find full textAtkins, P. W. Second Law: Energy, Chaos, and Form. W.H. Freeman & Company, 1994.
Find full textBook chapters on the topic "Optimisatiion géométrique"
"Propriétés géométriques de l’optimum." In Variation et optimisation de formes, 233–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-37689-5_6.
Full text